Articles | Volume 15, issue 6
https://doi.org/10.5194/os-15-1745-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-15-1745-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Influence of the summer deep-sea circulations on passive drifts among the submarine canyons in the northwestern Mediterranean Sea
Morane Clavel-Henry
CORRESPONDING AUTHOR
Institut de Cienciès del Mar, Consejo Superior de
Investigaciones Científicas, Barcelona, Spain
Jordi Solé
Institut de Cienciès del Mar, Consejo Superior de
Investigaciones Científicas, Barcelona, Spain
Miguel-Ángel Ahumada-Sempoal
Universidad del Mar, Puerto Angel, 70902, Oaxaca, Mexico
Nixon Bahamon
Institut de Cienciès del Mar, Consejo Superior de
Investigaciones Científicas, Barcelona, Spain
Centre d'estudis avançats de Blanes, Consejo Superior de
Investigaciones Científicas, Blanes, Spain
Florence Briton
Ecole Nationale Supérieure de Techniques Avancées, Paris
Tech. Palaiseau, France
Guiomar Rotllant
Institut de Cienciès del Mar, Consejo Superior de
Investigaciones Científicas, Barcelona, Spain
Joan B. Company
Institut de Cienciès del Mar, Consejo Superior de
Investigaciones Científicas, Barcelona, Spain
Cited articles
Adani, M., Dobricic S, and Pinardi, N.: Quality assessment of a 1985–2007
Mediterranean Sea reanalysis, J. Atmos. Ocean. Tech., 28, 569–589, https://doi.org/10.1175/2010JTECHO798.1, 2011.
Ahumada-Sempoal, M. A., Flexas, M. M., Bernardello, R., Bahamon, N., and
Cruzado, A.: Northern Current variability and its impact on the Blanes
Canyon circulation: A numerical study, Prog. Oceanogr., 118, 61–70, https://doi.org/10.1016/j.pocean.2013.07.030, 2013.
Ahumada-Sempoal, M. A., Flexas, M. M., Bernardello, R., Bahamon, N.,
Cruzado, A., and Reyes Hernández, C.: Shelf-slope exchanges and particle
dispersion in Blanes submarine canyon (NW Mediterranean Sea): A numerical
study, Cont. Shelf Res., 109, 35–45, 2015.
Andrello, M., Mouillot, D., Beuvier, J., Albouy, C., Thuiyse, W., and Manel,
S.: Low Connectivity between Mediterranean Marine Protected Areas: A
Biophysical Modeling Approach for the Dusky Grouper Epinephelus marginatus, PLOS ONE, 8, e68564, https://doi.org/10.1371/journal.pone.0068564, 2013.
Arellano, S. M., Van Gaest, A. L., Johnson, S. B., Vrijenhoek, R. C., and
Young, C. M.: Larvae from deep-sea methane seeps disperse in surface waters,
P. Roy. Soc. B-Biol. Sci., 281, 20133276, https://doi.org/10.1098/rspb.2013.3276, 2014.
Basterretxea, G., Jordi, A., Catalán, I. A., and Sabatés, A.:
Model-based assessment of local-scale fish larval connectivity in a network
of marine protected areas, Fish. Oceanogr., 21, 291–306, https://doi.org/10.1111/j.1365-2419.2012.00625.x, 2012.
Boletín Oficial del Estado: Orden AAA/923/2013 de 16 de Mayo,
no 126, Sec. III, 2013.
Canals, M., Danovaro, R., Heussner, S., Lykousis, V., Puig, P., Trincardi,
F., and Sanchez-Vidal, A.: Cascades in Mediterranean submarine grand
canyons, Oceanography, 22, 26–43, 2009.
Carbonell, A., Dos Santos, A., Alemany, F., and Vélez-Belchi, P.: Larvae
of the red shrimp Aristeus antennatus (Decapoda: Dendrobranchiata: Aristeidae) in the Balearic
Sea: new occurrences fifty years later, Mar. Biodivers. Rec., 3, E103, https://doi.org/10.1017/s1755267210000758, 2010.
Carretón, M., Company, J. B., Planella, L., Heras, S.,
García-Marín, J. L., Agulló, M., Clavel-Henry, M., Rotllant, G., dos Santos, A., and Roldán, M. I.: Morphological identification
and molecular confirmation of the deep-sea blue and red shrimp Aristeus antennatus larvae,
Peer J., 7, e6063, https://doi.org/10.7717/peerj.6063, 2019.
Chen, C., Liu, H., and Beardsley, R. C.: An Unstructured Grid,
Finite-Volume, Three-Dimensional, Primitive Equations Ocean Model:
Application to Coastal Ocean and Estuaries, J. Atmos. Ocean. Tech., 20, 159–186, https://doi.org/10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2, 2003.
Coll, M., Steenbeek, J., Solé, J., Palomera, I., and Christensen, W.:
Modelling the cumulative spatial–temporal effects of environmental drivers
and fishing in a NW Mediterranean marine ecosystem, Ecol. Modell., 331, 100–114, https://doi.org/10.1016/j.ecolmodel.2016.03.020, 2016.
Corell, H., Moksnes, P. O., Engqvist, A., Döös, K., and Jonsson, P.
R.: Depth distribution of larvae critically affects their dispersal and the
efficiency of marine protected areas, Mar. Ecol. Prog. Ser., 467, 29–46, 2012.
Cowen, R. K. and Sponaugle, S.: Larval dispersal and marine population
connectivity, Annu. Rev. Mar. Sci., 1, 443–466, https://doi.org/10.1146/annurev.marine.010908.163757, 2009.
Cromey, C. J. and Black, K. D.: Modelling the Impacts of Finfish Aquaculture,
in: Environmental Effects of Marine Finfish Aquaculture, edited by: Hargrave B. T.,
Handbook of Environmental Chemistry, vol 5M, Springer, Berlin, Heidelberg,
129–155, 2005.
Dall, W.: The biology of the Penaeidae, Adv. Mar. Biol., 27, 489 pp., 1990.
Debreu, L., Marchesiello, P., Penven, P., and Cambon, G.: Two-way nesting in
split-explicit ocean models: algorithms, implementation and validation,
Ocean Modell., 49–50, 1–21, https://doi.org/10.1016/j.ocemod.2012.03.003, 2012.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L.
Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K.,Peubey, C.,de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of
the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Demestre, M. and Fortuno, J. M.: Reproduction of the deep-water shrimp
Aristeus antennatus (Decapoda: Dendrobranchiata), Mar. Ecol. Prog. Ser., 84, 41–51, 1992.
Demestre, M. and Lleonart, J.: Population dynamics of Aristeus antennatus (Decapoda:
Dendrobranchiata) in the northwestern Mediterranean, Sci. Mar., 57, 183–189, 1993.
D'Onghia, G., Maiorano, P., Capezzuto, F., Carlucci, R., Battista, D.,
Giove, A., and Tursi, A.: Further evidences of deep-sea recruitment of
Aristeus antennatus (Crustacea: Decapoda) and its role in the population renewal on the
exploited bottoms of the Mediterranean, Fish. Res., 95, 236–245, https://doi.org/10.1016/j.fishres.2008.09.025, 2009.
Durrieu de Madron, X., Radakovitch, O., Heussner, S., Loye-Pilot, M. D., and
Monaco, A.: Role of the climatological and current variability on
shelf-slope exchanges of particulate matter: Evidence from the Rhône
continental margin (NW Mediterranean), Deep-Sea Res. Pt. I, 46, 1513–1538, https://doi.org/10.1016/S0967-0637(99)00015-1, 1999.
Etter, R. J. and Bower, A. S.: Dispersal and population connectivity in the
deep North Atlantic estimated from physical transport processes, Deep-Sea Res. Pt. I, 104,
159–172, https://doi.org/10.1016/j.dsr.2015.06.009, 2015.
Fairall, C. W., Bradley, E. F., Rogers, D. P., Edson, J. B., and Young, G.
S.: Bulk parameterization of air-sea fluxes for tropical ocean-global
atmosphere coupled-ocean atmosphere response experiment, J. Geophys. Res., 101, 3747–3764,
https://doi.org/10.1029/95JC03205, 1996.
Fernandez-Arcaya, U., Ramirez-Llodra, E., Aguzzi, J., Allcock, A. L.,
Davies, J. S., Dissanayake, A., and Van den Beld, I. M. J.: Ecological Role
of Submarine Canyons and Need for Canyon Conservation: A Review, Front. Mar. Sci., 4, 26, https://doi.org/10.3389/fmars.2017.00005, 2017.
Flexas, M. M., Boyer, D. L., Espino, M., Puigdefábregas, J., Rubio, A.,
and Company, J. B.: Circulation over a submarine canyon in the NW
Mediterranean, J. Geophys. Res., 113, C12002, https://doi.org/10.1029/2006JC003998, 2008.
Gorelli, G., Company, J. B., and Sardà, F.: Management strategies for
the fishery of the red shrimp Aristeus antennatus in Catalonia (NE Spain), Marine Stewardship Council Science Series, 2, 116–127, 2014.
Granata, T. C., Vidondo, B., Duarte, C. M., Satta, M. P., and Garcia, M.:
Hydrodynamics and particle transport associated with a submarine canyon off
Blanes (Spain), NW Mediterranean Sea, Cont. Shelf Res., 19, 1249–1263, https://doi.org/10.1016/S0278-4343(98)00118-6, 1999.
Gula, J., Molemaker, M. J., and McWilliams, J. C.: Topographic vorticity
generation, submesoscale instability and vortex street formation in the Gulf
Stream, Geophys. Res. Lett., 42, 4054–4062, 2015.
Heldt, J. H.: Contribution à l'étude de la biologie des crevettes
pénéides: Aristaeomorpha foliacea (Risso) et Aristeus antennatus (Risso), formes larvaires, Bulletin de la Société des Sciences Naturelles de Tunisie, VIII(1–2),
1–29, 1955.
Hilário, A., Metaxas, A., Gaudron, S., Howell, K., Mercier, A., Mestre,
N., and Young, C.: Estimating dispersal distance in the deep sea: challenges
and applications to marine reserves, Front. Mar. Sci., 2, 14, https://doi.org/10.3389/fmars.2015.00006, 2015.
Jones, C. E., Dagestad, K.-F., Breivik, Ø., Holt, B., Röhrs, J.,
Christensen, K. H., and Skrunes, S.: Measurement and modeling of oil slick
transport, J. Geophys. Res.-Oceans, 121, 7759–7775, https://doi.org/10.1002/2016JC012113,
2016.
Jorda, G., Flexas, M. M., Espino, M., and Calafat, A.: Deep flow variability
in a deeply incised Mediterranean submarine valley (Blanes canyon),
Prog. Oceanogr., 118, 47–60, https://doi.org/10.1016/j.pocean.2013.07.024, 2013.
Jordi, A., Basterretxea, G., Orfila, A., and Tintoré, J.: Analysis of the circulation and shelf-slope exchanges in the continental margin of the northwestern Mediterranean, Ocean Sci., 2, 173–181, https://doi.org/10.5194/os-2-173-2006, 2006.
Kool, J. T., Huang, Z., and Nichol, S. L.: Simulated larval connectivity
among Australian southwest submarine canyons, Mar. Ecol. Prog. Ser., 539, 77–91, 2015.
Kough, A. S., Paris, C. B., and Butler IV, M. J.: Larval connectivity and
the International Management of fisheries, PLOS ONE, 8, e64970, https://doi.org/10.1371/journal.pone.0064970, 2013.
Large, W., McWilliams, J., and Doney, S.: Oceanic vertical mixing: a review
and a model with a nonlocal boundary layer parameterization, Rev. Geophys., 32, 363–403,
1994.
Lebreton, L. C. M., Greer, S. D., and Borrero, J. C.: Numerical modelling of
floating debris in the world's oceans, Mar. Pollut. Bull., 64, 653–661, 2012.
Lett, C., Verley, P., Mullon, C., Parada, C., Brochier, T., Penven, P., and
Blanke, B. A.: Lagrangian tool for modelling ichthyoplankton dynamics,
Environ. Modell. Soft., 23, 1210–1214, https://doi.org/10.1016/j.envsoft.2008.02.005, 2008.
Levin, L. A. and Bridges, T. S.: Pattern and diversity in reproduction and
development, edited by: McEdward, L., CRC Press, Boca Raton, 1995.
Levin, L. A.: Recent progress in understanding larval dispersal: new
directions and digressions, Integr. Comparat. Biol., 46, 282–297, https://doi.org/10.1093/icb/icj024, 2006.
Lopez-Fernandez, P., Calafat, A., Sanchez-Vidal, A., Canals, M., Mar Flexas,
M., Cateura, J., and Company, J. B.: Multiple drivers of particle fluxes in
the Blanes submarine canyon and southern open slope: Results of a year round
experiment, Prog. Oceanogr., 118, 95–107, https://doi.org/10.1016/j.pocean.2013.07.029, 2013.
Millot, C.: Circulation in the Western Mediterranean Sea, J. Mar. Syst., 20,
423–442, 1999.
North, E. W.: Vertical swimming behavior influences the dispersal of
simulated oyster larvae in a coupled particle-tracking and hydrodynamic
model of Chesapeake Bay, Mar. Ecol. Prog. Ser., 359, 99–115, https://doi.org/10.3354/meps07317, 2008.
North, E. W., Gallego, A., and Petitgas, P.: Manual of recommended practices
for modelling physical-biological interactions during fish early life, ICES Cooperative Research Report, 295,
111 pp., 2009.
O'Connor, M. I., Bruno, J. F., Gaines, S. D., Halpern, B. S., Lester, S. E.,
Kinlan, B. P., and Weiss, J. M.: Temperature control of larval dispersal and
the implications for marine ecology, evolution, and conservation,
P. Natl. Acad. Sci. USA, 104, 1266–1271, https://doi.org/10.1073/pnas.0603422104, 2007.
Ospina-Álvarez, A., Bernal, M., Catalán, I. A., Roos, D., Bigot,
J.-L., and Palomera, I.: Modeling Fish Egg Production and Spatial
Distribution from Acoustic Data: A Step Forward into the Analysis of
Recruitment, PLOS ONE, 8, e73687, https://doi.org/10.1371/journal.pone.0073687, 2013.
Palanques, A., García-Ladona, E., Gomis, D., Martín, J., Marcos,
M., Pascual, A., and Pagès, F.: General patterns of circulation,
sediment fluxes and ecology of the Palamós (La Fonera) submarine canyon,
northwestern Mediterranean, Prog. Oceanogr., 66, 89–119, https://doi.org/10.1016/j.pocean.2004.07.016, 2005.
Palmas, F., Olita, A., Addis, P., Sorgente, R., and Sabatini, A.: Modelling
giant red shrimp larval dispersal in the Sardinian seas: density and
connectivity scenarios, Fish. Oceanogr., 26, 364–378, https://doi.org/10.1111/fog.12199, 2017.
Paris, C. B., Helgers, J., van Sebille, E., and Srinivasan, A.: Connectivity
Modeling System: A probabilistic modeling tool for the multi-scale tracking
of biotic and abiotic variability in the ocean, Environ. Modell. Soft., 42, 47–54, https://doi.org/10.1016/j.envsoft.2012.12.006, 2013.
Penven, P., Marchesiello, P., Debreu, L., and Lefèvre, J.: Software
tools for pre- and post-processing of oceanic regional simulations,
Environ. Modell. Soft., 23, 660–662, https://doi.org/10.1016/j.envsoft.2007.07.004, 2008.
Pepin, P.: Effect of Temperature and Size on Development, Mortality, and
Survival Rates of the Pelagic Early Life History Stages of Marine Fish,
Can. J. Fish. Aquat. Sci., 48, 503–518, https://doi.org/10.1139/f91-065, 1991.
Puig, P., Ogsto, A. S., Mullenbach, B. L., Nittrouer, C. A., and Sternberg,
R. W.: Shelf-to-canyon sediment transport processes on the Eel Continental
Margin (Nothern California), Mar. Geol., 193, 129–149, 2003.
Qiu, Z. F., Doglioli, A. M., He, Y. J., and Carlotti, F.: Lagrangian model
of zooplankton dispersion: numerical schemes comparisons and parameter
sensitivity tests, Chin. J. Oceanol. Limn., 29, 438–445, https://doi.org/10.1007/s00343-011-0015-9,
2011.
Queiroga, H. and Blanton, J.: Interactions Between Behaviour and Physical
Forcing in the Control of Horizontal Transport of Decapod Crustacean Larvae,
Adv. Mar. Biol., 47, 107–214, 2004.
Rojas, P., Garcia, M.A., Sospedra, J., Figa, J., De Fàbregas, J., López, O., Espino, M., Ortiz, V., Sanchez-Arcilla, A., Manriquez, M., and Shirasago, B.: On the structure of the mean flow in the Blanes Canyon Area (NW
Mediterranean) during summer, Oceanologica Acta, 18, 443–454, 1995.
Rojas, P. M. and Landaeta, M. F.: Fish larvae retention linked to abrupt
bathymetry at Mejillones Bay (northern Chile) during coastal upwelling
events, Lat. Am. J. Aquat. Res., 42, 989–1008, 2014.
Ross, R. E., Nimmo-Smith, W. A. M, and Howell, K. L.: Increasing the Depth
of Current Understanding: Sensitivity Testing of Deep-Sea Larval Dispersal
Models for Ecologists, PLOS ONE, 11, e0161220, https://doi.org/10.1371/journal.pone.0161220, 2016.
Sardà, F. and Cartes, J. E.: Morphological features and ecological
aspects of early juvenile specimens of the aristeid shrimp Aristeus antennatus (Risso, 1816),
Mar. Freshwater Res., 48, 73–77, https://doi.org/10.1071/MF95043, 1997.
Sardà, F. and Company, J. B.: The deep-sea recruitment of Aristeus antennatus (Risso, 1816)
(Crustacea: Decapoda) in the Mediterranean Sea, J. Mar. Syst., 105–108, 145–151, https://doi.org/10.1016/j.jmarsys.2012.07.006, 2012.
Sardà, F., Maynou, F., and Tallo, L.: Seasonal and spatial mobility
patterns of rose shrimp Aristeus antennatus in the western Mediterranean: results of a
long-term study, Mar. Ecol.-Prog. Ser., 159, 133–141, 1997.
Sardà, F., D'Onghia, G., Politou, C. Y., Company, J. B., Maiorano, P.,
and Kapiris, K.: Deep-sea distribution, biological and ecological aspects of
Aristeus antennatus (Risso, 1816) in the Western and Central Mediterranean Sea, Sci. Mar., 68,
117–127, 2004.
Schram, F., von Vaupel Klein, C., Charmantier-Daures, M., and Forest, J.:
Treatise on Zoology – Anatomy, Taxonomy, Biology, The Crustacea, Volume 9
Part A: Eucarida: Euphausiacea, Amphionidacea, and Decapoda (partim), Brill, Leiden, the Netherlands,
2010.
Seridji, R.: Contribution à l'étude des larves crustacés
décapods en Baie d'Alger, Pelagos, 3, 1–105, 1971.
Shan S., Sheng J., and Greenan B. J. W.: Physical processes affecting
circulation and hydrography in the Sable Gully of Nova Scotia, Deep-Sea Res. Pt. II, 104,
35–50, 2014.
Shchepetkin, A. A.: Method for computing horizontal pressure-gradient force
in an oceanic model with a nonaligned vertical coordinate, J. Geophys. Res., 108, 3090, https://doi.org/10.1029/2001JC001047, 2003.
Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling
system (ROMS): a split-explicit, free-surface,
topography-following-coordinate oceanic model, Ocean Modell., 9, 347–404, https://doi.org/10.1016/j.ocemod.2004.08.002, 2005.
Siegel, D. A., Kinlan, B. P., Gaylord, B., and Gaines, S. D.: Lagrangian
descriptions of marine larval dispersion, Mar. Ecol. Prog. Ser., 260, 83–96, 2003.
Simons, R. D., Siegel, D. A., and Brown, K. S.: Model sensitivity and
robustness in the estimation of larval transport: A study of particle
tracking parameters, J. Mar. Syst., 119–120, 19–29, https://doi.org/10.1016/j.jmarsys.2013.03.004, 2013.
Smith, W. H. F. and Sandell, D. T.: Global seafloor topography from
satellite altimetry and ship depth soundings, Science, 277, 1957–1962, 1997.
Smolarkiewicz, P. K. and Margolin L. G.: MPDATA: A finite-difference solver
for geophysical flows, J. Comput. Phys., 140, 459–480, https://doi.org/10.1006/jcph.1998.5901, 1998.
Solé, J., Ballabrera-Poy, J., Macías, D., and Catalán, I. A.:
The role of ocean velocities in chlorophyll variability. A modeling study in
the Alboran Sea, Sci. Mar., 80, 249–256, https://doi.org/10.3989/scimar.04290.04A, 2016.
Solé, J., Emelianov, M., García-Ladona, E., Ostrovskii, A., and
Puig, P.: Fine-scale water mass variability inside a narrow submarine canyon
(the Besòs Canyon) in the NW Mediterranean Sea, Sci. Mar., 80, 195–204, https://doi.org/10.3989/scimar.04322.05A, 2016.
Taylor, K. E.: Summarizing multiple aspects of model performance in a single
diagram, J. Geophys. Res.-Atmos., 106, 7183–7192, 2001.
Thatje, S., Bacardit, R., and Arntz, W.: Larvae of the deep-sea
Nematocarcinidae (Crustacea: Decapoda: Caridea) from the Southern Ocean,
Polar Biol., 28, 290–302, https://doi.org/10.1007/s00300-004-0687-0, 2005.
Torres, A. P., Santos, A., Alemany, F., and Massutí, E.: Larval stages
of crustacean species of interest for conservation and fishing exploitation
in the Western Mediterranean, Sci. Mar., 77, 149–160, https://doi.org/10.3989/scimar.03749.26D, 2013.
Tudela, S., Sardà, F., Maynou, F., and Demestre, M.: Influence of
Submarine Canyons on the Distribution of the Deep-Water Shrimp, Aristeus antennatus (Risso,
1816) in the NW Mediterranean, Crustaceana, 76, 217–225, 2003.
Uppala, S. M., KÅllberg, P. W., Simmons, A. J., Andrae, U., Bechtold, V. D. C., Fiorino, M., Gibson, J. K., Haseler, J., Hernandez, A., Kelly, G. A., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R. P., Andersson, E., Arpe, K., Balmaseda, M. A., Beljaars, A. C. M., Berg, L. V. D., Bidlot, J., Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M., Fuentes, M., Hagemann, S., Hólm, E., Hoskins, B. J., Isaksen, L., Janssen, P. A. E. M., Jenne, R., Mcnally, A. P., Mahfouf, J.-F., Morcrette, J.-J., Rayner, N. A., Saunders, R. W., Simon, P., Sterl, A., Trenberth, K. E., Untch, A., Vasiljevic, D., Viterbo, P., and Woollen, J.: The ERA-40 re-analysis, Q. J. Roy. Meteorol. Soc., 131, 2961–3012, https://doi.org/10.1256/qj.04.176, 2005.
Williamson, D. I.: Larval morphology and diversity, in: The
Biology of Crustacea, edited by: Abele, L. G., Vol. 2, Embryology, Morphology, and Genetics, Academic Press, New
York, 489 pp., 1982.
Young, C. M., He, R., Emlet, R. B., Li, Y., Qian, H., Arellano, S. M., and
Rice, M. E.: Dispersal of Deep-Sea Larvae from the Intra-American Seas:
Simulations of Trajectories using Ocean Models, Integr. Comparat. Biol., 52, 483–496, https://doi.org/10.1093/icb/ics090, 2012.
Short summary
Deep-sea connectivity research is scarce but needed for understanding marine population dynamics and dispersal of animal early-life stages. Here, we modeled near-bottom particle drifts along a continental margin crossed by submarine canyons. The bottom current impacting particle drifts is influenced by uneven topographic structures like submarine canyons. Thus, models with a good representation of the bottom geomorphological structures contribute to improving the deep-sea larval drift modeling.
Deep-sea connectivity research is scarce but needed for understanding marine population dynamics...