Articles | Volume 15, issue 1
https://doi.org/10.5194/os-15-113-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/os-15-113-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The land–sea coastal border: a quantitative definition by considering the wind and wave conditions in a wave-dominated, micro-tidal environment
Agustín Sánchez-Arcilla
CORRESPONDING AUTHOR
Laboratory of Maritime Engineering, Barcelona Tech, D1 Campus Nord, Jordi Girona 1–3, 08034, Barcelona, Spain
Jue Lin-Ye
Laboratory of Maritime Engineering, Barcelona Tech, D1 Campus Nord, Jordi Girona 1–3, 08034, Barcelona, Spain
Manuel García-León
Laboratory of Maritime Engineering, Barcelona Tech, D1 Campus Nord, Jordi Girona 1–3, 08034, Barcelona, Spain
Vicente Gràcia
Laboratory of Maritime Engineering, Barcelona Tech, D1 Campus Nord, Jordi Girona 1–3, 08034, Barcelona, Spain
Elena Pallarès
Laboratory of Maritime Engineering, Barcelona Tech, D1 Campus Nord, Jordi Girona 1–3, 08034, Barcelona, Spain
EUSS – Escola Universitaria Salesiana de Sarria, Sant Joan Bosco 74, 08017, Barcelona, Spain
Related authors
Xavier Sánchez-Artús, Vicente Gracia, Manuel Espino, Manel Grifoll, Gonzalo Simarro, Jorge Guillén, Marta González, and Agustín Sanchez-Arcilla
EGUsphere, https://doi.org/10.5194/egusphere-2024-3373, https://doi.org/10.5194/egusphere-2024-3373, 2024
Short summary
Short summary
The study presents an operational service that forecasts flood impacts during extreme conditions at three beaches in Barcelona, Spain. The architecture is designed for efficient use on standard desktop computers, using data from the Copernicus Marine Environment Monitoring Service, task automation tools, Python scripts, and the XBeach model to deliver timely results. Extensive validation, including field campaigns and video analysis, ensures accuracy and reliability.
Marta F.-Pedrera Balsells, Manel Grifoll, Margarita Fernández-Tejedor, Manuel Espino, Marc Mestres, and Agustín Sánchez-Arcilla
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-322, https://doi.org/10.5194/bg-2021-322, 2021
Revised manuscript not accepted
Short summary
Short summary
Phytoplankton in coastal bays is influenced by physical variables (wind or freshwater inputs) that can influence the composition of phytoplankton. A numerical model has been applied to understand this variability. The simulations show that during weak wind events there is physical separation between surface and deep layers, penalising phytoplankton growth. During intense wind, mixing of the water column occurs, increasing the phytoplankton biomass in the lower layers.
Manel Grifoll, Pablo Cerralbo, Jorge Guillén, Manuel Espino, Lars Boye Hansen, and Agustín Sánchez-Arcilla
Ocean Sci., 15, 307–319, https://doi.org/10.5194/os-15-307-2019, https://doi.org/10.5194/os-15-307-2019, 2019
Short summary
Short summary
In this paper we investigate the origin of the variability in
near-bottom turbidity observations in Alfacs Bay (in the northwestern Mediterranean Sea). The observations of turbidity peaks are consistent with the seiche phenomenon. We suggest that the sequence of resuspension events plays an important role in the suspended sediment concentration, meaning that previous sediment resuspension events may influence the increase in suspended sediment in subsequent events.
Pablo Cerralbo, Marta F.-Pedrera Balsells, Marc Mestres, Margarita Fernandez, Manuel Espino, Manel Grifoll, and Agustin Sanchez-Arcilla
Ocean Sci., 15, 215–226, https://doi.org/10.5194/os-15-215-2019, https://doi.org/10.5194/os-15-215-2019, 2019
Short summary
Short summary
In this contribution we investigate the hydrodynamic response in Alfacs Bay (Delta Ebro, NW Mediterranean Sea) to freshwater flows and inner bay to open sea connections. The numerical model ROMS is applied nested to Copernicus models and validated with in situ data. Considering the results, only the modification of freshwater flows is recommended due to its lower impact on the environment and associated economic costs. None of the proposed solutions solve the problem related to warm waters.
J. P. Sierra, M. Casas-Prat, M. Virgili, C. Mösso, and A. Sánchez-Arcilla
Nat. Hazards Earth Syst. Sci., 15, 1695–1709, https://doi.org/10.5194/nhess-15-1695-2015, https://doi.org/10.5194/nhess-15-1695-2015, 2015
A. Sánchez-Arcilla, M. García-León, and V. Gracia
Nat. Hazards Earth Syst. Sci., 14, 2993–3004, https://doi.org/10.5194/nhess-14-2993-2014, https://doi.org/10.5194/nhess-14-2993-2014, 2014
Xavier Sánchez-Artús, Vicente Gracia, Manuel Espino, Manel Grifoll, Gonzalo Simarro, Jorge Guillén, Marta González, and Agustín Sanchez-Arcilla
EGUsphere, https://doi.org/10.5194/egusphere-2024-3373, https://doi.org/10.5194/egusphere-2024-3373, 2024
Short summary
Short summary
The study presents an operational service that forecasts flood impacts during extreme conditions at three beaches in Barcelona, Spain. The architecture is designed for efficient use on standard desktop computers, using data from the Copernicus Marine Environment Monitoring Service, task automation tools, Python scripts, and the XBeach model to deliver timely results. Extensive validation, including field campaigns and video analysis, ensures accuracy and reliability.
Marta F.-Pedrera Balsells, Manel Grifoll, Margarita Fernández-Tejedor, Manuel Espino, Marc Mestres, and Agustín Sánchez-Arcilla
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-322, https://doi.org/10.5194/bg-2021-322, 2021
Revised manuscript not accepted
Short summary
Short summary
Phytoplankton in coastal bays is influenced by physical variables (wind or freshwater inputs) that can influence the composition of phytoplankton. A numerical model has been applied to understand this variability. The simulations show that during weak wind events there is physical separation between surface and deep layers, penalising phytoplankton growth. During intense wind, mixing of the water column occurs, increasing the phytoplankton biomass in the lower layers.
Manel Grifoll, Pablo Cerralbo, Jorge Guillén, Manuel Espino, Lars Boye Hansen, and Agustín Sánchez-Arcilla
Ocean Sci., 15, 307–319, https://doi.org/10.5194/os-15-307-2019, https://doi.org/10.5194/os-15-307-2019, 2019
Short summary
Short summary
In this paper we investigate the origin of the variability in
near-bottom turbidity observations in Alfacs Bay (in the northwestern Mediterranean Sea). The observations of turbidity peaks are consistent with the seiche phenomenon. We suggest that the sequence of resuspension events plays an important role in the suspended sediment concentration, meaning that previous sediment resuspension events may influence the increase in suspended sediment in subsequent events.
Pablo Cerralbo, Marta F.-Pedrera Balsells, Marc Mestres, Margarita Fernandez, Manuel Espino, Manel Grifoll, and Agustin Sanchez-Arcilla
Ocean Sci., 15, 215–226, https://doi.org/10.5194/os-15-215-2019, https://doi.org/10.5194/os-15-215-2019, 2019
Short summary
Short summary
In this contribution we investigate the hydrodynamic response in Alfacs Bay (Delta Ebro, NW Mediterranean Sea) to freshwater flows and inner bay to open sea connections. The numerical model ROMS is applied nested to Copernicus models and validated with in situ data. Considering the results, only the modification of freshwater flows is recommended due to its lower impact on the environment and associated economic costs. None of the proposed solutions solve the problem related to warm waters.
Manel Grifoll, Jorge Navarro, Elena Pallares, Laura Ràfols, Manuel Espino, and Ana Palomares
Nonlin. Processes Geophys., 23, 143–158, https://doi.org/10.5194/npg-23-143-2016, https://doi.org/10.5194/npg-23-143-2016, 2016
Short summary
Short summary
In this contribution the wind jet dynamics in the northern margin of the Ebro River shelf (NW Mediterranean Sea) are investigated using coupled numerical models. The study area is characterized by persistent and energetic offshore winds during autumn and winter. However, the coupling effect in the wind resource assessment may be relevant due to the cubic relation between the wind intensity and power.
J. P. Sierra, M. Casas-Prat, M. Virgili, C. Mösso, and A. Sánchez-Arcilla
Nat. Hazards Earth Syst. Sci., 15, 1695–1709, https://doi.org/10.5194/nhess-15-1695-2015, https://doi.org/10.5194/nhess-15-1695-2015, 2015
A. Sánchez-Arcilla, M. García-León, and V. Gracia
Nat. Hazards Earth Syst. Sci., 14, 2993–3004, https://doi.org/10.5194/nhess-14-2993-2014, https://doi.org/10.5194/nhess-14-2993-2014, 2014
Related subject area
Approach: Analytic Theory | Depth range: Surface | Geographical range: Mediterranean Sea | Phenomena: Surface Waves
Statistical trend analysis and extreme distribution of significant wave height from 1958 to 1999 – an application to the Italian Seas
G. Martucci, S. Carniel, J. Chiggiato, M. Sclavo, P. Lionello, and M. B. Galati
Ocean Sci., 6, 525–538, https://doi.org/10.5194/os-6-525-2010, https://doi.org/10.5194/os-6-525-2010, 2010
Cited articles
Aitchison, J. and Brown, J. A. C.: The lognormal distribution with special
reference to its uses in economics, J. Polit. Econ., 66, 370–371, 1958. a
Amadei, B.: Importance of anisotropy when estimating and measuring in situ
stresses in rock, in: International Journal of Rock Mechanics and Mining
Sciences & Geomechanics Abstracts, vol. 33, Elsevier, Pergamon, 293–325, 1996. a
Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., and
Silliman, B. R.: The value of estuarine and coastal ecosystem services,
Ecol. Monogr., 81, 169–193, https://doi.org/10.1890/10-1510.1, 2011. a
Barnston, A. G. and Livezey, R. E.: Classification, Seasonality and Persistence
of Low-Frequency Atmospheric Circulation Patterns, Mon. Weather Rev., 115, 1083–1126, 1987. a
Bernardara, P., Mazas, F., Kergadallan, X., and Hamm, L.: A two-step framework
for over-threshold modelling of environmental extremes, Nat. Hazards Earth Syst.
Sci., 14, 635–647, https://doi.org/10.5194/nhess-14-635-2014, 2014. a
Bertotti, L., Bidlot, J., Bunney, C., Cavaleri, L., Passeri, L. D., Gomez, M.,
Lefèvre, J., Paccagnella, T., Torrisi, L., Valentini, A., and Vocino, A.:
Performance of different forecast systems in an exceptional storm in the Western
Mediterranean Sea, Q. J. Roy. Meteorol. Soc., 138, 34–55, https://doi.org/10.1002/qj.892, 2012. a
Brown, A., Milton, S., Cullen, M., Golding, B., Mitchell, J., and Shelly, A.:
Unified modeling and prediction of weather and climate: A 25-year journey, B.
Am. Meteorol. Soc., 93, 1865–1877, 2012. a
Bulleri, F. and Chapman, M. G.: The introduction of coastal infrastructure as a
driver of change in marine environments, J. Appl. Ecol., 47, 26–35,
https://doi.org/10.1111/j.1365-2664.2009.01751.x, 2010. a
Casas-Prat, M. and Sierra, J.: Projected Future Wave Climate in the
NW Mediterranean Sea, J. Geophys. Res.-Oceans, 118, 3548–3568, 2013. a
Cavaleri, L.: Wave modeling – missing the peaks, J. Phys. Oceanogr., 39, 2757–2778, 2009. a
Cavaleri, L., Bertotti, L., and Pezzutto, P.: Accuracy of altimeter data in
inner and coastal seas, Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-81, in review, 2018. a
Cerralbo, P., Grifoll, M., Moré, J., Bravo, M., Sairouní Afif, A., and
Espino, M.: Wind variability in a coastal area (Alfacs Bay, Ebro River delta),
Adv. Sci. Res., 12, 11–21, https://doi.org/10.5194/asr-12-11-2015, 2015. a
Chorti, A. and Hristopulos, D. T.: Nonparametric identification of anisotropic
(elliptic) correlations in spatially distributed data sets, IEEE T. Signal Proc.,
56, 4738–4751, 2008. a
Crampin, S.: An introduction to wave propagation in anisotropic media, Geophys.
J. Int., 76, 17–28, 1984. a
Cullen, M. J. P.: The unified forecast/climate model, Meteorol. Mag., 122, 81–94, 1993. a
Durrant, T. H., Greenslade, D. J. M., and Simmonds, I.: Validation of Jason-1
and Envisat Remotely Sensed Wave Heights, J. Atmos. Ocean. Tech., 26, 123–134,
https://doi.org/10.1175/2008JTECHO598.1, 2009. a
Eastoe, E., Koukoulas, S., and Jonathan, P.: Statistical measures of extremal
dependence illustrated using measured sea surface elevations from a
neighbourhood of coastal locations, Ocean Eng., 62, 68–77, 2013. a
Embrechts, P., Lindskog, F., and McNeil, A.: Modelling dependence with copulas,
Rapport technique, Département de mathématiques, Institut Fédéral
de Technologie de Zurich, Zurich, 2001. a
Estournel, C., Durrieu de Madron, X., Marsaleix, P., Auclair, F., Julliand, C.,
and Vehil, R.: Observation and modeling of the winter coastal oceanic circulation
in the Gulf of Lion under wind conditions influenced by the continental orography
(FETCH experiment), J. Geophys. Res.-Oceans, 108, 8059, https://doi.org/10.1029/2001JC000825, 2003. a
García, M., Sánchez-Arcilla, A., Sierra, J., Sospedra, J., and Gómez,
J.: Wind waves off the Ebro Delta, NM Mediterranean, Mar. Syst., 4, 235–262, 1993. a
Geleynse, N., Voller, V. R., Paola, C., and Ganti, V.: Characterization of
river delta shorelines, Geophys. Res. Lett., 39, L17402, https://doi.org/10.1029/2012GL052845, 2012. a
Gràcia, V., Jimenez, J. A., Sánchez-Arcilla, A., Guillén, J., and
Palanques, A.: Short-term relatively deep sedimentation on the Ebro delta
coast. Opening the closure depth, in: 26th International Conference on Coastal
Engineering, 22–26 June 1998, Copenhaguen, Denmark, 2902–2912, 1999. a
Halpern, B. S., Walbridge, S., Selkoe, K. A., Kappel, C. V., Micheli, F.,
D'agrosa, C., Bruno, J. F., Casey, K. S., Ebert, C., Fox, H. E., and Fujita, R.:
A global map of human impact on marine ecosystems, Science, 319, 948–952, 2008. a
IPCC: Summary for policymakers. Emissions Scenarios, in: A Special Report of
Working Group III of the Intergovernmental Panel of Climate Change, Tech. rep.,
IPCC, Cambridge University Press, Cambridge, 2000. a
Janssen, P. A. E. M., Abdalla, S., Hersbach, H., and Bidlot, J.-R.: Error
Estimation of Buoy, Satellite, and Model Wave Height Data, J. Atmos. Ocean.
Tech., 24, 1665–1677, https://doi.org/10.1175/JTECH2069.1, 2007. a
Jordi, A., Basterretxea, G., and Wang, D.-P.: Local versus remote wind effects
on the coastal circulation of a microtidal bay in the Mediterranean Sea, J.
Mar. Syst., 88, 312–322, 2011. a
Lebeaupin Brossier, C., Béranger, K., and Drobinski, P.: Ocean response to
strong precipitation events in the Gulf of Lions (northwestern Mediterranean
Sea): A sensitivity study, Ocean Dynam., 62, 213–226, 2012. a
Li, F., van Gelder, P., Vrijling, J., Callaghan, D., Jongejan, R., and Ranasinghe,
R.: Probabilistic estimation of coastal dune erosion and recession by statistical
simulation of storm events, Appl. Ocean Res., 47, 53–62, 2014. a
Lin-Ye, J., García-León, M., Gràcia, V., and Sánchez-Arcilla,
A.: A multivariate statistical model of extreme events: An application to the
Catalan coast, Coast. Eng., 117, 138–156, https://doi.org/10.1016/j.coastaleng.2016.08.002, 2016. a, b
Lionello, P. and Sanna, A.: Mediterranean wave climate variability and its
links with NAO and Indian Monsoon, Clim. Dynam., 25, 611–623, https://doi.org/10.1007/s00382-005-0025-4, 2005. a
Miller, S. T. K., Keim, B. D., Talbot, R. W., and Mao, H.: Sea breeze: Structure,
forecasting, and impacts, Rev. Geophys., 41, 1011, https://doi.org/10.1029/2003RG000124, 2003. a
Nicolle, A., Garreau, P., and Liorzou, B.: Modelling for anchovy recruitment
studies in the Gulf of Lions (Western Mediterranean Sea), Ocean Dynam., 59, 953–968, 2009. a
Okhrin, O., Okhrin, Y., and Schmid, W.: Properties of hierarchical Archimedean
copulas, Statist. Risk Model. Appl. Finance Insur., 30, 21–54, 2013. a
Pallarés, E., Sánchez-Arcilla, A., and Espino, M.: Wave energy balance
in wave models (SWAN) for semi-enclosed domains–appication to the Catalan
coast, Cont. Shelf Res., 87, 41–53, 2014. a
Petrakis, M. P. and Hristopulos, D. T.: Non-parametric approximations for
anisotropy estimation in two-dimensional differentiable Gaussian random fields,
Stoch. Environ. Res. Risk A., 31, 1853–1870, 2017. a
Qi, J., Chen, C., Beardsley, R. C., Perrie, W., Cowles, G. W., and Lai, Z.: An
unstructured-grid finite-volume surface wave model (FVCOM-SWAVE): Implementation,
validations and applications, Ocean Model., 28, 153–166, https://doi.org/10.1016/j.ocemod.2009.01.007, 2009. a
Rafols, L., Grifoll, M., Jorda, G., Espino, M., Sairouni, A., and Bravo, M.:
Shelf Circulation Induced by an Orographic Wind Jet, J. Geophys. Res.-Oceans,
122, 8225–8245, https://doi.org/10.1002/2017JC012773, 2017. a
Roland, A. and Ardhuin, F.: On the developments of spectral wave models:
Numerics and parameterizations for the coastal ocean, Ocean Dynam., 64, 833–846, 2014. a
Roland, A., Zhang, Y. J., Wang, H. V., Meng, Y., Teng, Y.-C., Maderich, V.,
Brovchenko, I., Dutour-Sikiric, M., and Zanke, U.: A fully coupled 3D
wave-current interaction model on unstructured grids, J. Geophys. Res.-Oceans,
117, C00J33, https://doi.org/10.1029/2012JC007952, 2012. a
Romero, L., Uchiyama, Y., Ohlmann, J. C., McWilliams, J. C., and Siegel, D. A.:
Simulations of nearshore particle-pair dispersion in Southern California, J.
Phys. Oceanogr., 43, 1862–1879, 2013. a
Rueda, A., Camus, P., Tomás, A., Vitousek, S., and Méndez, F.: A
multivariate extreme wave and storm surge climate emulator based on weather
patterns, Ocean Model., 104, 242–251, https://doi.org/10.1016/j.ocemod.2016.06.008, 2016. a
Sánchez-Arcilla, A. and Simpson, J. H.: The narrow shelf concept: couplings
and fluxes, Cont. Shelf Res., 22, 153–172, https://doi.org/10.1016/S0278-4343(01)00052-8, 2002. a, b, c
Sánchez-Arcilla, A., García, M., and Gràcia, V.: Hydro-morphodynamic
modelling in Mediterranean storms – errors and uncertainties under sharp
gradients, Nat. Hazards Earth Syst. Sci., 14, 2993–3004, https://doi.org/10.5194/nhess-14-2993-2014, 2014. a
Sánchez-Arcilla, A., García-León, M., Gràcia, V., Devoy, R.,
Stanica, A., and Gault, J.: Managing coastal environments under climate change:
pathways to adaptation, Sci. Total Environ., 572, 1336–1352, 2016. a
Schaeffer, A., Molcard, A., Forget, P., Fraunié, P., and Garreau, P.:
Generation mechanisms for mesoscale eddies in the Gulf of Lions: Radar
observation and modeling, Ocean Dynam., 61, 1587–1609, 2011. a
Shaw, J. B., Wolinsky, M. A., Paola, C., and Voller, V. R.: An image-based
method for shoreline mapping on complex coasts, Geophys. Res. Lett., 35, L12405,
https://doi.org/10.1029/2008GL033963, 2008.
a
Sklar, A.: Fonctions dé repartition à n dimension et leurs marges,
Université Paris 8, Paris, France, 1959. a
Soomere, T.: Anisotropy of wind and wave regimes in the Baltic Proper, J. Sea
Res., 49, 305–316, 2003. a
Staneva, J., Wahle, K., Günther, H., and Stanev, E.: Coupling of wave and
circulation models in coastal-ocean predicting systems: a case study for the
German Bight, Ocean Sci., 12, 797–806, https://doi.org/10.5194/os-12-797-2016, 2016. a
Swail, V., Komen, G., Ryabinin, V., Holt, M., Taylor, P. K., and Bidlot, J.:
Wind waves in the Global Ocean Observing System, in: OCEANOBS99, Proc. of the
Int. Conf. on the Ocean Observing System for Climate, St. Raphael, France, 1999. a
Trigo, I. F., Bigg, G. R., and Davies, T. D.: Climatology of cyclogenesis
mechanisms in the Mediterranean, Mon. Weather Rev., 130, 549–569, 2002. a
van der Westhuysen, A., Zijlema, M., and Battjes, J.: Nonlinear saturation-based
whitecapping dissipation in SWAN for deep and shallow water, Coast. Eng.,
54, 151–170, 2007. a
Verdon, J. P., Angus, D. A., Kendall, J. M., and Hall, S. A.: The effect of
microstructure and nonlinear stress on anisotropic seismic velocities, Geophysics,
73, D41–D51, 2008. a
Wahl, T., Jensen, J., and Mudersbach, C.: A multivariate statistical model for
advanced storm surge analyses in the North Sea, Coast. Eng. Proc., 1, 19, 2011. a
Walters, D. N., Best, M. J., Bushell, A. C., Copsey, D., Edwards, J. M., Falloon,
P. D., Harris, C. M., Lock, A. P., Manners, J. C., Morcrette, C. J., Roberts,
M. J., Stratton, R. A., Webster, S., Wilkinson, J. M., Willett, M. R., Boutle,
I. A., Earnshaw, P. D., Hill, P. G., MacLachlan, C., Martin, G. M., Moufouma-Okia,
W., Palmer, M. D., Petch, J. C., Rooney, G. G., Scaife, A. A., and Williams, K.
D.: The Met Office Unified Model Global Atmosphere 3.0/3.1 and JULES Global
Land 3.0/3.1 configurations, Geosci. Model Dev., 4, 919–941, https://doi.org/10.5194/gmd-4-919-2011, 2011. a
Wiese, A., Staneva, J., Schulz-Stellenfleth, J., Behrens, A., Fenoglio-Marc, L.,
and Bidlot, J.-R.: Synergy of wind wave model simulations and satellite
observations during extreme events, Ocean Sci., 14, 1503–1521,
https://doi.org/10.5194/os-14-1503-2018, 2018. a
WISE Group: Wave modelling-the state of the art, Prog. Oceanogr., 75, 603–674, 2007. a
Zijlema, M.: Computation of wind-wave spectra in coastal waters with {SWAN}
on unstructured grids, Coast. Eng., 57, 267–277, https://doi.org/10.1016/j.coastaleng.2009.10.011, 2010. a, b
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(4569 KB) - Full-text XML
Short summary
A quantitative definition for the coastal border isotropy of met-ocean processes is proposed. Wind velocity and significant wave height anisotropies are examined along four transects at the north-western Mediterranean coast. Both decrease offshore, determining a coastal fringe of width of 2–4 km. The joint probability structure reflects a decoupling near the coast and a stronger dependence in the bay-like part, where the wave field is being more actively generated by the overlaying wind.
A quantitative definition for the coastal border isotropy of met-ocean processes is proposed....