Articles | Volume 15, issue 6
https://doi.org/10.5194/os-15-1531-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-15-1531-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The life cycle of submesoscale eddies generated by topographic interactions
Mathieu Morvan
CORRESPONDING AUTHOR
LOPS, Univ. Brest-CNRS-IFREMER-IRD, IUEM, Plouzané, France
Pierre L'Hégaret
LOPS, Univ. Brest-CNRS-IFREMER-IRD, IUEM, Plouzané, France
Xavier Carton
LOPS, Univ. Brest-CNRS-IFREMER-IRD, IUEM, Plouzané, France
Jonathan Gula
LOPS, Univ. Brest-CNRS-IFREMER-IRD, IUEM, Plouzané, France
Clément Vic
LOPS, Univ. Brest-CNRS-IFREMER-IRD, IUEM, Plouzané, France
Charly de Marez
LOPS, Univ. Brest-CNRS-IFREMER-IRD, IUEM, Plouzané, France
Mikhail Sokolovskiy
Institute of Water Problems of the RAS, Ul Gubkina 3,
Moscow, 199333, Russia
Shirshov Institute of Oceanology of RAS, 36 Nahimovskiy pr.,
Moscow, 117997, Russia
Konstantin Koshel
V.I.Il'ichev Pacific Oceanological Institute, 43 Baltiyskaya Street, Vladivostok, 690041, Russia
Related authors
No articles found.
Théo Picard, Jonathan Gula, Ronan Fablet, Jeremy Collin, and Laurent Mémery
Ocean Sci., 20, 1149–1165, https://doi.org/10.5194/os-20-1149-2024, https://doi.org/10.5194/os-20-1149-2024, 2024
Short summary
Short summary
The biological carbon pump plays a key role in the climate system. Plankton absorb and transform CO2 into organic carbon, forming particles that sink to the ocean floor. Sediment traps catch these particles and measure the carbon stored in the abyss. However, the particles' surface origin is unknown as ocean currents alter their paths. Here, we train an AI model to predict the origin of these particles. This new tool enables a better link between deep-ocean observations and satellite images.
Yan Barabinot, Sabrina Speich, and Xavier Carton
EGUsphere, https://doi.org/10.22541/essoar.169833426.64842571/v1, https://doi.org/10.22541/essoar.169833426.64842571/v1, 2024
Short summary
Short summary
Mesoscale eddies are ubiquitous rotating currents in the ocean. Some eddies called "Materially Coherent" are able to transport a different water mass from the surrounding water. By analyzing 3D eddies structures sampled during oceanographic cruises, we found that eddies can be nonmaterially coherent accounting only for their surface properties, but materially coherent considering their properties at depth. Future studies cannot rely solely on satellite data to evaluate heat and salt transport.
Pierre L'Hégaret, Florian Schütte, Sabrina Speich, Gilles Reverdin, Dariusz B. Baranowski, Rena Czeschel, Tim Fischer, Gregory R. Foltz, Karen J. Heywood, Gerd Krahmann, Rémi Laxenaire, Caroline Le Bihan, Philippe Le Bot, Stéphane Leizour, Callum Rollo, Michael Schlundt, Elizabeth Siddle, Corentin Subirade, Dongxiao Zhang, and Johannes Karstensen
Earth Syst. Sci. Data, 15, 1801–1830, https://doi.org/10.5194/essd-15-1801-2023, https://doi.org/10.5194/essd-15-1801-2023, 2023
Short summary
Short summary
In early 2020, the EUREC4A-OA/ATOMIC experiment took place in the northwestern Tropical Atlantic Ocean, a dynamical region where different water masses interact. Four oceanographic vessels and a fleet of autonomous devices were deployed to study the processes at play and sample the upper ocean, each with its own observing capability. The article first describes the data calibration and validation and second their cross-validation, using a hierarchy of instruments and estimating the uncertainty.
Gwendal Marechal and Charly de Marez
Ocean Sci., 18, 1275–1292, https://doi.org/10.5194/os-18-1275-2022, https://doi.org/10.5194/os-18-1275-2022, 2022
Short summary
Short summary
The surface ocean is turbulent from several hundred to a few kilometres. The more the current field is turbulent, the more traveling waves over the underlying current that are scattered. In this paper we focus on an isolated eddy where spontaneous instabilities have occurred, resulting in the emergence of smaller structures. Thanks to the wave scattering we have been able to retrieve the underlying surface current gradients normally not retrievable with traditional current measurements.
Takaya Uchida, Julien Le Sommer, Charles Stern, Ryan P. Abernathey, Chris Holdgraf, Aurélie Albert, Laurent Brodeau, Eric P. Chassignet, Xiaobiao Xu, Jonathan Gula, Guillaume Roullet, Nikolay Koldunov, Sergey Danilov, Qiang Wang, Dimitris Menemenlis, Clément Bricaud, Brian K. Arbic, Jay F. Shriver, Fangli Qiao, Bin Xiao, Arne Biastoch, René Schubert, Baylor Fox-Kemper, William K. Dewar, and Alan Wallcraft
Geosci. Model Dev., 15, 5829–5856, https://doi.org/10.5194/gmd-15-5829-2022, https://doi.org/10.5194/gmd-15-5829-2022, 2022
Short summary
Short summary
Ocean and climate scientists have used numerical simulations as a tool to examine the ocean and climate system since the 1970s. Since then, owing to the continuous increase in computational power and advances in numerical methods, we have been able to simulate increasing complex phenomena. However, the fidelity of the simulations in representing the phenomena remains a core issue in the ocean science community. Here we propose a cloud-based framework to inter-compare and assess such simulations.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Mathieu Le Corre, Jonathan Gula, and Anne-Marie Tréguier
Ocean Sci., 16, 451–468, https://doi.org/10.5194/os-16-451-2020, https://doi.org/10.5194/os-16-451-2020, 2020
Short summary
Short summary
The ocean circulation is crucial for the climate, and the North Atlantic subpolar gyre is a key component of the meridional heat transport. In this study we use a high-resolution simulation with bottom-following coordinates to investigate the gyre dynamics. We show that nonlinear processes, underestimated in most climate models, control the circulation in the gyre interior. This result contrasts with the classical theory putting forward wind effects on the large-scale circulation.
Konstantin V. Koshel and Eugene A. Ryzhov
Nonlin. Processes Geophys., 24, 1–8, https://doi.org/10.5194/npg-24-1-2017, https://doi.org/10.5194/npg-24-1-2017, 2017
Short summary
Short summary
The paper deals with the dynamics of an isolated vortex that evolves in a time-dependent strain environment. We establish parameters leading to parametric instability of stationary steady-state configuration using a combination of analytical and numerical techniques. Our findings may contribute to a deeper understanding of the coherent vortex dynamics in the ocean.
Pierre L'Hégaret, Xavier Carton, Stephanie Louazel, and Guillaume Boutin
Ocean Sci., 12, 687–701, https://doi.org/10.5194/os-12-687-2016, https://doi.org/10.5194/os-12-687-2016, 2016
Short summary
Short summary
The Persian Gulf produces high-salinity water spreading in the Indian Ocean through the Arabian Sea. Using measurements from the Phys-Indien 2011 experiments and satellite observations, the objective of this study is to follow the pathway and evolution of the salty water outflow in the northwestern Indian Ocean. It is shown that the outflow is strongly influenced by energetic eddies, shredding the water vein into filaments or lenses, and advecting them at their peripheries or in their cores.
P. L'Hégaret, R. Duarte, X. Carton, C. Vic, D. Ciani, R. Baraille, and S. Corréard
Ocean Sci., 11, 667–693, https://doi.org/10.5194/os-11-667-2015, https://doi.org/10.5194/os-11-667-2015, 2015
Short summary
Short summary
The Arabian Sea and Sea of Oman have a complex oceanic circulation, strongly influenced by the monsoons. The aim of this article is to describe the mesoscale processes that dominate the region, large eddies with a strong vertical influence, with their seasonal and interannual variability, from their formations, evolutions and interactions. Thus, an emphasis is placed on the highly saline Persian Gulf outflow in the Sea of Oman, and its interaction with the mesoscale circulation.
M. S. Mallard, C. G. Nolte, T. L. Spero, O. R. Bullock, K. Alapaty, J. A. Herwehe, J. Gula, and J. H. Bowden
Geosci. Model Dev., 8, 1085–1096, https://doi.org/10.5194/gmd-8-1085-2015, https://doi.org/10.5194/gmd-8-1085-2015, 2015
Short summary
Short summary
Because global climate models (GCMs) are typically run at coarse spatial resolution, lakes are often poorly resolved in their global fields. When downscaling such GCMs using the Weather Research & Forecasting (WRF) model, use of WRF’s default interpolation methods can result in unrealistic lake temperatures and ice cover, which can impact simulated air temperatures and precipitation. Here, alternative methods for setting lake variables in WRF downscaling applications are presented and compared.
I. Bashmachnikov, F. Neves, Â. Nascimento, J. Medeiros, I. Ambar, J. Dias, and X. Carton
Ocean Sci., 11, 215–236, https://doi.org/10.5194/os-11-215-2015, https://doi.org/10.5194/os-11-215-2015, 2015
Short summary
Short summary
The present study defines new interpolation functions for hydrological data. These functions are applied to generate climatological maps of temperature-salinity distribution with a 25m depth interval and a 30km space interval (MEDTRANS data set). The MEDTRANS climatology gives more details of the distribution of water characteristics in the subtropical northeastern Atlantic than other alternative climatologies and is able to reproduce a number of dynamic features described in the literature.
G. Dulaquais, M. Boye, M. J. A. Rijkenberg, and X. Carton
Biogeosciences, 11, 1561–1580, https://doi.org/10.5194/bg-11-1561-2014, https://doi.org/10.5194/bg-11-1561-2014, 2014
K. V. Koshel, E. A. Ryzhov, and V. V. Zhmur
Nonlin. Processes Geophys., 20, 437–444, https://doi.org/10.5194/npg-20-437-2013, https://doi.org/10.5194/npg-20-437-2013, 2013
E. A. Ryzhov and K. V. Koshel
Nonlin. Processes Geophys., 20, 107–119, https://doi.org/10.5194/npg-20-107-2013, https://doi.org/10.5194/npg-20-107-2013, 2013
Cited articles
Al Saafani, M., Shenoi, S., Shankar, D., Aparna, M., Kurian, J., Durand, F., and Vinayachandran, P.: Westward movement of eddies into the Gulf of Aden from the Arabian Sea, J. Geophys. Res., 112, C11004, https://doi.org/10.1029/2006JC004020, 2007. a
Blanke, B. and Raynaud, S.: Kinematics of the Pacific equatorial undercurrent: An Eulerian and Lagrangian approach from GCM results, J. Phys. Oceanogr., 27, 1038–1053, 1997. a
Bosse, A., Testor, P., Mortier, L., Prieur, L., Taillandier, V., d'Ortenzio, F., and Coppola, L.: Spreading of Levantine Intermediate Waters by submesoscale coherent vortices in the northwestern Mediterranean Sea as observed with gliders, J. Geophys. Res.-Oceans, 120, 1599–1622, 2015. a
Bower, A. S. and Furey, H. H.: Mesoscale eddies in the Gulf of Aden and their impact on the spreading of Red Sea Outflow Water, Prog. Oceanogr., 96, 14–39, 2012. a
Bower, A. S., Fratantoni, D. M., Johns, W. E., and Peters, H.: Gulf of Aden eddies and their impact on Red Sea Water, Geophys. Res. Lett., 29, 2025, https://doi.org/10.1029/2002GL015342, 2002. a
Capet, X., McWilliams, J. C., Molemaker, M. J., and Shchepetkin, A.: Mesoscale to submesoscale transition in the California Current System. Part I: Flow structure, eddy flux, and observational tests, J. Phys. Oceanogr., 38, 29–43, 2008a. a
Capet, X., McWilliams, J. C., Molemaker, M. J., and Shchepetkin, A.: Mesoscale to submesoscale transition in the California Current System. Part II: Frontal processes, J. Phys. Oceanogr., 38, 44–64, 2008b. a
Capet, X., McWilliams, J. C., Molemaker, M. J., and Shchepetkin, A.: Mesoscale to submesoscale transition in the California Current System. Part III: Energy balance and flux, J. Phys. Oceanogr., 38, 2256–2269, 2008c. a
Carton, X.: Hydrodynamical modeling of oceanic vortices, Surv. Geophys., 22, 179–263, 2001. a
Carton, X., L'Hegaret, P., and Baraille, R.: Mesoscale variability of water masses in the Arabian Sea as revealed by ARGO floats, Ocean Sci., 8, 227–248, https://doi.org/10.5194/os-8-227-2012, 2012. a, b
Chelton, D. B., Deszoeke, R. A., Schlax, M. G., El Naggar, K., and Siwertz, N.: Geographical variability of the first baroclinic Rossby radius of deformation, J. Phys. Oceanogr., 28, 433–460, 1998. a
Cushman-Roisin, B. and Beckers, J.-M.: Introduction to geophysical fluid
dynamics: physical and numerical aspects, Academic Press, vol. 101, p. 285, 2011. a
D'Asaro, E. A.: Generation of submesoscale vortices: A new mechanism, J. Geophys. Res., 93, 6685–6693, 1988. a
de Marez, C., l'Hégaret, P., Morvan, M., and Carton, X.: On the 3D structure of eddies in the Arabian Sea, Deep-Sea Res. Pt. I, 150, August 2019, 103057, https://doi.org/10.1016/j.dsr.2019.06.003, 2019. a
Ferrari, R. and Wunsch, C.: Ocean circulation kinetic energy: Reservoirs, sources, and sinks, Annu. Rev. Fluid Mech., 41, 253–282, 2009. a
Gula, J., Molemaker, M., and McWilliams, J.: Topographic vorticity generation, submesoscale instability and vortex street formation in the Gulf Stream, Geophys. Res. Lett., 42, 4054–4062, 2015. a
Gula, J., Molemaker, M. J., and McWilliams, J. C.: Topographic generation of submesoscale centrifugal instability and energy dissipation, Nat. Commun., 7, 12811, https://doi.org/10.1038/ncomms12811, 2016. a, b
Hetland, R. D.: Suppression of baroclinic instabilities in buoyancy-driven flow over sloping bathymetry, J. Phys. Oceanogr., 47, 49–68, 2017. a
LaCasce, J.: Statistics from Lagrangian observations, Prog. Oceanogr., 77, 1–29, 2008. a
LaCasce, J. and Bower, A.: Relative dispersion in the subsurface North Atlantic, J. Mar. Res., 58, 863–894, 2000. a
Large, W. G., McWilliams, J. C., and Doney, S. C.: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization, Rev. Geophys., 32, 363–403, 1994. a
L'Hégaret, P., Duarte, R., Carton, X., Vic, C., Ciani, D., Baraille, R., and Corréard, S.: Mesoscale variability in the Arabian Sea from HYCOM model results and observations: impact on the Persian Gulf Water path, Ocean Sci., 11, 667–693, https://doi.org/10.5194/os-11-667-2015, 2015.
a, b
McWilliams, J. C.: Submesoscale currents in the ocean, P. Roy. Soc. A-MAth. Phy., 472, 20160117, https://doi.org/10.1098/rspa.2016.0117, 2016. a
Molemaker, M. J., McWilliams, J. C., and Dewar, W. K.: Submesoscale instability and generation of mesoscale anticyclones near a separation of the California Undercurrent, J. Phys. Oceanogr., 45, 613–629, 2015. a
Pous, S., Carton, X., and Lazure, P.: Hydrology and circulation in the Strait of Hormuz and the Gulf of Oman–Results from the GOGP99 Experiment: 1. Strait of Hormuz, J. Geophys. Res., 109, C12037, https://doi.org/10.1029/2003JC002145, 2004a. a
Pous, S., Carton, X., and Lazure, P.: Hydrology and circulation in the Strait of Hormuz and the Gulf of Oman–Results from the GOGP99 Experiment: 2. Gulf of Oman, J. Geophys. Res., 109, C12038, https://doi.org/10.1029/2003JC002146, 2004b. a
Prants, S., Budyansky, M., Ponomarev, V., and Uleysky, M. Y.: Lagrangian study of transport and mixing in a mesoscale eddy street, Ocean Model., 38, 114–125, 2011. a
Vic, C., Roullet, G., Carton, X., and Capet, X.: Mesoscale dynamics in the Arabian Sea and a focus on the Great Whirl life cycle: A numerical investigation using ROMS, J. Geophys. Res.-Oceans, 119, 6422–6443, 2014. a
Vic, C., Gula, J., Roullet, G., and Pradillon, F.: Dispersion of deep-sea hydrothermal vent effluents and larvae by submesoscale and tidal currents, Deep-Sea Res. Pt. I, 133, 1–18, 2018. a
Wenegrat, J. O., Callies, J., and Thomas, L. N.: Submesoscale baroclinic instability in the bottom boundary layer, J. Phys. Oceanogr., 48, 2571–2592, 2018. a
Short summary
The Persian Gulf Water and Red Sea Water are salty and dense waters recirculating in the Gulf of Oman and the Gulf of Aden, in the form of small features. We study the life cycle of intense and small vortices and their impact on the spread of Persian Gulf Water and Red Sea Water by using idealized numerical simulations. Small vortices are generated along the continental slopes, drift away, merge and form larger vortices. They can travel across the domain and participate in the tracer diffusion.
The Persian Gulf Water and Red Sea Water are salty and dense waters recirculating in the Gulf of...