Research article 28 Aug 2019
Research article | 28 Aug 2019
CO2 effects on diatoms: a synthesis of more than a decade of ocean acidification experiments with natural communities
Lennart Thomas Bach and Jan Taucher
Related authors
Kai G. Schulz, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Isabel Baños, Tim Boxhammer, Dirk Erler, Maricarmen Igarza, Verena Kalter, Andrea Ludwig, Carolin Löscher, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Elisabeth von der Esch, Bess B. Ward, and Ulf Riebesell
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-6, https://doi.org/10.5194/bg-2021-6, 2021
Preprint under review for BG
Short summary
Short summary
Upwelling of nutrient-rich deep waters to the surface make Eastern Boundary upwelling systems hotspots of marine productivity. This leads to sub-surface oxygen-depletion and transformation of bio-available nitrogen into inert N2. Here we quantify nitrogen loss processes following a simulated deep-water upwelling. Denitrification was the dominant process and budget calculations suggest that a significant portion of nitrogen that could be exported to depth is already lost in the surface ocean.
Lennart Thomas Bach, Allanah Joy Paul, Tim Boxhammer, Elisabeth von der Esch, Michelle Graco, Kai Georg Schulz, Eric Achterberg, Paulina Aguayo, Javier Arístegui, Patrizia Ayón, Isabel Baños, Avy Bernales, Anne Sophie Boegeholz, Francisco Chavez, Gabriela Chavez, Shao-Min Chen, Kristin Doering, Alba Filella, Martin Fischer, Patricia Grasse, Mathias Haunost, Jan Hennke, Nauzet Hernández-Hernández, Mark Hopwood, Maricarmen Igarza, Verena Kalter, Leila Kittu, Peter Kohnert, Jesus Ledesma, Christian Lieberum, Silke Lischka, Carolin Löscher, Andrea Ludwig, Ursula Mendoza, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Joaquin Ortiz Cortes, Jonna Piiparinen, Claudia Sforna, Kristian Spilling, Sonia Sanchez, Carsten Spisla, Michael Sswat, Mabel Zavala Moreira, and Ulf Riebesell
Biogeosciences, 17, 4831–4852, https://doi.org/10.5194/bg-17-4831-2020, https://doi.org/10.5194/bg-17-4831-2020, 2020
Short summary
Short summary
The eastern boundary upwelling system off Peru is among Earth's most productive ocean ecosystems, but the factors that control its functioning are poorly constrained. Here we used mesocosms, moored ~ 6 km offshore Peru, to investigate how processes in plankton communities drive key biogeochemical processes. We show that nutrient and light co-limitation keep productivity and export at a remarkably constant level while stoichiometry changes strongly with shifts in plankton community structure.
Giulia Faucher, Ulf Riebesell, and Lennart Thomas Bach
Clim. Past, 16, 1007–1025, https://doi.org/10.5194/cp-16-1007-2020, https://doi.org/10.5194/cp-16-1007-2020, 2020
Short summary
Short summary
We designed five experiments choosing different coccolithophore species that have been evolutionarily distinct for millions of years. If all species showed the same morphological response to an environmental driver, this could be indicative of a response pattern that is conserved over geological timescales. We found an increase in the percentage of malformed coccoliths under altered CO2, providing evidence that this response could be used as paleo-proxy for episodes of acute CO2 perturbations.
Mark J. Hopwood, Nicolas Sanchez, Despo Polyviou, Øystein Leiknes, Julián Alberto Gallego-Urrea, Eric P. Achterberg, Murat V. Ardelan, Javier Aristegui, Lennart Bach, Sengul Besiktepe, Yohann Heriot, Ioanna Kalantzi, Tuba Terbıyık Kurt, Ioulia Santi, Tatiana M. Tsagaraki, and David Turner
Biogeosciences, 17, 1309–1326, https://doi.org/10.5194/bg-17-1309-2020, https://doi.org/10.5194/bg-17-1309-2020, 2020
Short summary
Short summary
Hydrogen peroxide, H2O2, is formed naturally in sunlight-exposed water by photochemistry. At high concentrations it is undesirable to biological cells because it is a stressor. Here, across a range of incubation experiments in diverse marine environments (Gran Canaria, the Mediterranean, Patagonia and Svalbard), we determine that two factors consistently affect the H2O2 concentrations irrespective of geographical location: bacteria abundance and experiment design.
Yong Zhang, Lennart T. Bach, Kai T. Lohbeck, Kai G. Schulz, Luisa Listmann, Regina Klapper, and Ulf Riebesell
Biogeosciences, 15, 3691–3701, https://doi.org/10.5194/bg-15-3691-2018, https://doi.org/10.5194/bg-15-3691-2018, 2018
Short summary
Short summary
To compare variations in physiological responses to pCO2 between populations, we measured growth, POC and PIC production rates at a pCO2 range from 120 to 2630 µatm for 17 strains of the coccolithophore Emiliania huxleyi from the Azores, Canary Islands, and Norwegian coast near Bergen. Optimal pCO2 for growth and POC production rates and tolerance to low pH was significantly higher for the Bergen population than the Azores and Canary Islands populations.
Giulia Faucher, Linn Hoffmann, Lennart T. Bach, Cinzia Bottini, Elisabetta Erba, and Ulf Riebesell
Biogeosciences, 14, 3603–3613, https://doi.org/10.5194/bg-14-3603-2017, https://doi.org/10.5194/bg-14-3603-2017, 2017
Short summary
Short summary
The main goal of this study was to understand if, similarly to the fossil record, high quantities of toxic metals induce coccolith dwarfism in coccolithophore species. We investigated, for the first time, the effects of trace metals on coccolithophore species other than E. huxleyi and on coccolith morphology and size. Our data show a species-specific sensitivity to trace metal concentration, allowing the recognition of the most-, intermediate- and least-tolerant taxa to trace metal enrichments.
Silke Lischka, Lennart T. Bach, Kai-Georg Schulz, and Ulf Riebesell
Biogeosciences, 14, 447–466, https://doi.org/10.5194/bg-14-447-2017, https://doi.org/10.5194/bg-14-447-2017, 2017
Short summary
Short summary
We conducted a large-scale field experiment using 55 m3 floating containers (mesocosms) to investigate consequences of near-future projected CO2 elevations (ocean acidification) on a Baltic Sea plankton community in Storfjärden (Finland). The focus of our study was on single- and multicelled small-sized organisms dwelling in the water column. Our results suggest that increasing CO2 concentrations may change the species composition and promote specific food web interactions.
Thomas Hornick, Lennart T. Bach, Katharine J. Crawfurd, Kristian Spilling, Eric P. Achterberg, Jason N. Woodhouse, Kai G. Schulz, Corina P. D. Brussaard, Ulf Riebesell, and Hans-Peter Grossart
Biogeosciences, 14, 1–15, https://doi.org/10.5194/bg-14-1-2017, https://doi.org/10.5194/bg-14-1-2017, 2017
Juntian Xu, Lennart T. Bach, Kai G. Schulz, Wenyan Zhao, Kunshan Gao, and Ulf Riebesell
Biogeosciences, 13, 4637–4643, https://doi.org/10.5194/bg-13-4637-2016, https://doi.org/10.5194/bg-13-4637-2016, 2016
Alison L. Webb, Emma Leedham-Elvidge, Claire Hughes, Frances E. Hopkins, Gill Malin, Lennart T. Bach, Kai Schulz, Kate Crawfurd, Corina P. D. Brussaard, Annegret Stuhr, Ulf Riebesell, and Peter S. Liss
Biogeosciences, 13, 4595–4613, https://doi.org/10.5194/bg-13-4595-2016, https://doi.org/10.5194/bg-13-4595-2016, 2016
Short summary
Short summary
This paper presents concentrations of several trace gases produced by the Baltic Sea phytoplankton community during a mesocosm experiment with five different CO2 levels. Average concentrations of dimethylsulphide were lower in the highest CO2 mesocosms over a 6-week period, corresponding to previous mesocosm experiment results. No dimethylsulfoniopropionate was detected due to a methodological issue. Concentrations of iodine- and bromine-containing halocarbons were unaffected by increasing CO2.
Allanah J. Paul, Eric P. Achterberg, Lennart T. Bach, Tim Boxhammer, Jan Czerny, Mathias Haunost, Kai-Georg Schulz, Annegret Stuhr, and Ulf Riebesell
Biogeosciences, 13, 3901–3913, https://doi.org/10.5194/bg-13-3901-2016, https://doi.org/10.5194/bg-13-3901-2016, 2016
Monika Nausch, Lennart Thomas Bach, Jan Czerny, Josephine Goldstein, Hans-Peter Grossart, Dana Hellemann, Thomas Hornick, Eric Pieter Achterberg, Kai-Georg Schulz, and Ulf Riebesell
Biogeosciences, 13, 3035–3050, https://doi.org/10.5194/bg-13-3035-2016, https://doi.org/10.5194/bg-13-3035-2016, 2016
Short summary
Short summary
Studies investigating the effect of increasing CO2 levels on the phosphorus cycle in natural waters are lacking although phosphorus often controls phytoplankton development in aquatic systems. The aim of our study was to analyse effects of elevated CO2 levels on phosphorus pool sizes and uptake. Therefore, we conducted a CO2-manipulation mesocosm experiment in the Storfjärden (western Gulf of Finland, Baltic Sea) in summer 2012. We compared the phosphorus dynamics in different mesocosm treatment
Tim Boxhammer, Lennart T. Bach, Jan Czerny, and Ulf Riebesell
Biogeosciences, 13, 2849–2858, https://doi.org/10.5194/bg-13-2849-2016, https://doi.org/10.5194/bg-13-2849-2016, 2016
Anna-Karin Almén, Anu Vehmaa, Andreas Brutemark, Lennart Bach, Silke Lischka, Annegret Stuhr, Sara Furuhagen, Allanah Paul, J. Rafael Bermúdez, Ulf Riebesell, and Jonna Engström-Öst
Biogeosciences, 13, 1037–1048, https://doi.org/10.5194/bg-13-1037-2016, https://doi.org/10.5194/bg-13-1037-2016, 2016
Short summary
Short summary
We studied the effects of ocean acidification (OA) on the aquatic crustacean Eurytemora affinis and measured offspring production in relation to pH, chlorophyll, algae, fatty acids, and oxidative stress. No effects on offspring production or pH effects via food were found. E. affinis seems robust against OA on a physiological level and did probably not face acute pH stress in the treatments, as the species naturally face large pH fluctuations.
A. J. Paul, L. T. Bach, K.-G. Schulz, T. Boxhammer, J. Czerny, E. P. Achterberg, D. Hellemann, Y. Trense, M. Nausch, M. Sswat, and U. Riebesell
Biogeosciences, 12, 6181–6203, https://doi.org/10.5194/bg-12-6181-2015, https://doi.org/10.5194/bg-12-6181-2015, 2015
T. Larsen, L. T. Bach, R. Salvatteci, Y. V. Wang, N. Andersen, M. Ventura, and M. D. McCarthy
Biogeosciences, 12, 4979–4992, https://doi.org/10.5194/bg-12-4979-2015, https://doi.org/10.5194/bg-12-4979-2015, 2015
Short summary
Short summary
A tiny fraction of marine algae escapes decomposition and is buried in sediments. Since tools are needed to track the fate of algal organic carbon, we tested whether naturally occurring isotope variability among amino acids from algae and bacteria can be used as source diagnostic fingerprints. We found that isotope fingerprints track algal amino acid sources with high fidelity across different growth conditions, and that the fingerprints can be used to quantify bacterial amino acids in sediment.
L. T. Bach
Biogeosciences, 12, 4939–4951, https://doi.org/10.5194/bg-12-4939-2015, https://doi.org/10.5194/bg-12-4939-2015, 2015
Short summary
Short summary
Calcification by marine organisms reacts to changing seawater carbonate chemistry, but it is unclear which components of the carbonate system drive the observed response. This study uncovers proportionalities between different carbonate chemistry parameters. These enable us to understand why calcification often correlates well with carbonate ion concentration, and they imply that net CaCO3 formation in high latitudes is not more vulnerable to ocean acidification than formation in low latitudes.
Kai G. Schulz, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Isabel Baños, Tim Boxhammer, Dirk Erler, Maricarmen Igarza, Verena Kalter, Andrea Ludwig, Carolin Löscher, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Elisabeth von der Esch, Bess B. Ward, and Ulf Riebesell
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-6, https://doi.org/10.5194/bg-2021-6, 2021
Preprint under review for BG
Short summary
Short summary
Upwelling of nutrient-rich deep waters to the surface make Eastern Boundary upwelling systems hotspots of marine productivity. This leads to sub-surface oxygen-depletion and transformation of bio-available nitrogen into inert N2. Here we quantify nitrogen loss processes following a simulated deep-water upwelling. Denitrification was the dominant process and budget calculations suggest that a significant portion of nitrogen that could be exported to depth is already lost in the surface ocean.
Lennart Thomas Bach, Allanah Joy Paul, Tim Boxhammer, Elisabeth von der Esch, Michelle Graco, Kai Georg Schulz, Eric Achterberg, Paulina Aguayo, Javier Arístegui, Patrizia Ayón, Isabel Baños, Avy Bernales, Anne Sophie Boegeholz, Francisco Chavez, Gabriela Chavez, Shao-Min Chen, Kristin Doering, Alba Filella, Martin Fischer, Patricia Grasse, Mathias Haunost, Jan Hennke, Nauzet Hernández-Hernández, Mark Hopwood, Maricarmen Igarza, Verena Kalter, Leila Kittu, Peter Kohnert, Jesus Ledesma, Christian Lieberum, Silke Lischka, Carolin Löscher, Andrea Ludwig, Ursula Mendoza, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Joaquin Ortiz Cortes, Jonna Piiparinen, Claudia Sforna, Kristian Spilling, Sonia Sanchez, Carsten Spisla, Michael Sswat, Mabel Zavala Moreira, and Ulf Riebesell
Biogeosciences, 17, 4831–4852, https://doi.org/10.5194/bg-17-4831-2020, https://doi.org/10.5194/bg-17-4831-2020, 2020
Short summary
Short summary
The eastern boundary upwelling system off Peru is among Earth's most productive ocean ecosystems, but the factors that control its functioning are poorly constrained. Here we used mesocosms, moored ~ 6 km offshore Peru, to investigate how processes in plankton communities drive key biogeochemical processes. We show that nutrient and light co-limitation keep productivity and export at a remarkably constant level while stoichiometry changes strongly with shifts in plankton community structure.
Giulia Faucher, Ulf Riebesell, and Lennart Thomas Bach
Clim. Past, 16, 1007–1025, https://doi.org/10.5194/cp-16-1007-2020, https://doi.org/10.5194/cp-16-1007-2020, 2020
Short summary
Short summary
We designed five experiments choosing different coccolithophore species that have been evolutionarily distinct for millions of years. If all species showed the same morphological response to an environmental driver, this could be indicative of a response pattern that is conserved over geological timescales. We found an increase in the percentage of malformed coccoliths under altered CO2, providing evidence that this response could be used as paleo-proxy for episodes of acute CO2 perturbations.
Mark J. Hopwood, Nicolas Sanchez, Despo Polyviou, Øystein Leiknes, Julián Alberto Gallego-Urrea, Eric P. Achterberg, Murat V. Ardelan, Javier Aristegui, Lennart Bach, Sengul Besiktepe, Yohann Heriot, Ioanna Kalantzi, Tuba Terbıyık Kurt, Ioulia Santi, Tatiana M. Tsagaraki, and David Turner
Biogeosciences, 17, 1309–1326, https://doi.org/10.5194/bg-17-1309-2020, https://doi.org/10.5194/bg-17-1309-2020, 2020
Short summary
Short summary
Hydrogen peroxide, H2O2, is formed naturally in sunlight-exposed water by photochemistry. At high concentrations it is undesirable to biological cells because it is a stressor. Here, across a range of incubation experiments in diverse marine environments (Gran Canaria, the Mediterranean, Patagonia and Svalbard), we determine that two factors consistently affect the H2O2 concentrations irrespective of geographical location: bacteria abundance and experiment design.
Yong Zhang, Lennart T. Bach, Kai T. Lohbeck, Kai G. Schulz, Luisa Listmann, Regina Klapper, and Ulf Riebesell
Biogeosciences, 15, 3691–3701, https://doi.org/10.5194/bg-15-3691-2018, https://doi.org/10.5194/bg-15-3691-2018, 2018
Short summary
Short summary
To compare variations in physiological responses to pCO2 between populations, we measured growth, POC and PIC production rates at a pCO2 range from 120 to 2630 µatm for 17 strains of the coccolithophore Emiliania huxleyi from the Azores, Canary Islands, and Norwegian coast near Bergen. Optimal pCO2 for growth and POC production rates and tolerance to low pH was significantly higher for the Bergen population than the Azores and Canary Islands populations.
Giulia Faucher, Linn Hoffmann, Lennart T. Bach, Cinzia Bottini, Elisabetta Erba, and Ulf Riebesell
Biogeosciences, 14, 3603–3613, https://doi.org/10.5194/bg-14-3603-2017, https://doi.org/10.5194/bg-14-3603-2017, 2017
Short summary
Short summary
The main goal of this study was to understand if, similarly to the fossil record, high quantities of toxic metals induce coccolith dwarfism in coccolithophore species. We investigated, for the first time, the effects of trace metals on coccolithophore species other than E. huxleyi and on coccolith morphology and size. Our data show a species-specific sensitivity to trace metal concentration, allowing the recognition of the most-, intermediate- and least-tolerant taxa to trace metal enrichments.
Silke Lischka, Lennart T. Bach, Kai-Georg Schulz, and Ulf Riebesell
Biogeosciences, 14, 447–466, https://doi.org/10.5194/bg-14-447-2017, https://doi.org/10.5194/bg-14-447-2017, 2017
Short summary
Short summary
We conducted a large-scale field experiment using 55 m3 floating containers (mesocosms) to investigate consequences of near-future projected CO2 elevations (ocean acidification) on a Baltic Sea plankton community in Storfjärden (Finland). The focus of our study was on single- and multicelled small-sized organisms dwelling in the water column. Our results suggest that increasing CO2 concentrations may change the species composition and promote specific food web interactions.
Thomas Hornick, Lennart T. Bach, Katharine J. Crawfurd, Kristian Spilling, Eric P. Achterberg, Jason N. Woodhouse, Kai G. Schulz, Corina P. D. Brussaard, Ulf Riebesell, and Hans-Peter Grossart
Biogeosciences, 14, 1–15, https://doi.org/10.5194/bg-14-1-2017, https://doi.org/10.5194/bg-14-1-2017, 2017
Juntian Xu, Lennart T. Bach, Kai G. Schulz, Wenyan Zhao, Kunshan Gao, and Ulf Riebesell
Biogeosciences, 13, 4637–4643, https://doi.org/10.5194/bg-13-4637-2016, https://doi.org/10.5194/bg-13-4637-2016, 2016
Alison L. Webb, Emma Leedham-Elvidge, Claire Hughes, Frances E. Hopkins, Gill Malin, Lennart T. Bach, Kai Schulz, Kate Crawfurd, Corina P. D. Brussaard, Annegret Stuhr, Ulf Riebesell, and Peter S. Liss
Biogeosciences, 13, 4595–4613, https://doi.org/10.5194/bg-13-4595-2016, https://doi.org/10.5194/bg-13-4595-2016, 2016
Short summary
Short summary
This paper presents concentrations of several trace gases produced by the Baltic Sea phytoplankton community during a mesocosm experiment with five different CO2 levels. Average concentrations of dimethylsulphide were lower in the highest CO2 mesocosms over a 6-week period, corresponding to previous mesocosm experiment results. No dimethylsulfoniopropionate was detected due to a methodological issue. Concentrations of iodine- and bromine-containing halocarbons were unaffected by increasing CO2.
Allanah J. Paul, Eric P. Achterberg, Lennart T. Bach, Tim Boxhammer, Jan Czerny, Mathias Haunost, Kai-Georg Schulz, Annegret Stuhr, and Ulf Riebesell
Biogeosciences, 13, 3901–3913, https://doi.org/10.5194/bg-13-3901-2016, https://doi.org/10.5194/bg-13-3901-2016, 2016
Monika Nausch, Lennart Thomas Bach, Jan Czerny, Josephine Goldstein, Hans-Peter Grossart, Dana Hellemann, Thomas Hornick, Eric Pieter Achterberg, Kai-Georg Schulz, and Ulf Riebesell
Biogeosciences, 13, 3035–3050, https://doi.org/10.5194/bg-13-3035-2016, https://doi.org/10.5194/bg-13-3035-2016, 2016
Short summary
Short summary
Studies investigating the effect of increasing CO2 levels on the phosphorus cycle in natural waters are lacking although phosphorus often controls phytoplankton development in aquatic systems. The aim of our study was to analyse effects of elevated CO2 levels on phosphorus pool sizes and uptake. Therefore, we conducted a CO2-manipulation mesocosm experiment in the Storfjärden (western Gulf of Finland, Baltic Sea) in summer 2012. We compared the phosphorus dynamics in different mesocosm treatment
Tim Boxhammer, Lennart T. Bach, Jan Czerny, and Ulf Riebesell
Biogeosciences, 13, 2849–2858, https://doi.org/10.5194/bg-13-2849-2016, https://doi.org/10.5194/bg-13-2849-2016, 2016
Anna-Karin Almén, Anu Vehmaa, Andreas Brutemark, Lennart Bach, Silke Lischka, Annegret Stuhr, Sara Furuhagen, Allanah Paul, J. Rafael Bermúdez, Ulf Riebesell, and Jonna Engström-Öst
Biogeosciences, 13, 1037–1048, https://doi.org/10.5194/bg-13-1037-2016, https://doi.org/10.5194/bg-13-1037-2016, 2016
Short summary
Short summary
We studied the effects of ocean acidification (OA) on the aquatic crustacean Eurytemora affinis and measured offspring production in relation to pH, chlorophyll, algae, fatty acids, and oxidative stress. No effects on offspring production or pH effects via food were found. E. affinis seems robust against OA on a physiological level and did probably not face acute pH stress in the treatments, as the species naturally face large pH fluctuations.
A. J. Paul, L. T. Bach, K.-G. Schulz, T. Boxhammer, J. Czerny, E. P. Achterberg, D. Hellemann, Y. Trense, M. Nausch, M. Sswat, and U. Riebesell
Biogeosciences, 12, 6181–6203, https://doi.org/10.5194/bg-12-6181-2015, https://doi.org/10.5194/bg-12-6181-2015, 2015
T. Larsen, L. T. Bach, R. Salvatteci, Y. V. Wang, N. Andersen, M. Ventura, and M. D. McCarthy
Biogeosciences, 12, 4979–4992, https://doi.org/10.5194/bg-12-4979-2015, https://doi.org/10.5194/bg-12-4979-2015, 2015
Short summary
Short summary
A tiny fraction of marine algae escapes decomposition and is buried in sediments. Since tools are needed to track the fate of algal organic carbon, we tested whether naturally occurring isotope variability among amino acids from algae and bacteria can be used as source diagnostic fingerprints. We found that isotope fingerprints track algal amino acid sources with high fidelity across different growth conditions, and that the fingerprints can be used to quantify bacterial amino acids in sediment.
L. T. Bach
Biogeosciences, 12, 4939–4951, https://doi.org/10.5194/bg-12-4939-2015, https://doi.org/10.5194/bg-12-4939-2015, 2015
Short summary
Short summary
Calcification by marine organisms reacts to changing seawater carbonate chemistry, but it is unclear which components of the carbonate system drive the observed response. This study uncovers proportionalities between different carbonate chemistry parameters. These enable us to understand why calcification often correlates well with carbonate ion concentration, and they imply that net CaCO3 formation in high latitudes is not more vulnerable to ocean acidification than formation in low latitudes.
Cited articles
Alvarez-Fernandez, S., Bach, L. T., Taucher, J., Riebesell, U., Sommer, U.,
Aberle, N., Brussaard, C. P. D., and Boersma, M.: Plankton responses to ocean
acidification: The role of nutrient limitation, Prog. Oceanogr., 165,
11–18, https://doi.org/10.1016/j.pocean.2018.04.006, 2018.
Armbrust, E. V.: The life of diatoms in the world's oceans, Nature,
459, 185–192, https://doi.org/10.1038/nature08057, 2009.
Assmy, P., Smetacek, V., Montresor, M., Klaas, C., Henjes, J., Strass, V.
H., Arrieta, J. M., Bathmann, U., Berg, G. M., Breitbarth, E., Cisewski, B.,
Friedrichs, L., Fuchs, N., Herndl, G. J., Jansen, S., Kragefsky, S., Latasa,
M., Peeken, I., Rottgers, R., Scharek, R., Schuller, S. E., Steigenberger,
S., Webb, A., and Wolf-Gladrow, D.: Thick-shelled, grazer-protected diatoms
decouple ocean carbon and silicon cycles in the iron-limited Antarctic
Circumpolar Current, P. Natl. Acad. Sci. USA, 110, 20633–20638,
https://doi.org/10.1073/pnas.1309345110, 2013.
Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A., and
Thingstad, F.: The Ecological Role of Water-Column Microbes in the Sea, Mar.
Ecol.-Prog. Ser., 10, 257–263, https://doi.org/10.3354/meps010257, 1983.
Bach, L. T., Riebesell, U., and Schulz, K. G.: Distinguishing between the
effects of ocean acidification and ocean carbonation in the coccolithophore
Emiliania huxleyi, Limnol. Oceanogr., 56, 2040–2050,
https://doi.org/10.4319/lo.2011.56.6.2040, 2011.
Bach, L. T., Riebesell, U., Gutowska, M. A., Federwisch, L., and Schulz, K.
G.: A unifying concept of coccolithophore sensitivity to changing carbonate
chemistry embedded in an ecological framework, Prog. Oceanogr., 135,
125–138, https://doi.org/10.1016/j.pocean.2015.04.012, 2015.
Bach, L. T., Alvarez-Fernandez, S., Hornick, T., Stuhr, A., and Riebesell,
U.: Simulated ocean acidification reveals winners and losers in coastal
phytoplankton, PLoS One, 12, e0188198, https://doi.org/10.1371/journal.pone.0188198,
2017.
Bach, L. T., Hernández-hernández, N., Taucher, J., Spisla, C.,
Sforna, C., Riebesell, U., and Aristegui, J.: Effects of Elevated CO2 on a
Natural Diatom Community in the Subtropical NE Atlantic, Front. Mar. Sci.,
6, 1–16, https://doi.org/10.3389/fmars.2019.00075, 2019.
Battarbee, R. W., Charles, D. F., Bigler, C., Cumming, B. F., and Renberg,
I.: Diatoms as indicators as surface-water acidity, in Diatoms: Applications
for the Environmental and Earth Sciences, edited by: Smol, J. P. and
Stoermer, E. F., Cambridge University Press, Cambridge, 98–121, 2010.
Biswas, H., Cros, A., Yadav, K., Ramana, V. V., Prasad, V. R., Acharyya, T., and Babu, P. V. R.: The response of a natural phytoplankton community from
the Godavari River Estuary to increasing CO2 concentration during the
pre-monsoon period, J. Exp. Mar. Bio. Ecol., 407, 284–293,
https://doi.org/10.1016/j.jembe.2011.06.027, 2011.
Biswas, H., Shaik, A. U. R., Bandyopadhyay, D., and Chowdhury, N.: CO2 induced
growth response in a diatom dominated phytoplankton community from SW Bay of
Bengal coastal water, Estuar. Coast. Shelf S., 198, 29–42,
https://doi.org/10.1016/j.ecss.2017.07.022, 2017.
Boyd, P. and Newton, P.: Evidence of the potential influence of planktonic
community structure on the interannual variability of particulate organic
carbon flux, Deep-Sea Res. Pt. I, 42, 619–639,
1995.
Boyd, P. W.: Diatom traits regulate Southern Ocean silica leakage, P. Natl. Acad. Sci. USA, 110, 20358–20359, https://doi.org/10.1073/pnas.1320327110, 2013.
Boyd, P. W., Collins, S., Dupont, S., Fabricius, K., Gattuso, J. P.,
Havenhand, J., Hutchins, D. A., Riebesell, U., Rintoul, M. S., Vichi, M.,
Biswas, H., Ciotti, A., Gao, K., Gehlen, M., Hurd, C. L., Kurihara, H.,
Mcgraw, C. M., Navarro, J. M., Nilsson, G. E., Passow, U., and Pörtner,
H. O.: Experimental strategies to assess the biological ramifications of
multiple drivers of global ocean change-A review, Glob. Change Biol., 24,
2239–2261, https://doi.org/10.1111/gcb.14102, 2018.
Brzezinski, M. A. and Nelson, D. M.: Chronic substrate limitation of silicic
acid uptake rates in the western Sargasso Sea, Deep-Sea Res. Pt. II., 43, 437–453, https://doi.org/10.1016/0967-0645(95)00099-2, 1996.
Burkhardt, S., Amoroso, G., Riebesell, U., and Sueltemeyer, D.: CO2 and uptake in marine diatoms acclimated to different CO2 concentrations, Limnol. Oceanogr.,
46, 1378–1391,
2001.
Calvo-Díaz, A., D́az-Pérez, L., Suárez, L. Á., Morán,
X. A. G., Teira, E., and Marañón, E.: Decrease in the
autotrophic-to-heterotrophic biomass ratio of picoplankton in oligotrophic
marine waters due to bottle enclosure, Appl. Environ. Microb., 77,
5739–5746, https://doi.org/10.1128/AEM.00066-11, 2011.
Carpenter, S. R.: Microcosm Experiments Have Limited Relevance for Community
and Ecosystem Ecology, Ecology, 77, 667–680, 1996.
Cripps, G., Flynn, K. J., and Lindeque, P. K.: Ocean acidification affects
the phyto-zoo plankton trophic transfer efficiency, PLoS One, 11, 1–15,
https://doi.org/10.1371/journal.pone.0151739, 2016.
Davidson, A., McKinlay, J., Westwood, K., Thomson, P., van den Enden, R., de
Salas, M., Wright, S., Johnson, R., and Berry, K.: Enhanced CO2
concentrations change the structure of Antarctic marine microbial
communities, Mar. Ecol.-Prog. Ser., 552, 93–113, https://doi.org/10.3354/meps11742,
2016.
Domingues, R. B., Guerra, C. C., Galvao, H. M., Brotas, V., and Barbosa, A.
B.: Short-term interactive effects of ultraviolet radiation, carbon dioxide
and nutrient enrichment on phytoplankton in a shallow coastal lagoon, Aquat.
Ecol., 51, 91–105, https://doi.org/10.1007/s10452-016-9601-4, 2017.
Donahue, K., Klaas, C., Dillingham, P. W., and Hoffmann, L. J.: Combined
effects of ocean acidification and increased light intensity on natural
phytoplankton communities from two Southern Ocean water masses, J. Plankton
Res., 41, 30–45, https://doi.org/10.1093/plankt/fby048, 2019.
Duarte, C. M., Gasol, J. M., and Vaqué, D.: Role of experimental
approaches in marine microbial ecology, Aquat. Microb. Ecol., 13,
101–111, https://doi.org/10.3354/ame013101, 1997.
Duarte, C. M., Hendriks, I. E., Moore, T. S., Olsen, Y. S., Steckbauer, A.,
Ramajo, L., Carstensen, J., Trotter, J. A., and McCulloch, M.: Is Ocean
Acidification an Open-Ocean Syndrome? Understanding Anthropogenic Impacts on
Seawater pH, Estuar. Coast., 36, 221–236,
https://doi.org/10.1007/s12237-013-9594-3, 2013.
Dutkiewicz, S., Morris, J. J., Follows, M. J., Scott, J., Levitan, O.,
Dyhrman, S. T., and Berman-Frank, I.: Impact of ocean acidification on the
structure of future phytoplankton communities, Nat. Clim. Change, 5,
1002–1006, https://doi.org/10.1038/nclimate2722, 2015.
Eggers, S. L., Lewandowska, A. M., Barcelos e Ramos, J., Blanco-Ameijeiras,
S., Gallo, F., and Matthiessen, B.: Community composition has greater impact
on the functioning of marine phytoplankton communities than ocean
acidification, Glob. Change Biol., 20, 713–723, https://doi.org/10.1111/gcb.12421,
2014.
Endo, H., Yoshimura, T., Kataoka, T., and Suzuki, K.: Effects of CO2 and iron
availability on phytoplankton and eubacterial community compositions in the
northwest subarctic Pacific, J. Exp. Mar. Biol. Ecol., 439, 160–175,
https://doi.org/10.1016/j.jembe.2012.11.003, 2013.
Endo, H., Sugie, K., Yoshimura, T., and Suzuki, K.: Effects of CO2 and iron availability on rbcL gene expression in Bering Sea diatoms, Biogeosciences, 12, 2247–2259, https://doi.org/10.5194/bg-12-2247-2015, 2015.
Endo, H., Sugie, K., Yoshimura, T., and Suzuki, K.: Response of Spring
Diatoms to CO2 Availability in the Western North Pacific as Determined by
Next-Generation Sequencing, PLoS One, 11, e0154291,
https://doi.org/10.1371/journal.pone.0154291, 2016.
Fabricius, K. E., Langdon, C., Uthicke, S., Humphrey, C., Noonan, S.,
De'ath, G., Okazaki, R., Muehllehner, N., Glas, M. S., and Lough, J. M.:
Losers and winners in coral reefs acclimatized to elevated carbon dioxide
concentrations, Nat. Clim. Change, 1, 165–169, https://doi.org/10.1038/nclimate1122,
2011.
Falkowski, P. G. and Raven, J. A.: Aquatic Photosynthesis, Princeton
University Press, Princeton, 2007.
Feng, Y., Hare, C. E., Leblanc, K., Rose, J. M., Zhang, Y., DiTullio, G. R.,
Lee, P. A., Wilhelm, S. W., Rowe, J. M., Sun, J., Nemcek, N., Gueguen, C.,
Passow, U., Benner, I., Brown, C., and Hutchins, D. A.: Effects of increased
pCO2 and temperature on the north atlantic spring bloom. I. The
phytoplankton community and biogeochemical response, Mar. Ecol.-Prog. Ser.,
388, 13–25, https://doi.org/10.3354/meps08133, 2009.
Feng, Y., Hare, C. E., Rose, J. M., Handy, S. M., DiTullio, G. R., Lee, P.
A., Smith, W. O., Peloquin, J., Tozzi, S., Sun, J., Zhang, Y., Dunbar, R.
B., Long, M. C., Sohst, B., Lohan, M., and Hutchins, D. A.: Interactive
effects of iron, irradiance and CO2 on Ross Sea phytoplankton, Deep-Res.
Pt. I, 57, 368–383, https://doi.org/10.1016/j.dsr.2009.10.013,
2010.
Ferguson, R. L., Buckley, E. N., and Palumbo, A. V.: Response of marine
bacterioplankton to differential filtration and confinement, Appl. Environ. Microb., 47, 49–55, 1984.
Field, C. B., Behrenfeld, M. J., Randerson, J. T., and Falkowski, P. G.:
Primary Production of the Biosphere: Integrating Terrestrial and Oceanic
Components, Science, 281, 237–240,
https://doi.org/10.1126/science.281.5374.237, 1998.
Flynn, K. J., Blackford, J. C., Baird, M. E., Raven, J. A., Clark, D. R.,
Beardall, J., Brownlee, C., Fabian, H., and Wheeler, G. L.: Changes in pH at
the exterior surface of plankton with ocean acidification, Nat. Clim. Change, 2, 510–513, https://doi.org/10.1038/nclimate1489, 2012.
Fogg, G. E. and Calvario-Martinez, O.: Effects of bottle size in
determinations of primary productivity by phytoplankton, Hydrobiologia,
173, 89–94, https://doi.org/10.1007/BF00015518, 1989.
Friedrichs, L., Hörnig, M., Schulze, L., Bertram, A., Jansen, S., and
Hamm, C.: Size and biomechanic properties of diatom frustules influence food
uptake by copepods, Mar. Ecol.-Prog. Ser., 481, 41–51,
https://doi.org/10.3354/meps10227, 2013.
Gao, K. and Campbell, D. A.: Photophysiological responses of marine diatoms
to elevated CO2 and decreased pH: A review, Funct. Plant Biol., 41,
449–459, https://doi.org/10.1071/FP13247, 2014.
Gao, K., Xu, J., Gao, G., Li, Y., Hutchins, D. A., Huang, B., Wang, L.,
Zheng, Y., Jin, P., Cai, X., Häder, D. P., Li, W., Xu, K., Liu, N., and
Riebesell, U.: Rising CO2 and increased light exposure synergistically
reduce marine primary productivity, Nat. Clim. Change, 2, 519–523,
https://doi.org/10.1038/nclimate1507, 2012.
Gaylord, B., Kroeker, K. J., Sunday, J. M., Anderson, K. M., Barry, J. P.,
Brown, N. E., Connell, S. D., Dupont, S., Fabricius, K. E., Hall-Spencer, J.
M., Klinger, T., Milazzo, M., Munday, P. L., Russell, B. D., Sanford, E.,
Schreiber, S. J., Thiyagarajan, V., Vaughan, M. L. H., Widdicombe, S., and
Harley, C. D. G.: Ocean acidification through the lens of ecological theory,
Ecology, 96, 3–15, 2015.
Gazeau, F., Sallon, A., Pitta, P., Tsiola, A., Maugendre, L., Giani, M.,
Celussi, M., Pedrotti, M. L., Marro, S., and Guieu, C.: Limited impact of
ocean acidification on phytoplankton community structure and carbon export
in an oligotrophic environment: Results from two short-term mesocosm studies
in the Mediterranean Sea, Estuar. Coast. Shelf S., 186, 72–88,
https://doi.org/10.1016/j.ecss.2016.11.016, 2017.
Giordano, M., Beardall, J., and Raven, J. A.: CO2 concentrating mechanisms in
algae: mechanisms, environmental modulation, and evolution., Annu. Rev.
Plant Biol., 56, 99–131, https://doi.org/10.1146/annurev.arplant.56.032604.144052,
2005.
Grear, J. S., Rynearson, T. A., Montalbano, A. L., Govenar, B., and
Menden-Deuer, S.: pCO2 effects on species composition and growth of an
estuarine phytoplankton community, Estuar. Coast. Shelf S., 190, 40–49,
https://doi.org/10.1016/j.ecss.2017.03.016, 2017.
Guangao, L.: Different types of ecosystem experiments, in Enclosed
Experimental Marine Ecosystems: A Review and Recommendations, edited by: Lalli, C.
M., Springer-Verlag, New York, 7–20, 1990.
Guiry, M. D.: How many species of algae are there?, J. Phycol., 48,
1057–1063, https://doi.org/10.1111/j.1529-8817.2012.01222.x, 2012.
Hall-Spencer, J. M., Rodolfo-Metalpa, R., Martin, S., Ransome, E., Fine, M.,
Turner, S. M., Rowley, S. J., Tedesco, D., and Buia, M.-C.: Volcanic carbon
dioxide vents show ecosystem effects of ocean acidification, Nature, 454,
96–99, https://doi.org/10.1038/nature07051, 2008.
Hama, T., Inoue, T., Suzuki, R., Kashiwazaki, H., Wada, S., Sasano, D.,
Kosugi, N., and Ishii, M.: Response of a phytoplankton community to nutrient
addition under different CO2 and pH conditions, J. Oceanogr., 72,
207–223, https://doi.org/10.1007/s10872-015-0322-4, 2016.
Hamm, C. and Smetacek, V.: Armor: Why, when, and how, in Evolution of
Phytoplankton, edited by: Falkowski, P. G. and Knoll, A. H.,
Elsevier, Boston, 311–332, 2007.
Hamm, C. E., Merkel, R., Springer, O., Jurkojc, P., Maiert, C., Prechtelt,
K., and Smetacek, V.: Architecture and material properties of diatom shells
provide effective mechanical protection, Nature, 421, 841–843,
https://doi.org/10.1038/nature01416, 2003.
Hammes, F., Vital, M., and Egli, T.: Critical evaluation of the volumetric
“bottle effect” on microbial batch growth, Appl. Environ. Microb.,
76, 1278–1281, https://doi.org/10.1128/AEM.01914-09, 2010.
Hare, C. E., Leblanc, K., DiTullio, G. R., Kudela, R. M., Zhang, Y., Lee, P.
A., Riseman, S., and Hutchins, D. A.: Consequences of increased temperature
and CO2 for phytoplankton community structure in the Bering Sea, Mar. Ecol.-Prog. Ser., 352, 9–16, https://doi.org/10.3354/meps07182, 2007.
Hervé, V., Derr, J., Douady, S., Quinet, M., Moisan, L., and Lopez, P.
J.: Multiparametric Analyses Reveal the pH-Dependence of Silicon
Biomineralization in Diatoms, PLoS One, 7, e46722,
https://doi.org/10.1371/journal.pone.0046722, 2012.
Hofmann, G. E., Smith, J. E., Johnson, K. S., Send, U., Levin, L. A.,
Micheli, F., Paytan, A., Price, N. N., Peterson, B., Takeshita, Y., Matson,
P. G., de Crook, E., Kroeker, K. J., Gambi, M. C., Rivest, E. B., Frieder,
C. A., Yu, P. C., and Martz, T. R.: High-frequency dynamics of ocean pH: A
multi-ecosystem comparison, PLoS One, 6, e28983,
https://doi.org/10.1371/journal.pone.0028983, 2011.
Hopkins, F. E., Turner, S. M., Nightingale, P. D., Steinke, M., Bakker, D., and Liss, P. S.: Ocean acidification and marine trace gas emissions, P. Natl. Acad. Sci. USA, 107, 760–765, https://doi.org/10.1073/pnas.0907163107, 2010.
Hoppe, C. J. M., Hassler, C. S., Payne, C. D., Tortell, P. D., Rost, B. R., and Trimborn, S.: Iron limitation modulates ocean acidification effects on
Southern Ocean phytoplankton communities, PLoS One, 8, e79890,
https://doi.org/10.1371/journal.pone.0079890, 2013.
Hoppe, C. J. M., Schuback, N., Semeniuk, D. M., Maldonado, M. T., and Rost,
B.: Functional Redundancy Facilitates Resilience of Subarctic Phytoplankton
Assemblages toward Ocean Acidification and High Irradiance, Front. Mar.
Sci., 4, 229, https://doi.org/10.3389/fmars.2017.00229, 2017a.
Hoppe, C. J. M., Schuback, N., Semeniuk, D., Giesbrecht, K., Mol, J.,
Thomas, H., Maldonado, M. T., Rost, B., Varela, D. E., and Tortell, P. D.:
Resistance of Arctic phytoplankton to ocean acidification and enhanced
irradiance, Polar Biol., 41, 399–413, https://doi.org/10.1007/s00300-017-2186-0,
2017b.
Hussherr, R., Levasseur, M., Lizotte, M., Tremblay, J.-É., Mol, J., Thomas, H., Gosselin, M., Starr, M., Miller, L. A., Jarniková, T., Schuback, N., and Mucci, A.: Impact of ocean acidification on Arctic phytoplankton blooms and dimethyl sulfide concentration under simulated ice-free and under-ice conditions, Biogeosciences, 14, 2407–2427, https://doi.org/10.5194/bg-14-2407-2017, 2017.
James, R. K., Hepburn, C. D., Cornwall, C. E., McGraw, C. M., and Hurd, C.
L.: Growth response of an early successional assemblage of coralline algae
and benthic diatoms to ocean acidification, Mar. Biol., 161, 1687–1696,
https://doi.org/10.1007/s00227-014-2453-3, 2014.
Johnson, V. R., Brownlee, C., Rickaby, R. E. M., Graziano, M., Milazzo, M., and Hall-Spencer, J. M.: Responses of marine benthic microalgae to elevated
CO2, Mar. Biol., 160, 1813–1824, https://doi.org/10.1007/s00227-011-1840-2, 2011.
Kim, J.-M., Lee, K., Shin, K., Kang, J.-H., Lee, H.-W., Kim, M., Jang, P.-G., and Jang, M.-C.: The effect of seawater CO2 concentration on growth of a
natural phytoplankton assemblage in a controlled mesocosm experiment,
Limnol. Oceanogr., 51, 1629–1636, https://doi.org/10.4319/lo.2006.51.4.1629, 2006.
Kim, J. M., Lee, K., Yang, E. J., Shin, K., Noh, J. H., Park, K. T., Hyun,
B., Jeong, H. J., Kim, J. H., Kim, K. Y., Kim, M., Kim, H. C., Jang, P. G., and Jang, M. C.: Enhanced production of oceanic dimethylsulfide resulting
from CO2-induced grazing activity in a high CO2 world, Environ. Sci.
Technol., 44, 8140–8143, https://doi.org/10.1021/es102028k, 2010.
Kottmeier, D. M., Rokitta, S. D., and Rost, B.: H+-driven increase in CO2
uptake and decrease in uptake explain coccolithophores' acclimation
responses to ocean acidification, Limnol. Oceanogr., 61, 2045–2057, https://doi.org/10.1002/lno.10352,
2016.
Liu, H., Chen, M., Zhu, F., and Harrison, P. J.: Effect of Diatom Silica
Content on Copepod Grazing, Growth and Reproduction, Front. Mar. Sci.,
3, 1–7, https://doi.org/10.3389/fmars.2016.00089, 2016.
Loucaides, S., van Cappellen, P., Roubeix, V., Moriceau, B., and Ragueneau,
O.: Controls on the Recycling and Preservation of Biogenic Silica from
Biomineralization to Burial, Silicon, 4, 7–22,
https://doi.org/10.1007/s12633-011-9092-9, 2012.
Mallozzi, A. J., Errera, R. M., Bargu, S., and Herrmann, A. D.: Impacts of
elevated pCO2 on estuarine phytoplankton biomass and community structure in
two biogeochemically distinct systems in Louisiana, USA, J. Exp. Mar. Biol.
Ecol., 511, 28–39, https://doi.org/10.1016/j.jembe.2018.09.008, 2019.
Malviya, S., Scalco, E., Audic, S., Vincent, F., Veluchamy, A., Poulain, J.,
Wincker, P., Iudicone, D., de Vargas, C., Bittner, L., Zingone, A., and
Bowler, C.: Insights into global diatom distribution and diversity in the
world's ocean, P. Natl. Acad. Sci. USA, 113, E1516–E1525,
https://doi.org/10.1073/pnas.1509523113, 2016.
Mann, D. G. and Vanormelingen, P.: An Inordinate Fondness? The Number,
Distributions, and Origins of Diatom Species, J. Eukaryot. Microbiol., 60,
414–420, https://doi.org/10.1111/jeu.12047, 2013.
Martin-Jézéquel, V., Hildebrand, M., and Brzezinski, M. A.: Review
Silicon Metabolism in Diatoms: Implications for Growth, J. Phycol., 36,
821–840, 2000.
Maugendre, L., Gattuso, J.-P., Louis, J., de Kluijver, A., Marro, S.,
Soetaert, K., and Gazeau, F.: Effect of ocean warming and acidification on a
plankton community in the NW Mediterranean Sea, ICES J. Mar. Sci., 72,
1744–1755, https://doi.org/10.1093/icesjms/fsu161, 2015.
Mejía, L. M., Isensee, K., Méndez-Vicente, A., Pisonero, J.,
Shimizu, N., González, C., Monteleone, B., and Stoll, H.: B content and
Si/C ratios from cultured diatoms (Thalassiosira pseudonana and
Thalassiosira weissflogii): Relationship to seawater pH and diatom carbon
acquisition, Geochim. Cosmochim. Ac., 123, 322–337,
https://doi.org/10.1016/j.gca.2013.06.011, 2013.
Menzel, D. W. and Case, J.: Concept and Design: Controlled Ecosystem
Pollution Experiment, B. Mar. Sci., 27, 1–7, 1977.
Meunier, C. L., Algueró-Muñiz, M., Horn, H. G., Lange, J. A. F., and
Boersma, M.: Direct and indirect effects of near-future pCO2 levels on
zooplankton dynamics, Mar. Freshwater Res., 68, 373–380,
https://doi.org/10.1071/MF15296, 2017.
Nelson, D. M., Tréguer, P., Brzezinski, M. A., Leynaert, A., and
Quéguiner, B.: Production and dissolution of biogenic silica in the
ocean: Revised global estimates, comparison with regional data and
relationship to biogenic sedimentation, Global Biogeochem. Cy., 9,
359–372, https://doi.org/10.1029/95GB01070, 1995.
Nielsen, L. T., Jakobsen, H. H., and Hansen, P. J.: High resilience of two
coastal plankton communities to twenty-first century seawater acidification:
Evidence from microcosm studies, Mar. Biol. Res., 6, 542–555,
https://doi.org/10.1080/17451000903476941, 2010.
Nielsen, L. T., Hallegraeff, G. M., Wright, S. W., and Hansen, P. J.: Effects
of experimental seawater acidification on an estuarine plankton community,
Aquat. Microb. Ecol., 65, 271–285, https://doi.org/10.3354/ame01554, 2012.
Nogueira, P., Domingues, R. B., and Barbosa, A. B.: Are microcosm volume and
sample pre-filtration relevant to evaluate phytoplankton growth?, J. Exp.
Mar. Biol. Ecol., 461, 323–330, https://doi.org/10.1016/j.jembe.2014.09.006, 2014.
Pan, Y., Zhang, Y., Peng, Y., Zhao, Q., and Sun, S.: Increases of chamber
height and base diameter have contrasting effects on grazing rate of two
cladoceran species: Implications for microcosm studies, PLoS One, 10,
1–14, https://doi.org/10.1371/journal.pone.0135786, 2015.
Pančić, M. and Kiørboe, T.: Phytoplankton defence mechanisms:
traits and trade-offs, Biol. Rev., 92, 1269–1303, https://doi.org/10.1111/brv.12395,
2018.
Park, K. T., Lee, K., Shin, K., Yang, E. J., Hyun, B., Kim, J. M., Noh, J.
H., Kim, M., Kong, B., Choi, D. H., Choi, S. J., Jang, P. G., and Jeong, H.
J.: Direct linkage between dimethyl sulfide production and microzooplankton
grazing, resulting from prey composition change under high partial pressure
of carbon dioxide conditions, Environ. Sci. Technol., 48, 4750–4756,
https://doi.org/10.1021/es403351h, 2014.
Paul, A. J., Bach, L. T., Schulz, K.-G., Boxhammer, T., Czerny, J., Achterberg, E. P., Hellemann, D., Trense, Y., Nausch, M., Sswat, M., and Riebesell, U.: Effect of elevated CO2 on organic matter pools and fluxes in a summer Baltic Sea plankton community, Biogeosciences, 12, 6181–6203, https://doi.org/10.5194/bg-12-6181-2015, 2015.
Pomeroy, L. R.: The ocean food web – A changing paradigm, Bioscience, 24,
499–504, 1974.
Primeau, F. W., Holzer, M., and DeVries, T.: Southern Ocean nutrient trapping
and the efficiency of the biological pump, J. Geophys. Res.-Ocean., 118,
2547–2564, https://doi.org/10.1002/jgrc.20181, 2013.
Raven, J. A., Giordano, M., Beardall, J., and Maberly, S. C.: Algal and
aquatic plant carbon concentrating mechanisms in relation to environmental
change, Photosynth. Res., 109, 281–96,
https://doi.org/10.1007/s11120-011-9632-6, 2011.
Reul, A., Muñoz, M., Bautista, B., Neale, P. J., Sobrino, C., Mercado,
J. M., Segovia, M., Salles, S., Kulk, G., León, P., van de Poll, W. H.
D., Pérez, E., Buma, A., and Blanco, J. M.: Effect of CO2, nutrients and
light on coastal plankton. III. Trophic cascade, size structure and
composition, Aquat. Biol., 22, 59–76, https://doi.org/10.3354/ab00585, 2014.
Robinson, C. and Williams, P. J. le B.: Respiration and its measurement in
surface marine waters, in Respiration in Aquatic Environments, edited by: Del Giorgio, P. A. and Williams, P. J. le B., Oxford University
Press, Oxford, 147–180, 2005.
Roleda, M. Y., Cornwall, C. E., Feng, Y., McGraw, C. M., Smith, A. M., and
Hurd, C. L.: Effect of ocean acidification and pH fluctuations on the growth
and development of coralline algal recruits, and an associated benthic algal
assemblage, PLoS One, 10, 1–19, https://doi.org/10.1371/journal.pone.0140394, 2015.
Rossoll, D., Sommer, U., and Winder, M.: Community interactions dampen
acidification effects in a coastal plankton system, Mar. Ecol.-Prog. Ser.,
486, 37–46, https://doi.org/10.3354/meps10352, 2013.
Rost, B., Riebesell, U., Burkhardt, S., and Sültemeyer, D.: Carbon
acquisition of bloom-forming marine phytoplankton, Limnol. Oceanogr., 48,
55–67, 2003.
Sala, M. M., Aparicio, F. L., Balagué, V., Boras, J. A., Borrull, E.,
Cardelús, C., Cros, L., Gomes, A., López-Sanz, A., Malits, A.,
Martínez, R. A., Mestre, M., Movilla, J., Sarmento, H.,
Vázquez-Domínguez, E., Vaqué, D., Pinhassi, J., Calbet, A.,
Calvo, E., Gasol, J. M., Pelejero, C., and Marrasé, C.: Contrasting
effects of ocean acidification on the microbial food web under different
trophic conditions, ICES J. Mar. Sci., 73, 670–679,
https://doi.org/10.1093/icesjms/fsv130, 2015.
Sarnelle, O.: Daphnia effects on microzooplankton: comparisons of enclosure
and whole-lake responses, Ecology, 78, 913–928,
https://doi.org/10.1016/S0010-4655(02)00300-4, 1997.
Sarthou, G., Timmermans, K. R., Blain, S., and Tréguer, P.: Growth
physiology and fate of diatoms in the ocean: A review, J. Sea Res., 53,
25–42, https://doi.org/10.1016/j.seares.2004.01.007, 2005.
Schulz, K. G., Riebesell, U., Bellerby, R. G. J., Biswas, H., Meyerhöfer, M., Müller, M. N., Egge, J. K., Nejstgaard, J. C., Neill, C., Wohlers, J., and Zöllner, E.: Build-up and decline of organic matter during PeECE III, Biogeosciences, 5, 707–718, https://doi.org/10.5194/bg-5-707-2008, 2008.
Schulz, K. G., Bellerby, R. G. J., Brussaard, C. P. D., Büdenbender, J., Czerny, J., Engel, A., Fischer, M., Koch-Klavsen, S., Krug, S. A., Lischka, S., Ludwig, A., Meyerhöfer, M., Nondal, G., Silyakova, A., Stuhr, A., and Riebesell, U.: Temporal biomass dynamics of an Arctic plankton bloom in response to increasing levels of atmospheric carbon dioxide, Biogeosciences, 10, 161–180, https://doi.org/10.5194/bg-10-161-2013, 2013.
Schulz, K. G., Bach, L. T., Bellerby, R., Bermudez, R., Boxhammer, T.,
Czerny, J., Engel, A., Ludwig, A., Larsen, A., Paul, A., Sswat, M., and
Riebesell, U.: Phytoplankton blooms at increasing levels of atmospheric
carbon dioxide: experimental evidence for negative effects on
prymnesiophytes and positive on small picoeukaryotes, Front. Mar. Sci.,
4, 1–18, https://doi.org/10.3389/fmars.2017.00064, 2017.
Segovia, M., Lorenzo, M., Maldonado, M., Larsen, A., Berger, S., Tsagaraki,
T., Lázaro, F., Iñiguez, C., García-Gómez, C., Palma, A.,
Mausz, M., Gordillo, F., Fernández, J., Ray, J., and Egge, J.: Iron
availability modulates the effects of future CO2 levels within the marine
planktonic food web, Mar. Ecol.-Prog. Ser., 565, 17–33,
https://doi.org/10.3354/meps12025, 2017.
Sett, S., Schulz, K. G., Bach, L. T., and Riebesell, U.: Shift towards larger
diatoms in a natural phytoplankton assemblage under combined high-CO2 and
warming conditions, J. Plankton Res., 40, 391–406,
https://doi.org/10.1093/plankt/fby018, 2018.
Shaik, A. U. R., Biswas, H., and Pal, S.: Increased CO2 availability promotes
growth of a tropical coastal diatom assemblage (Goa coast, Arabian Sea,
India), Diatom Res., 32, 325–339, https://doi.org/10.1080/0269249X.2017.1379443,
2017.
Shen, C. and Hopkinson, B. M.: Size scaling of extracellular carbonic
anhydrase activity in centric marine diatoms, J. Phycol., 51, 255–263,
https://doi.org/10.1111/jpy.12269, 2015.
Smetacek, V., Klaas, C., Strass, V. H., Assmy, P., Montresor, M., Cisewski,
B., Savoye, N., Webb, A., d'Ovidio, F., Arrieta, J. M., Bathmann, U.,
Bellerby, R., Berg, G. M., Croot, P., Gonzalez, S., Henjes, J., Herndl, G.
J., Hoffmann, L. J., Leach, H., Losch, M., Mills, M. M., Neill, C., Peeken,
I., Röttgers, R., Sachs, O., Sauter, E., Schmidt, M. M., Schwarz, J.,
Terbrüggen, A., and Wolf-Gladrow, D.: Deep carbon export from a Southern
Ocean iron-fertilized diatom bloom, Nature, 487, 313–319,
https://doi.org/10.1038/nature11229, 2012.
Smetacek, V. S.: Role of sinking in diatom life-hystory: ecological,
evolutionary and geological significance, Mar. Biol., 84, 239–251,
https://doi.org/10.1007/BF00392493, 1985.
Sommer, U., Stibor, H., Katechakis, A., Sommer, F., and Hansen, T.: Pelagic
food web confgurations at different levels of nutrient richness and their
implications for the ratio fish production:primary production,
Hydrobiologia, 484, 11–20, https://doi.org/10.1023/A:1021340601986, 2002.
Sommer, U., Paul, C., and Moustaka-Gouni, M.: Warming and ocean acidification
effects on phytoplankton – From species shifts to size shifts within species
in a mesocosm experiment, PLoS One, 10, 1–17,
https://doi.org/10.1371/journal.pone.0125239, 2015.
Sournia, A., Chrétiennot-Dinet, M. J., and Ricard, M.: Marine
phytoplankton: How many species in the world ocean?, J. Plankton Res.,
13, 1093–1099, https://doi.org/10.1093/plankt/13.5.1093, 1991.
Spencer, M. and Warren, P. H.: The effects of habitat size and productivity
on food web structure in small aquatic microcosms, Oikos, 75, 419–430,
1996.
Sswat, M., Stiasny, M., Taucher, J., Algueró-Muñiz, M., Bach, L. T.,
Jutfelt, F., Riebesell, U., and Clemmesen, C.: Food web changes under ocean
acidification promote herring larvae survival, Nature Ecology and Evolution, 2, 836–840, 2018.
Tatters, A. O., Roleda, M. Y., Schnetzer, A., Fu, F., Hurd, C. L., Boyd, P.
W., Caron, D. A., Lie, A. A. Y., Hoffmann, L. J., and Hutchins, D. A.: Short-
and long-term conditioning of a temperate marine diatom community to
acidification and warming, Philos. T. R. Soc. B, 368,
20120437, https://doi.org/10.1098/rstb.2012.0437, 2013.
Tatters, A. O., Schnetzer, A., Xu, K., Walworth, N. G., Fu, F., Spackeen, J.
L., Sipler, R. E., Bertrand, E. M., McQuaid, J. B., Allen, A. E., Bronk, D.
A., Gao, K., Sun, J., Caron, D. A., and Hutchins, D. A.: Interactive effects
of temperature, CO2 and nitrogen source on a coastal California diatom
assemblage, J. Plankton Res., 40, 151–164, https://doi.org/10.1093/plankt/fbx074,
2018.
Taucher, J., Jones, J., James, A., Brzezinski, M. A., Carlson, C. A.,
Riebesell, U., and Passow, U.: Combined effects of CO2 and temperature on
carbon uptake and partitioning by the marine diatoms Thalassiosira
weissflogii and Dactyliosolen fragilissimus, Limnol. Oceanogr., 60,
901–919, https://doi.org/10.1002/lno.10063, 2015.
Taucher, J., Arístegui, J., Bach, L. T., Guan, W., Montero, M. F.,
Nauendorf, A., Achterberg, E. P., and Riebesell, U.: Response of Subtropical
Phytoplankton Communities to Ocean Acidification Under Oligotrophic
Conditions and During Nutrient Fertilization, Front. Mar. Sci.,
5, 1–14, https://doi.org/10.3389/fmars.2018.00330, 2018.
Thor, P. and Dupont, S.: Transgenerational effects alleviate severe
fecundity loss during ocean acidification in a ubiquitous planktonic
copepod, Glob. Change Biol., 21, 2261–2271, https://doi.org/10.1111/gcb.12815, 2015.
Thor, P. and Oliva, E. O.: Ocean acidification elicits different energetic
responses in an Arctic and a boreal population of the copepod Pseudocalanus
acuspes, Mar. Biol., 162, 799–807, https://doi.org/10.1007/s00227-015-2625-9, 2015.
Tortell, P. D., DiTullio, G. R., Sigman, D. M., and Morel, F. M. M.: CO2
effects on taxonomic composition and nutrient utilization in an Equatorial
Pacific phytoplankton assemblage, Mar. Ecol.-Prog. Ser., 236, 37–43,
https://doi.org/10.3354/meps236037, 2002.
Tortell, P. D., Payne, C. D., Li, Y., Trimborn, S., Rost, B., Smith, W. O.,
Riesselman, C., Dunbar, R. B., Sedwick, P., and DiTullio, G. R.: CO2
sensitivity of Southern Ocean phytoplankton, Geophys. Res. Lett., 35,
L04605, https://doi.org/10.1029/2007GL032583, 2008.
Tréguer, P., Bowler, C., Moriceau, B., Dutkiewicz, S., Gehlen, M.,
Aumont, O., Bittner, L., Dugdale, R., Finkel, Z., Iudicone, D., Jahn, O.,
Guidi, L., Lasbleiz, M., Leblanc, K., Levy, M., and Pondaven, P.: Influence
of diatom diversity on the ocean biological carbon pump, Nat. Geosci.,
11, 27–37, https://doi.org/10.1038/s41561-017-0028-x, 2018.
Tréguer, P. J. and De La Rocha, C. L.: The World Ocean Silica Cycle,
Annu. Rev. Mar. Sci., 5, 477–501,
https://doi.org/10.1146/annurev-marine-121211-172346, 2013.
Trimborn, S., Lundholm, N., Thoms, S., Richter, K.-U., Krock, B., Hansen, P.
J., and Rost, B.: Inorganic carbon acquisition in potentially toxic and
non-toxic diatoms: the effect of pH-induced changes in seawater carbonate
chemistry., Physiol. Plant., 133, 92–105,
https://doi.org/10.1111/j.1399-3054.2007.01038.x, 2008.
Trimborn, S., Brenneis, T., Hoppe, C. J. M., Laglera, L. M., Norman, L.,
Santos-Echeandía, J., Völkner, C., Wolf-Gladrow, D., and Hassler, C.
S.: Iron sources alter the response of Southern Ocean phytoplankton to ocean
acidification, Mar. Ecol.-Prog. Ser., 578, 35–50, https://doi.org/10.3354/meps12250,
2017.
Vrieling, E. G., Gieskes, W. W. C., and Beelen, T. P. M.: SILICON DEPOSITION
IN DIATOMS: CONTROL BY THE pH INSIDE THE SILICON DEPOSITION VESICLE, J.
Phycol., 35, 548–559, https://doi.org/10.1046/j.1529-8817.1999.3530548.x, 1999.
Ward, B. A., Dutkiewicz, S., Jahn, O., and Follows, M. J.: A size-structured
food-web model for the global ocean, Limnol. Oceanogr., 57, 1877–1891,
https://doi.org/10.4319/lo.2012.57.6.1877, 2012.
Wilken, S., Hoffmann, B., Hersch, N., Kirchgessner, N., Dieluweit, S.,
Rubner, W., Hoffmann, L. J., Merkel, R., and Peeken, I.: Diatom frustules
show increased mechanical strength and altered valve morphology under iron
limitation, Limnol. Oceanogr., 56, 1399–1410,
https://doi.org/10.4319/lo.2011.56.4.1399, 2011.
Wolf-Gladrow, D. and Riebesell, U.: Diffusion and reactions in the vicinity
of plankton: A refined model for inorganic carbon transport, Mar. Chem.,
59, 17–34, https://doi.org/10.1016/S0304-4203(97)00069-8, 1997.
Wolf, K. K. E., Hoppe, C. J. M., and Rost, B.: Resilience by diversity: Large
intraspecific differences in climate change responses of an Arctic diatom,
Limnol. Oceanogr., 63, 397–411, https://doi.org/10.1002/lno.10639, 2018.
Yoshimura, T., Nishioka, J., Suzuki, K., Hattori, H., Kiyosawa, H., and
Watanabe, Y. W.: Impacts of elevated CO2 on organic carbon dynamics in
nutrient depleted Okhotsk Sea surface waters, J. Exp. Mar. Biol. Ecol.,
395, 191–198, https://doi.org/10.1016/j.jembe.2010.09.001, 2010.
Yoshimura, T., Suzuki, K., Kiyosawa, H., Ono, T., Hattori, H., Kuma, K., and
Nishioka, J.: Impacts of elevated CO2on particulate and dissolved organic
matter production: Microcosm experiments using iron-deficient plankton
communities in open subarctic waters, J. Oceanogr., 69, 601–618,
https://doi.org/10.1007/s10872-013-0196-2, 2013.
Young, J. N., Kranz, S. A., Goldman, J. A. L., Tortell, P. D., and Morel, F.
M. M.: Antarctic phytoplankton down-regulate their carbon-concentrating
mechanisms under high CO2 with no change in growth rates, Mar. Ecol.-Prog. Ser., 532,
13–28, https://doi.org/10.3354/meps11336, 2015.
Zeebe, R. E. and Wolf-Gladrow, D. A.: CO2 in seawater: Equilibrium,
kinetics, isotopes, Elsevier O., Elsevier, Amsterdam, 2001.
Short summary
Diatoms are a group of phytoplankton species responsible for ~ 25 % of primary production on Earth. Ocean acidification (OA) could influence diatoms but the key question is if they become more or less important within marine food webs. We synthesize OA experiments with natural communities and found that diatoms are more likely to be positively than negatively affected by high CO2 and larger species may profit in particular. This has important implications for ecosystem services diatoms provide.
Diatoms are a group of phytoplankton species responsible for ~ 25 % of primary production on...