Articles | Volume 14, issue 1
https://doi.org/10.5194/os-14-69-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-14-69-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Response of O2 and pH to ENSO in the California Current System in a high-resolution global climate model
Giuliana Turi
National Snow and Ice Data Center, Boulder, CO, USA
Michael Alexander
CORRESPONDING AUTHOR
NOAA/ESRL, Boulder, CO, USA
Nicole S. Lovenduski
Department of
Atmospheric and Oceanic Sciences and Institute of Arctic and Alpine Research,
University of Colorado, Boulder, CO, USA
Antonietta Capotondi
NOAA/ESRL, Boulder, CO, USA
James Scott
CIRES, University of Colorado at Boulder, and NOAA/ESRL, Boulder,
CO, USA
Charles Stock
NOAA/GFDL, Princeton, NJ, USA
John Dunne
NOAA/GFDL, Princeton, NJ, USA
Jasmin John
NOAA/GFDL, Princeton, NJ, USA
Michael Jacox
University of California, Santa Cruz, CA and NOAA/SWFSC, Monterey,
CA, USA
Related authors
No articles found.
Benjamin M. Sanderson, Ben B. B. Booth, John Dunne, Veronika Eyring, Rosie A. Fisher, Pierre Friedlingstein, Matthew J. Gidden, Tomohiro Hajima, Chris D. Jones, Colin G. Jones, Andrew King, Charles D. Koven, David M. Lawrence, Jason Lowe, Nadine Mengis, Glen P. Peters, Joeri Rogelj, Chris Smith, Abigail C. Snyder, Isla R. Simpson, Abigail L. S. Swann, Claudia Tebaldi, Tatiana Ilyina, Carl-Friedrich Schleussner, Roland Séférian, Bjørn H. Samset, Detlef van Vuuren, and Sönke Zaehle
Geosci. Model Dev., 17, 8141–8172, https://doi.org/10.5194/gmd-17-8141-2024, https://doi.org/10.5194/gmd-17-8141-2024, 2024
Short summary
Short summary
We discuss how, in order to provide more relevant guidance for climate policy, coordinated climate experiments should adopt a greater focus on simulations where Earth system models are provided with carbon emissions from fossil fuels together with land use change instructions, rather than past approaches that have largely focused on experiments with prescribed atmospheric carbon dioxide concentrations. We discuss how these goals might be achieved in coordinated climate modeling experiments.
Mathieu Antoine François Poupon, Laure Resplandy, Jessica Garwood, Charles Stock, Niki Zadeh, and Jessica Luo
EGUsphere, https://doi.org/10.5194/egusphere-2024-3058, https://doi.org/10.5194/egusphere-2024-3058, 2024
Short summary
Short summary
Zooplankton diel vertical migration (DVM) shapes ocean biogeochemical cycles. We present a new DVM model that reproduces migration depths observed in the North Atlantic Ocean. We show that chlorophyll shading contributes to reducing zooplankton migration depth and mainly controls its spatial and temporal variability. Thus, high chlorophyll concentrations may limit carbon sequestration caused by zooplankton migration despite the general abundance of zooplankton migration in these environments.
Joshua Coupe, Nicole S. Lovenduski, Luise S. Gleason, Michael N. Levy, Kristen Krumhardt, Keith Lindsay, Charles Bardeen, Clay Tabor, Cheryl Harrison, Kenneth G. MacLeod, Siddhartha Mitra, and Julio Sepúlveda
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-94, https://doi.org/10.5194/gmd-2024-94, 2024
Preprint under review for GMD
Short summary
Short summary
We develop a new feature in the atmosphere and ocean components of the Community Earth System Model version 2. We have implemented ultraviolet (UV) radiation inhibition of photosynthesis of four marine phytoplankton functional groups represented in the Marine Biogeochemistry Library. The new feature is tested with varying levels of UV radiation. The new feature will enable an analysis of an asteroid impact’s effect on the ozone layer and how that affects the base of the marine food web.
Cara Nissen, Nicole S. Lovenduski, Mathew Maltrud, Alison R. Gray, Yohei Takano, Kristen Falcinelli, Jade Sauvé, and Katherine Smith
Geosci. Model Dev., 17, 6415–6435, https://doi.org/10.5194/gmd-17-6415-2024, https://doi.org/10.5194/gmd-17-6415-2024, 2024
Short summary
Short summary
Autonomous profiling floats have provided unprecedented observational coverage of the global ocean, but uncertainties remain about whether their sampling frequency and density capture the true spatiotemporal variability of physical, biogeochemical, and biological properties. Here, we present the novel synthetic biogeochemical float capabilities of the Energy Exascale Earth System Model version 2 and demonstrate their utility as a test bed to address these uncertainties.
Minjin Lee, Charles A. Stock, John P. Dunne, and Elena Shevliakova
Geosci. Model Dev., 17, 5191–5224, https://doi.org/10.5194/gmd-17-5191-2024, https://doi.org/10.5194/gmd-17-5191-2024, 2024
Short summary
Short summary
Modeling global freshwater solid and nutrient loads, in both magnitude and form, is imperative for understanding emerging eutrophication problems. Such efforts, however, have been challenged by the difficulty of balancing details of freshwater biogeochemical processes with limited knowledge, input, and validation datasets. Here we develop a global freshwater model that resolves intertwined algae, solid, and nutrient dynamics and provide performance assessment against measurement-based estimates.
Mathilde Dugenne, Marco Corrales-Ugalde, Jessica Y. Luo, Rainer Kiko, Todd D. O'Brien, Jean-Olivier Irisson, Fabien Lombard, Lars Stemmann, Charles Stock, Clarissa R. Anderson, Marcel Babin, Nagib Bhairy, Sophie Bonnet, Francois Carlotti, Astrid Cornils, E. Taylor Crockford, Patrick Daniel, Corinne Desnos, Laetitia Drago, Amanda Elineau, Alexis Fischer, Nina Grandrémy, Pierre-Luc Grondin, Lionel Guidi, Cecile Guieu, Helena Hauss, Kendra Hayashi, Jenny A. Huggett, Laetitia Jalabert, Lee Karp-Boss, Kasia M. Kenitz, Raphael M. Kudela, Magali Lescot, Claudie Marec, Andrew McDonnell, Zoe Mériguet, Barbara Niehoff, Margaux Noyon, Thelma Panaïotis, Emily Peacock, Marc Picheral, Emilie Riquier, Collin Roesler, Jean-Baptiste Romagnan, Heidi M. Sosik, Gretchen Spencer, Jan Taucher, Chloé Tilliette, and Marion Vilain
Earth Syst. Sci. Data, 16, 2971–2999, https://doi.org/10.5194/essd-16-2971-2024, https://doi.org/10.5194/essd-16-2971-2024, 2024
Short summary
Short summary
Plankton and particles influence carbon cycling and energy flow in marine ecosystems. We used three types of novel plankton imaging systems to obtain size measurements from a range of plankton and particle sizes and across all major oceans. Data were compiled and cross-calibrated from many thousands of images, showing seasonal and spatial changes in particle size structure in different ocean basins. These datasets form the first release of the Pelagic Size Structure database (PSSdb).
Yona Silvy, Thomas L. Frölicher, Jens Terhaar, Fortunat Joos, Friedrich A. Burger, Fabrice Lacroix, Myles Allen, Raffaele Bernadello, Laurent Bopp, Victor Brovkin, Jonathan R. Buzan, Patricia Cadule, Martin Dix, John Dunne, Pierre Friedlingstein, Goran Georgievski, Tomohiro Hajima, Stuart Jenkins, Michio Kawamiya, Nancy Y. Kiang, Vladimir Lapin, Donghyun Lee, Paul Lerner, Nadine Mengis, Estela A. Monteiro, David Paynter, Glen P. Peters, Anastasia Romanou, Jörg Schwinger, Sarah Sparrow, Eric Stofferahn, Jerry Tjiputra, Etienne Tourigny, and Tilo Ziehn
EGUsphere, https://doi.org/10.5194/egusphere-2024-488, https://doi.org/10.5194/egusphere-2024-488, 2024
Short summary
Short summary
We apply the Adaptive Emission Reduction Approach with Earth System Models to provide simulations in which all ESMs converge at 1.5 °C and 2 °C warming levels. These simulations provide compatible emission pathways for a given warming level, uncovering uncertainty ranges previously missing in the CMIP scenarios. This new type of target-based emission-driven simulations offers a more coherent assessment across ESMs for studying both the carbon cycle and impacts under climate stabilization.
Andrew C. Ross, Charles A. Stock, Vimal Koul, Thomas L. Delworth, Feiyu Lu, Andrew Wittenberg, and Michael A. Alexander
EGUsphere, https://doi.org/10.5194/egusphere-2024-394, https://doi.org/10.5194/egusphere-2024-394, 2024
Short summary
Short summary
In this paper, we use a high resolution regional ocean model to downscale seasonal ocean forecasts from GFDL’s SPEAR model. We find that the downscaled model has significantly higher prediction skill in many cases.
Genevieve L. Clow, Nicole S. Lovenduski, Michael N. Levy, Keith Lindsay, and Jennifer E. Kay
Geosci. Model Dev., 17, 975–995, https://doi.org/10.5194/gmd-17-975-2024, https://doi.org/10.5194/gmd-17-975-2024, 2024
Short summary
Short summary
Satellite observations of chlorophyll allow us to study marine phytoplankton on a global scale; yet some of these observations are missing due to clouds and other issues. To investigate the impact of missing data, we developed a satellite simulator for chlorophyll in an Earth system model. We found that missing data can impact the global mean chlorophyll by nearly 20 %. The simulated observations provide a more direct comparison to real-world data and can be used to improve model validation.
Skyler Kern, Mary E. McGuinn, Katherine M. Smith, Nadia Pinardi, Kyle E. Niemeyer, Nicole S. Lovenduski, and Peter E. Hamlington
Geosci. Model Dev., 17, 621–649, https://doi.org/10.5194/gmd-17-621-2024, https://doi.org/10.5194/gmd-17-621-2024, 2024
Short summary
Short summary
Computational models are used to simulate the behavior of marine ecosystems. The models often have unknown parameters that need to be calibrated to accurately represent observational data. Here, we propose a novel approach to simultaneously determine a large set of parameters for a one-dimensional model of a marine ecosystem in the surface ocean at two contrasting sites. By utilizing global and local optimization techniques, we estimate many parameters in a computationally efficient manner.
Krysten Rutherford, Katja Fennel, Lina Garcia Suarez, and Jasmin G. John
Biogeosciences, 21, 301–314, https://doi.org/10.5194/bg-21-301-2024, https://doi.org/10.5194/bg-21-301-2024, 2024
Short summary
Short summary
We downscaled two mid-century (~2075) ocean model projections to a high-resolution regional ocean model of the northwest North Atlantic (NA) shelf. In one projection, the NA shelf break current practically disappears; in the other it remains almost unchanged. This leads to a wide range of possible future shelf properties. More accurate projections of coastal circulation features would narrow the range of possible outcomes of biogeochemical projections for shelf regions.
Katja Frieler, Jan Volkholz, Stefan Lange, Jacob Schewe, Matthias Mengel, María del Rocío Rivas López, Christian Otto, Christopher P. O. Reyer, Dirk Nikolaus Karger, Johanna T. Malle, Simon Treu, Christoph Menz, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Yannick Rousseau, Reg A. Watson, Charles Stock, Xiao Liu, Ryan Heneghan, Derek Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Tingting Wang, Fubao Sun, Inga J. Sauer, Johannes Koch, Inne Vanderkelen, Jonas Jägermeyr, Christoph Müller, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Jida Wang, Fangfang Yao, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, and Michel Bechtold
Geosci. Model Dev., 17, 1–51, https://doi.org/10.5194/gmd-17-1-2024, https://doi.org/10.5194/gmd-17-1-2024, 2024
Short summary
Short summary
Our paper provides an overview of all observational climate-related and socioeconomic forcing data used as input for the impact model evaluation and impact attribution experiments within the third round of the Inter-Sectoral Impact Model Intercomparison Project. The experiments are designed to test our understanding of observed changes in natural and human systems and to quantify to what degree these changes have already been induced by climate change.
Andrew C. Ross, Charles A. Stock, Alistair Adcroft, Enrique Curchitser, Robert Hallberg, Matthew J. Harrison, Katherine Hedstrom, Niki Zadeh, Michael Alexander, Wenhao Chen, Elizabeth J. Drenkard, Hubert du Pontavice, Raphael Dussin, Fabian Gomez, Jasmin G. John, Dujuan Kang, Diane Lavoie, Laure Resplandy, Alizée Roobaert, Vincent Saba, Sang-Ik Shin, Samantha Siedlecki, and James Simkins
Geosci. Model Dev., 16, 6943–6985, https://doi.org/10.5194/gmd-16-6943-2023, https://doi.org/10.5194/gmd-16-6943-2023, 2023
Short summary
Short summary
We evaluate a model for northwest Atlantic Ocean dynamics and biogeochemistry that balances high resolution with computational economy by building on the new regional features in the MOM6 ocean model and COBALT biogeochemical model. We test the model's ability to simulate impactful historical variability and find that the model simulates the mean state and variability of most features well, which suggests the model can provide information to inform living-marine-resource applications.
Weiyi Tang, Bess B. Ward, Michael Beman, Laura Bristow, Darren Clark, Sarah Fawcett, Claudia Frey, François Fripiat, Gerhard J. Herndl, Mhlangabezi Mdutyana, Fabien Paulot, Xuefeng Peng, Alyson E. Santoro, Takuhei Shiozaki, Eva Sintes, Charles Stock, Xin Sun, Xianhui S. Wan, Min N. Xu, and Yao Zhang
Earth Syst. Sci. Data, 15, 5039–5077, https://doi.org/10.5194/essd-15-5039-2023, https://doi.org/10.5194/essd-15-5039-2023, 2023
Short summary
Short summary
Nitrification and nitrifiers play an important role in marine nitrogen and carbon cycles by converting ammonium to nitrite and nitrate. Nitrification could affect microbial community structure, marine productivity, and the production of nitrous oxide – a powerful greenhouse gas. We introduce the newly constructed database of nitrification and nitrifiers in the marine water column and guide future research efforts in field observations and model development of nitrification.
Geneviève W. Elsworth, Nicole S. Lovenduski, Kristen M. Krumhardt, Thomas M. Marchitto, and Sarah Schlunegger
Biogeosciences, 20, 4477–4490, https://doi.org/10.5194/bg-20-4477-2023, https://doi.org/10.5194/bg-20-4477-2023, 2023
Short summary
Short summary
Anthropogenic climate change will influence marine phytoplankton over the coming century. Here, we quantify the influence of anthropogenic climate change on marine phytoplankton internal variability using an Earth system model ensemble and identify a decline in global phytoplankton biomass variance with warming. Our results suggest that climate mitigation efforts that account for marine phytoplankton changes should also consider changes in phytoplankton variance driven by anthropogenic warming.
Jonathan D. Sharp, Andrea J. Fassbender, Brendan R. Carter, Gregory C. Johnson, Cristina Schultz, and John P. Dunne
Earth Syst. Sci. Data, 15, 4481–4518, https://doi.org/10.5194/essd-15-4481-2023, https://doi.org/10.5194/essd-15-4481-2023, 2023
Short summary
Short summary
Dissolved oxygen content is a critical metric of ocean health. Recently, expanding fleets of autonomous platforms that measure oxygen in the ocean have produced a wealth of new data. We leverage machine learning to take advantage of this growing global dataset, producing a gridded data product of ocean interior dissolved oxygen at monthly resolution over nearly 2 decades. This work provides novel information for investigations of spatial, seasonal, and interannual variability in ocean oxygen.
István Dunkl, Nicole Lovenduski, Alessio Collalti, Vivek K. Arora, Tatiana Ilyina, and Victor Brovkin
Biogeosciences, 20, 3523–3538, https://doi.org/10.5194/bg-20-3523-2023, https://doi.org/10.5194/bg-20-3523-2023, 2023
Short summary
Short summary
Despite differences in the reproduction of gross primary productivity (GPP) by Earth system models (ESMs), ESMs have similar predictability of the global carbon cycle. We found that, although GPP variability originates from different regions and is driven by different climatic variables across the ESMs, the ESMs rely on the same mechanisms to predict their own GPP. This shows that the predictability of the carbon cycle is limited by our understanding of variability rather than predictability.
Fabian A. Gomez, Sang-Ki Lee, Charles A. Stock, Andrew C. Ross, Laure Resplandy, Samantha A. Siedlecki, Filippos Tagklis, and Joseph E. Salisbury
Earth Syst. Sci. Data, 15, 2223–2234, https://doi.org/10.5194/essd-15-2223-2023, https://doi.org/10.5194/essd-15-2223-2023, 2023
Short summary
Short summary
We present a river chemistry and discharge dataset for 140 rivers in the United States, which integrates information from the Water Quality Database of the US Geological Survey (USGS), the USGS’s Surface-Water Monthly Statistics for the Nation, and the U.S. Army Corps of Engineers. This dataset includes dissolved inorganic carbon and alkalinity, two key properties to characterize the carbonate system, as well as nutrient concentrations, such as nitrate, phosphate, and silica.
Alban Planchat, Lester Kwiatkowski, Laurent Bopp, Olivier Torres, James R. Christian, Momme Butenschön, Tomas Lovato, Roland Séférian, Matthew A. Chamberlain, Olivier Aumont, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, Tatiana Ilyina, Hiroyuki Tsujino, Kristen M. Krumhardt, Jörg Schwinger, Jerry Tjiputra, John P. Dunne, and Charles Stock
Biogeosciences, 20, 1195–1257, https://doi.org/10.5194/bg-20-1195-2023, https://doi.org/10.5194/bg-20-1195-2023, 2023
Short summary
Short summary
Ocean alkalinity is critical to the uptake of atmospheric carbon and acidification in surface waters. We review the representation of alkalinity and the associated calcium carbonate cycle in Earth system models. While many parameterizations remain present in the latest generation of models, there is a general improvement in the simulated alkalinity distribution. This improvement is related to an increase in the export of biotic calcium carbonate, which closer resembles observations.
Stephen G. Yeager, Nan Rosenbloom, Anne A. Glanville, Xian Wu, Isla Simpson, Hui Li, Maria J. Molina, Kristen Krumhardt, Samuel Mogen, Keith Lindsay, Danica Lombardozzi, Will Wieder, Who M. Kim, Jadwiga H. Richter, Matthew Long, Gokhan Danabasoglu, David Bailey, Marika Holland, Nicole Lovenduski, Warren G. Strand, and Teagan King
Geosci. Model Dev., 15, 6451–6493, https://doi.org/10.5194/gmd-15-6451-2022, https://doi.org/10.5194/gmd-15-6451-2022, 2022
Short summary
Short summary
The Earth system changes over a range of time and space scales, and some of these changes are predictable in advance. Short-term weather forecasts are most familiar, but recent work has shown that it is possible to generate useful predictions several seasons or even a decade in advance. This study focuses on predictions over intermediate timescales (up to 24 months in advance) and shows that there is promising potential to forecast a variety of changes in the natural environment.
Claudia Tebaldi, Kevin Debeire, Veronika Eyring, Erich Fischer, John Fyfe, Pierre Friedlingstein, Reto Knutti, Jason Lowe, Brian O'Neill, Benjamin Sanderson, Detlef van Vuuren, Keywan Riahi, Malte Meinshausen, Zebedee Nicholls, Katarzyna B. Tokarska, George Hurtt, Elmar Kriegler, Jean-Francois Lamarque, Gerald Meehl, Richard Moss, Susanne E. Bauer, Olivier Boucher, Victor Brovkin, Young-Hwa Byun, Martin Dix, Silvio Gualdi, Huan Guo, Jasmin G. John, Slava Kharin, YoungHo Kim, Tsuyoshi Koshiro, Libin Ma, Dirk Olivié, Swapna Panickal, Fangli Qiao, Xinyao Rong, Nan Rosenbloom, Martin Schupfner, Roland Séférian, Alistair Sellar, Tido Semmler, Xiaoying Shi, Zhenya Song, Christian Steger, Ronald Stouffer, Neil Swart, Kaoru Tachiiri, Qi Tang, Hiroaki Tatebe, Aurore Voldoire, Evgeny Volodin, Klaus Wyser, Xiaoge Xin, Shuting Yang, Yongqiang Yu, and Tilo Ziehn
Earth Syst. Dynam., 12, 253–293, https://doi.org/10.5194/esd-12-253-2021, https://doi.org/10.5194/esd-12-253-2021, 2021
Short summary
Short summary
We present an overview of CMIP6 ScenarioMIP outcomes from up to 38 participating ESMs according to the new SSP-based scenarios. Average temperature and precipitation projections according to a wide range of forcings, spanning a wider range than the CMIP5 projections, are documented as global averages and geographic patterns. Times of crossing various warming levels are computed, together with benefits of mitigation for selected pairs of scenarios. Comparisons with CMIP5 are also discussed.
Steven T. Turnock, Robert J. Allen, Martin Andrews, Susanne E. Bauer, Makoto Deushi, Louisa Emmons, Peter Good, Larry Horowitz, Jasmin G. John, Martine Michou, Pierre Nabat, Vaishali Naik, David Neubauer, Fiona M. O'Connor, Dirk Olivié, Naga Oshima, Michael Schulz, Alistair Sellar, Sungbo Shim, Toshihiko Takemura, Simone Tilmes, Kostas Tsigaridis, Tongwen Wu, and Jie Zhang
Atmos. Chem. Phys., 20, 14547–14579, https://doi.org/10.5194/acp-20-14547-2020, https://doi.org/10.5194/acp-20-14547-2020, 2020
Short summary
Short summary
A first assessment is made of the historical and future changes in air pollutants from models participating in the 6th Coupled Model Intercomparison Project (CMIP6). Substantial benefits to future air quality can be achieved in future scenarios that implement measures to mitigate climate and involve reductions in air pollutant emissions, particularly methane. However, important differences are shown between models in the future regional projection of air pollutants under the same scenario.
Friedrich A. Burger, Jasmin G. John, and Thomas L. Frölicher
Biogeosciences, 17, 4633–4662, https://doi.org/10.5194/bg-17-4633-2020, https://doi.org/10.5194/bg-17-4633-2020, 2020
Short summary
Short summary
Ensemble simulations of an Earth system model reveal that ocean acidity extremes have increased in the past few decades and are projected to increase further in terms of frequency, intensity, duration, and volume extent. The increase is not only caused by the long-term ocean acidification due to the uptake of anthropogenic CO2, but also due to changes in short-term variability. The increase in ocean acidity extremes may enhance the risk of detrimental impacts on marine organisms.
Robert J. Allen, Steven Turnock, Pierre Nabat, David Neubauer, Ulrike Lohmann, Dirk Olivié, Naga Oshima, Martine Michou, Tongwen Wu, Jie Zhang, Toshihiko Takemura, Michael Schulz, Kostas Tsigaridis, Susanne E. Bauer, Louisa Emmons, Larry Horowitz, Vaishali Naik, Twan van Noije, Tommi Bergman, Jean-Francois Lamarque, Prodromos Zanis, Ina Tegen, Daniel M. Westervelt, Philippe Le Sager, Peter Good, Sungbo Shim, Fiona O'Connor, Dimitris Akritidis, Aristeidis K. Georgoulias, Makoto Deushi, Lori T. Sentman, Jasmin G. John, Shinichiro Fujimori, and William J. Collins
Atmos. Chem. Phys., 20, 9641–9663, https://doi.org/10.5194/acp-20-9641-2020, https://doi.org/10.5194/acp-20-9641-2020, 2020
Claudine Hauri, Cristina Schultz, Katherine Hedstrom, Seth Danielson, Brita Irving, Scott C. Doney, Raphael Dussin, Enrique N. Curchitser, David F. Hill, and Charles A. Stock
Biogeosciences, 17, 3837–3857, https://doi.org/10.5194/bg-17-3837-2020, https://doi.org/10.5194/bg-17-3837-2020, 2020
Short summary
Short summary
The coastal ecosystem of the Gulf of Alaska (GOA) is especially vulnerable to the effects of ocean acidification and climate change. To improve our conceptual understanding of the system, we developed a new regional biogeochemical model setup for the GOA. Model output suggests that bottom water is seasonally high in CO2 between June and January. Such extensive periods of reoccurring high CO2 may be harmful to ocean acidification-sensitive organisms.
Lester Kwiatkowski, Olivier Torres, Laurent Bopp, Olivier Aumont, Matthew Chamberlain, James R. Christian, John P. Dunne, Marion Gehlen, Tatiana Ilyina, Jasmin G. John, Andrew Lenton, Hongmei Li, Nicole S. Lovenduski, James C. Orr, Julien Palmieri, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Charles A. Stock, Alessandro Tagliabue, Yohei Takano, Jerry Tjiputra, Katsuya Toyama, Hiroyuki Tsujino, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, and Tilo Ziehn
Biogeosciences, 17, 3439–3470, https://doi.org/10.5194/bg-17-3439-2020, https://doi.org/10.5194/bg-17-3439-2020, 2020
Short summary
Short summary
We assess 21st century projections of marine biogeochemistry in the CMIP6 Earth system models. These models represent the most up-to-date understanding of climate change. The models generally project greater surface ocean warming, acidification, subsurface deoxygenation, and euphotic nitrate reductions but lesser primary production declines than the previous generation of models. This has major implications for the impact of anthropogenic climate change on marine ecosystems.
Thomas L. Frölicher, Luca Ramseyer, Christoph C. Raible, Keith B. Rodgers, and John Dunne
Biogeosciences, 17, 2061–2083, https://doi.org/10.5194/bg-17-2061-2020, https://doi.org/10.5194/bg-17-2061-2020, 2020
Short summary
Short summary
Climate variations can have profound impacts on marine ecosystems. Here we show that on global scales marine ecosystem drivers such as temperature, pH, O2 and NPP are potentially predictable 3 (at the surface) and more than 10 years (subsurface) in advance. However, there are distinct regional differences in the potential predictability of these drivers. Our study suggests that physical–biogeochemical forecast systems have considerable potential for use in marine resource management.
Katja Fennel, Simone Alin, Leticia Barbero, Wiley Evans, Timothée Bourgeois, Sarah Cooley, John Dunne, Richard A. Feely, Jose Martin Hernandez-Ayon, Xinping Hu, Steven Lohrenz, Frank Muller-Karger, Raymond Najjar, Lisa Robbins, Elizabeth Shadwick, Samantha Siedlecki, Nadja Steiner, Adrienne Sutton, Daniela Turk, Penny Vlahos, and Zhaohui Aleck Wang
Biogeosciences, 16, 1281–1304, https://doi.org/10.5194/bg-16-1281-2019, https://doi.org/10.5194/bg-16-1281-2019, 2019
Short summary
Short summary
We review and synthesize available information on coastal ocean carbon fluxes around North America (NA). There is overwhelming evidence, compiled and discussed here, that the NA coastal margins act as a sink. Our synthesis shows the great diversity in processes driving carbon fluxes in different coastal regions, highlights remaining gaps in observations and models, and discusses current and anticipated future trends with respect to carbon fluxes and acidification.
Riley X. Brady, Nicole S. Lovenduski, Michael A. Alexander, Michael Jacox, and Nicolas Gruber
Biogeosciences, 16, 329–346, https://doi.org/10.5194/bg-16-329-2019, https://doi.org/10.5194/bg-16-329-2019, 2019
Nicole S. Lovenduski, Stephen G. Yeager, Keith Lindsay, and Matthew C. Long
Earth Syst. Dynam., 10, 45–57, https://doi.org/10.5194/esd-10-45-2019, https://doi.org/10.5194/esd-10-45-2019, 2019
Short summary
Short summary
This paper shows that the absorption of carbon dioxide by the ocean is predictable several years in advance. This is important because fossil-fuel-derived carbon dioxide is largely responsible for anthropogenic global warming and because carbon dioxide emission management and global carbon cycle budgeting exercises can benefit from foreknowledge of ocean carbon absorption. The promising results from this new forecast system justify the need for additional oceanic observations.
Galen A. McKinley, Alexis L. Ritzer, and Nicole S. Lovenduski
Biogeosciences, 15, 6049–6066, https://doi.org/10.5194/bg-15-6049-2018, https://doi.org/10.5194/bg-15-6049-2018, 2018
Short summary
Short summary
Phytoplankton biomass changed significantly in the North Atlantic north of 40° N over 1998–2007. With a physical-ecosystem model, we show that biomass increases in the northwest are due to reduced vertical mixing that partially relieves light limitation of phytoplankton. To the east, these circulation changes lead to fewer nutrients being supplied horizontally from the west. Relationships between these biomass variations and atmosphere and ocean physics are not straightforward.
Amanda R. Fay, Nicole S. Lovenduski, Galen A. McKinley, David R. Munro, Colm Sweeney, Alison R. Gray, Peter Landschützer, Britton B. Stephens, Taro Takahashi, and Nancy Williams
Biogeosciences, 15, 3841–3855, https://doi.org/10.5194/bg-15-3841-2018, https://doi.org/10.5194/bg-15-3841-2018, 2018
Short summary
Short summary
The Southern Ocean is highly under-sampled and since this region dominates the ocean sink for CO2, understanding change is critical. Here we utilize available observations to evaluate how the seasonal cycle, variability, and trends in surface ocean carbon in the well-sampled Drake Passage region compare to that of the broader subpolar Southern Ocean. Results indicate that the Drake Passage is representative of the broader region; however, additional winter observations would improve comparisons.
Jaime B. Palter, Thomas L. Frölicher, David Paynter, and Jasmin G. John
Earth Syst. Dynam., 9, 817–828, https://doi.org/10.5194/esd-9-817-2018, https://doi.org/10.5194/esd-9-817-2018, 2018
Short summary
Short summary
Limiting global warming to 1.5 °C may require carbon removal from the atmosphere. We explore how the climate system differs when we achieve the 1.5 °C limit by rapid emissions reductions versus when we overshoot this limit, hitting 2 °C at mid-century before removing CO2 from the atmosphere. We show that sea level, ocean acidification, regional warming, and ocean circulation are very different under the overshoot pathway at 2100, despite hitting the 1.5 °C target for surface warming.
Derek P. Tittensor, Tyler D. Eddy, Heike K. Lotze, Eric D. Galbraith, William Cheung, Manuel Barange, Julia L. Blanchard, Laurent Bopp, Andrea Bryndum-Buchholz, Matthias Büchner, Catherine Bulman, David A. Carozza, Villy Christensen, Marta Coll, John P. Dunne, Jose A. Fernandes, Elizabeth A. Fulton, Alistair J. Hobday, Veronika Huber, Simon Jennings, Miranda Jones, Patrick Lehodey, Jason S. Link, Steve Mackinson, Olivier Maury, Susa Niiranen, Ricardo Oliveros-Ramos, Tilla Roy, Jacob Schewe, Yunne-Jai Shin, Tiago Silva, Charles A. Stock, Jeroen Steenbeek, Philip J. Underwood, Jan Volkholz, James R. Watson, and Nicola D. Walker
Geosci. Model Dev., 11, 1421–1442, https://doi.org/10.5194/gmd-11-1421-2018, https://doi.org/10.5194/gmd-11-1421-2018, 2018
Short summary
Short summary
Model intercomparison studies in the climate and Earth sciences communities have been crucial for strengthening future projections. Given the speed and magnitude of anthropogenic change in the marine environment, the time is ripe for similar comparisons among models of fisheries and marine ecosystems. We describe the Fisheries and Marine Ecosystem Model Intercomparison Project, which brings together the marine ecosystem modelling community to inform long-term projections of marine ecosystems.
James C. Orr, Raymond G. Najjar, Olivier Aumont, Laurent Bopp, John L. Bullister, Gokhan Danabasoglu, Scott C. Doney, John P. Dunne, Jean-Claude Dutay, Heather Graven, Stephen M. Griffies, Jasmin G. John, Fortunat Joos, Ingeborg Levin, Keith Lindsay, Richard J. Matear, Galen A. McKinley, Anne Mouchet, Andreas Oschlies, Anastasia Romanou, Reiner Schlitzer, Alessandro Tagliabue, Toste Tanhua, and Andrew Yool
Geosci. Model Dev., 10, 2169–2199, https://doi.org/10.5194/gmd-10-2169-2017, https://doi.org/10.5194/gmd-10-2169-2017, 2017
Short summary
Short summary
The Ocean Model Intercomparison Project (OMIP) is a model comparison effort under Phase 6 of the Coupled Model Intercomparison Project (CMIP6). Its physical component is described elsewhere in this special issue. Here we describe its ocean biogeochemical component (OMIP-BGC), detailing simulation protocols and analysis diagnostics. Simulations focus on ocean carbon, other biogeochemical tracers, air-sea exchange of CO2 and related gases, and chemical tracers used to evaluate modeled circulation.
Chris D. Jones, Vivek Arora, Pierre Friedlingstein, Laurent Bopp, Victor Brovkin, John Dunne, Heather Graven, Forrest Hoffman, Tatiana Ilyina, Jasmin G. John, Martin Jung, Michio Kawamiya, Charlie Koven, Julia Pongratz, Thomas Raddatz, James T. Randerson, and Sönke Zaehle
Geosci. Model Dev., 9, 2853–2880, https://doi.org/10.5194/gmd-9-2853-2016, https://doi.org/10.5194/gmd-9-2853-2016, 2016
Short summary
Short summary
How the carbon cycle interacts with climate will affect future climate change and how society plans emissions reductions to achieve climate targets. The Coupled Climate Carbon Cycle Model Intercomparison Project (C4MIP) is an endorsed activity of CMIP6 and aims to quantify these interactions and feedbacks in state-of-the-art climate models. This paper lays out the experimental protocol for modelling groups to follow to contribute to C4MIP. It is a contribution to the CMIP6 GMD Special Issue.
Charlotte Laufkötter, Meike Vogt, Nicolas Gruber, Olivier Aumont, Laurent Bopp, Scott C. Doney, John P. Dunne, Judith Hauck, Jasmin G. John, Ivan D. Lima, Roland Seferian, and Christoph Völker
Biogeosciences, 13, 4023–4047, https://doi.org/10.5194/bg-13-4023-2016, https://doi.org/10.5194/bg-13-4023-2016, 2016
Short summary
Short summary
We compare future projections in marine export production, generated by four ecosystem models under IPCC's high-emission scenario RCP8.5. While all models project decreases in export, they differ strongly regarding the drivers. The formation of sinking particles of organic matter is the most uncertain process with models not agreeing on either magnitude or the direction of change. Changes in diatom concentration are a strong driver for export in some models but of low significance in others.
Roland Séférian, Marion Gehlen, Laurent Bopp, Laure Resplandy, James C. Orr, Olivier Marti, John P. Dunne, James R. Christian, Scott C. Doney, Tatiana Ilyina, Keith Lindsay, Paul R. Halloran, Christoph Heinze, Joachim Segschneider, Jerry Tjiputra, Olivier Aumont, and Anastasia Romanou
Geosci. Model Dev., 9, 1827–1851, https://doi.org/10.5194/gmd-9-1827-2016, https://doi.org/10.5194/gmd-9-1827-2016, 2016
Short summary
Short summary
This paper explores how the large diversity in spin-up protocols used for ocean biogeochemistry in CMIP5 models contributed to inter-model differences in modeled fields. We show that a link between spin-up duration and skill-score metrics emerges from both individual IPSL-CM5A-LR's results and an ensemble of CMIP5 models. Our study suggests that differences in spin-up protocols constitute a source of inter-model uncertainty which would require more attention in future intercomparison exercises.
Natalie M. Freeman and Nicole S. Lovenduski
Earth Syst. Sci. Data, 8, 191–198, https://doi.org/10.5194/essd-8-191-2016, https://doi.org/10.5194/essd-8-191-2016, 2016
Short summary
Short summary
The Antarctic Polar Front (PF) is an important physical and biogeochemical divide in the Southern Ocean, delineating distinct zones of temperature, nutrients and biological communities. Our study learns from and advances previous efforts to locate the PF via satellite by avoiding cloud contamination and providing circumpolar realizations at high spatio-temporal resolution. These realizations are consistent with concurrent in situ PF locations and previously published climatological PF positions.
Kristen M. Krumhardt, Nicole S. Lovenduski, Natalie M. Freeman, and Nicholas R. Bates
Biogeosciences, 13, 1163–1177, https://doi.org/10.5194/bg-13-1163-2016, https://doi.org/10.5194/bg-13-1163-2016, 2016
Short summary
Short summary
In this study, we combine phytoplankton pigment data with particulate inorganic carbon and chlorophyll measurements from the satellite record to assess recent trends in phytoplankton dynamics in the North Atlantic subtropical gyre, with a focus on coccolithophores. We show that coccolithophores in the North Atlantic have been increasing in abundance. Correlations suggest that they are responding positively to increasing inorganic carbon from anthropogenic inputs in the upper mixed layer.
S. Sedigh Marvasti, A. Gnanadesikan, A. A. Bidokhti, J. P. Dunne, and S. Ghader
Biogeosciences, 13, 1049–1069, https://doi.org/10.5194/bg-13-1049-2016, https://doi.org/10.5194/bg-13-1049-2016, 2016
Short summary
Short summary
This study examines challenges in modeling phytoplankton blooms in Northwestern Arabian Sea and Gulf of Oman. Blooms in the region show strong modulation both by seasons and in the wintertime by eddies. However getting both of these correct is a challenge in a set of state-of-the-art global Earth System models. It is argued that maintaining a sharp pycnocline may be the key for preventing the wintertime bloom from being too strong and for allowing eddies to modulate upward mixing of nutrients.
C. Laufkötter, M. Vogt, N. Gruber, M. Aita-Noguchi, O. Aumont, L. Bopp, E. Buitenhuis, S. C. Doney, J. Dunne, T. Hashioka, J. Hauck, T. Hirata, J. John, C. Le Quéré, I. D. Lima, H. Nakano, R. Seferian, I. Totterdell, M. Vichi, and C. Völker
Biogeosciences, 12, 6955–6984, https://doi.org/10.5194/bg-12-6955-2015, https://doi.org/10.5194/bg-12-6955-2015, 2015
Short summary
Short summary
We analyze changes in marine net primary production (NPP) and its drivers for the 21st century in 9 marine ecosystem models under the RCP8.5 scenario. NPP decreases in 5 models and increases in 1 model; 3 models show no significant trend. The main drivers include stronger nutrient limitation, but in many models warming-induced increases in phytoplankton growth outbalance the nutrient effect. Temperature-driven increases in grazing and other loss processes cause a net decrease in biomass and NPP.
N. S. Lovenduski, M. C. Long, and K. Lindsay
Biogeosciences, 12, 6321–6335, https://doi.org/10.5194/bg-12-6321-2015, https://doi.org/10.5194/bg-12-6321-2015, 2015
Short summary
Short summary
We investigate variability in surface ocean carbonate chemistry using output from a 1000-year control simulation of an Earth System Model. We find that the detection timescale for trends is strongly influenced by the variability. As the scientific community seeks to detect the anthropogenic influence on ocean carbonate chemistry, these results will aid the interpretation of trends calculated from spatially and temporally sparse observations.
B. F. Jonsson, S. Doney, J. Dunne, and M. L. Bender
Biogeosciences, 12, 681–695, https://doi.org/10.5194/bg-12-681-2015, https://doi.org/10.5194/bg-12-681-2015, 2015
Short summary
Short summary
We compare how two global circulation models simulate biological production over the year with observations. Note that models simulate the range of biological production and biomass well but fail with regard to timing and regional structures. This is probably because the physics in the models are wrong, especially vertical processes such as mixed layer dynamics.
C. D. Nevison, M. Manizza, R. F. Keeling, M. Kahru, L. Bopp, J. Dunne, J. Tiputra, T. Ilyina, and B. G. Mitchell
Biogeosciences, 12, 193–208, https://doi.org/10.5194/bg-12-193-2015, https://doi.org/10.5194/bg-12-193-2015, 2015
Short summary
Short summary
The observed seasonal cycles in atmospheric potential oxygen (APO) at five surface monitoring sites are compared to those inferred from the air-sea O2 fluxes of six ocean biogeochemistry models. The simulated air-sea fluxes are translated into APO seasonal cycles using a matrix method that takes into account atmospheric transport model (ATM) uncertainty among 13 different ATMs. Net primary production (NPP), estimated from satellite ocean color data, is also compared to model output.
C. A. Stock, J. P. Dunne, and J. G. John
Biogeosciences, 11, 7125–7135, https://doi.org/10.5194/bg-11-7125-2014, https://doi.org/10.5194/bg-11-7125-2014, 2014
Short summary
Short summary
Climate change projections suggest large regional ocean productivity shifts for mesozooplankton, an important food resource for fish, which are amplified relative to changes in phytoplankton production. Amplification is attributed to changes in planktonic food web dynamics under global warming. Results have implications for regional economies and food security. Improved understanding of the response of plankton food webs to climate change is essential to refine amplification estimates.
M. Gehlen, R. Séférian, D. O. B. Jones, T. Roy, R. Roth, J. Barry, L. Bopp, S. C. Doney, J. P. Dunne, C. Heinze, F. Joos, J. C. Orr, L. Resplandy, J. Segschneider, and J. Tjiputra
Biogeosciences, 11, 6955–6967, https://doi.org/10.5194/bg-11-6955-2014, https://doi.org/10.5194/bg-11-6955-2014, 2014
Short summary
Short summary
This study evaluates potential impacts of pH reductions on North Atlantic deep-sea ecosystems in response to latest IPCC scenarios.Multi-model projections of pH changes over the seafloor are analysed with reference to a critical threshold based on palaeo-oceanographic studies, contemporary observations and model results. By 2100 under the most severe IPCC CO2 scenario, pH reductions occur over ~23% of deep-sea canyons and ~8% of seamounts – including seamounts proposed as marine protected areas.
M. Ishii, R. A. Feely, K. B. Rodgers, G.-H. Park, R. Wanninkhof, D. Sasano, H. Sugimoto, C. E. Cosca, S. Nakaoka, M. Telszewski, Y. Nojiri, S. E. Mikaloff Fletcher, Y. Niwa, P. K. Patra, V. Valsala, H. Nakano, I. Lima, S. C. Doney, E. T. Buitenhuis, O. Aumont, J. P. Dunne, A. Lenton, and T. Takahashi
Biogeosciences, 11, 709–734, https://doi.org/10.5194/bg-11-709-2014, https://doi.org/10.5194/bg-11-709-2014, 2014
L. Bopp, L. Resplandy, J. C. Orr, S. C. Doney, J. P. Dunne, M. Gehlen, P. Halloran, C. Heinze, T. Ilyina, R. Séférian, J. Tjiputra, and M. Vichi
Biogeosciences, 10, 6225–6245, https://doi.org/10.5194/bg-10-6225-2013, https://doi.org/10.5194/bg-10-6225-2013, 2013
A. Lenton, B. Tilbrook, R. M. Law, D. Bakker, S. C. Doney, N. Gruber, M. Ishii, M. Hoppema, N. S. Lovenduski, R. J. Matear, B. I. McNeil, N. Metzl, S. E. Mikaloff Fletcher, P. M. S. Monteiro, C. Rödenbeck, C. Sweeney, and T. Takahashi
Biogeosciences, 10, 4037–4054, https://doi.org/10.5194/bg-10-4037-2013, https://doi.org/10.5194/bg-10-4037-2013, 2013
C. Beaulieu, S. A. Henson, Jorge L. Sarmiento, J. P. Dunne, S. C. Doney, R. R. Rykaczewski, and L. Bopp
Biogeosciences, 10, 2711–2724, https://doi.org/10.5194/bg-10-2711-2013, https://doi.org/10.5194/bg-10-2711-2013, 2013
V. Cocco, F. Joos, M. Steinacher, T. L. Frölicher, L. Bopp, J. Dunne, M. Gehlen, C. Heinze, J. Orr, A. Oschlies, B. Schneider, J. Segschneider, and J. Tjiputra
Biogeosciences, 10, 1849–1868, https://doi.org/10.5194/bg-10-1849-2013, https://doi.org/10.5194/bg-10-1849-2013, 2013
J. G. John, A. M. Fiore, V. Naik, L. W. Horowitz, and J. P. Dunne
Atmos. Chem. Phys., 12, 12021–12036, https://doi.org/10.5194/acp-12-12021-2012, https://doi.org/10.5194/acp-12-12021-2012, 2012
Cited articles
Alexander, M.: Extratropical Air-Sea Interaction, Sea Surface Temperature
Variability, and the Pacific Decadal Oscillation, in: Clim. Dynam.: Why
Does Climate Vary?, edited by: De-Zheng, S. and Bryan, F., 189,
123–148, AGU Geophysical Monograph Series, 2010. a
Alexander, M. A., Bhatt, U. S., Walsh, J. E., Timlin, M. S., Miller, J. S.,
and
Scott, J. D.: The atmospheric response to realistic Arctic sea ice anomalies
in an AGCM during winter, J. Climate, 17, 890–905, 2004. a
Annamalai, H., Okajima, H., and Watanabe, M.: Possible impact of the Indian
Ocean SST on the Northern Hemisphere circulation during El Niño, J. Climate, 20, 3164–3189, 2007. a
Bakun, A.: Global climate change and intensification of coastal ocean
upwelling, Science, 247, 198–201, 1990. a
Bakun, A., Black, B. A., Bograd, S. J., García-Reyes, M., Miller,
A. J.,
Rykaczewski, R. R., and Sydeman, W. J.: Anticipated effects of climate
change on coastal upwelling ecosystems, Current Climate Change Reports, 1,
85–93, 2015. a
Bednaršek, N., Feely, R. A., Reum, J. C. P., Peterson, B., Menkel, J.,
Alin, S. R., and Hales, B.: Limacina helicina shell dissolution as an
indicator of declining habitat suitability owing to ocean acidification in
the California Current Ecosystem, P. R. Soc. B, 281,
20140123, https://doi.org/10.1098/rspb.2014.0123, 2014. a, b
Benson, S. R., Croll, D. A., Marinovic, B. B., Chavez, F. P., and Harvey,
J. T.: Changes in the cetacean assemblage of a coastal upwelling ecosystem
during El Niño 1997–98 and La Niña 1999, Prog. Oceanogr., 54, 279–291, 2002. a
Bograd, S. J., Castro, C. G., Di Lorenzo, E., Palacios, D. M., Bailey, H.,
Gilly, W., and Chavez, F. P.: Oxygen declines and the shoaling of the
hypoxic boundary in the California Current, Geophys. Res. Lett.,
35, L12607, https://doi.org/10.1029/2008GL034185, 2008. a, b, c
Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M.,
Halloran, P., Heinze, C., Ilyina, T., Séférian, R., Tjiputra, J., and
Vichi, M.: Multiple stressors of ocean ecosystems in the 21st century:
projections with CMIP5 models, Biogeosciences, 10, 6225–6245,
https://doi.org/10.5194/bg-10-6225-2013, 2013. a
Breitburg, D. L., Salisbury, J., Bernhard, J. M., Cai, W.-J., Dupont, S.,
Doney, S. C., Levin, L. A., Long, W. C., Milke, L. M., Miller, S. H., Phelan,
B., Passow, U., Seibel, B. A., Todgham, A. E., and Tarrant, A. M.: And on
top of all that… Coping with ocean acidification in the midst of many
stressors, Oceanography, 28, 48–61, 2015. a
Calvo, N., Iza, M., Hurwitz, M. M., Manzini, E., Peña Ortiz, C., Butler,
A. H., Cagnazzo, C., Ineson, S., and Garfinkel, C. I.: Northern Hemisphere
Stratospheric Pathway of Different El Niño Flavors in
Stratosphere-Resolving CMIP5 Models, J. Climate, 30, 4351–4371,
2017. a
Capotondi, A., Wittenberg, A. T., Newman, M., Di Lorenzo, E., Yu, J.-Y.,
Braconnot, P., Cole, J., Dewitte, B., Giese, B., Guilyardi, E., Jin, F.-F.,
Karnauskas, K., Kirtman, B., Lee, T., Schneider, N., Xue, Y., and Yeh, S.-W.:
Understanding ENSO diversity, B. Am. Meteorol. Soc., 96, 921–938, 2015. a, b
Castro, C. G., Collins, C. A., Walz, P., Pennington, J. T., Michisaki, R. P.,
Friederich, G., and Chavez, F. P.: Nutrient variability during El Niño
1997–98 in the California current system off central California, Prog. Oceanogr., 54, 171–184, 2002. a
Chavez, F. P. and Messié, M.: A comparison of Eastern Boundary
Upwelling
Ecosystems, Prog. Oceanogr., 83, 80–96, 2009. a
Chavez, F. P., Collins, C. A., Huyer, A., and Mackas, D. L.: El Niño
along the west coast of North America, Prog. Oceanogr., 54, 1–5,
2002. a
Checkley Jr., D. M. and Barth, J. A.: Patterns and processes in the
California Current System, Prog. Oceanogr., 83, 49–64, 2009. a
Chelton, D. B., DeSzoeke, R. A., Schlax, M. G., El Naggar, K., and Siwertz,
N.: Geographical Variability of the First Baroclinic Rossby Radius of
Deformation, J. Phys. Oceanogr., 28, 433–460, 1998. a
Collins, C. A., Castro, C. G., Asanuma, H., Rago, T. A., Han, S. K., Durazo,
R., and Chavez, F. P.: Changes in the hydrography of Central California
waters associated with the 1997–98 El Niño, Prog. Oceanogr.,
54, 129–147, 2002. a
Delworth, T. L., Rosati, A., Anderson, W., Adcroft, A. J., Balaji, V.,
Benson,
R., Dixon, K., Griffies, S. M., Lee, H. C., Pacanowski, R. C., Vecchi, G. A.,
Wittenberg, A. T., Zeng, F., and Zhang, R.: Simulated climate and climate
change in the GFDL CM2.5 high-resolution coupled climate model, J. Climate, 25, 2755–2781, 2012. a
DeWeaver, E. and Nigam, S.: Linearity in ENSO's Atmospheric Response, J.
Climate, 15, 2446–2461, 2002. a
Diaz, R. J. and Rosenberg, R.: Spreading dead zones and consequences for
marine ecosystems, Science, 321, 926–929, 2008. a
Di Lorenzo, E., Schneider, N., Cobb, K. M., Franks, P. J. S., Chhak, K.,
Miller, A. J., McWilliams, J. C., Bograd, S. J., Arango, H., Curchitser, E.,
Powell, T., and Rivière, P.: North Pacific Gyre Oscillation links
ocean climate and ecosystem change, Geophys. Res. Lett., 35,
L08607, https://doi.org/10.1029/2007GL032838, 2008. a
Di Lorenzo, E., Cobb, K. M., Furtado, J. C., Schneider, N., Anderson,
B. T.,
Bracco, A., Alexander, M. A., and Vimont, D. J.: Central Pacific El
Niño and decadal climate change in the North Pacific Ocean, Nat. Geosci., 3, 762–765, 2010. a
Dommenget, D., Bayr, T., and Frauen, C.: Analysis of the non-linearity in
the
pattern and time evolution of El Niño southern oscillation, Clim. Dynam., 40, 2825–2847, 2013. a
Doney, S. C.: The Growing Human Footprint on Coastal and Open-Ocean
Biogeochemistry, Science, 328, 1512–1516, 2010. a
Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A.: Ocean
Acidification: The Other CO2 Problem, Annu. Rev. Mar. Sci., 1,
169–192, 2009a. a
Doney, S. C., Lima, I., Feely, R. A., Glover, D. M., Lindsay, K., Mahowald,
N.,
Moore, J. K., and Wanninkhof, R.: Mechanisms governing interannual
variability in upper-ocean inorganic carbon system and air-sea CO2 fluxes:
Physical climate and atmospheric dust, Deep-Sea Res. Pt. II, 56, 640–655, 2009b. a
Duchon, M. E.: Lanczos filtering in one and two dimensions, J. Appl. Meteorol., 18, 1016–1022, 1979. a
Dunne, J. P., Stock, C. A., and John, J. G.: Representation of Eastern
Boundary Currents in GFDL's Earth System Models, California Cooperative
Oceanic Fisheries Investigations Reports, 56, 72–75, 2015. a
Fay, A. R. and McKinley, G. A.: Global trends in surface ocean pCO2 from
in
situ data, Global Biogeochem. Cy., 27, 541–557, 2013. a
Fiechter, J., Curchitser, E. N., Edwards, C. A., Chai, F., Goebel, N. L., and
Chavez, F. P.: Air-sea CO2 fluxes in the California Current: Impacts of
model resolution and coastal topography, Global Biogeochem. Cy., 28,
371–385, 2014. a
Franks, P. J. S., Di Lorenzo, E., Goebel, N. L., Chenillat, F.,
Rivière, P., Edwards, C. A., and Miller, A. J.: Modeling
Physical-Biological Responses to Climate Change in the California Current
System, Oceanography, 26, 26–33, 2013. a
Garcia, H. E., Locarnini, R. A., Boyer, T. P., and Antonov, J. I.: World
Ocean
Atlas 2005, Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and
Oxygen Saturation, in: NOAA Atlas NESDIS 63, edited by: Levitus, S., p. 342,
U.S. Government Printing Office, Washington, DC, 2006a. a
Garcia, H. E., Locarnini, R. A., Boyer, T. P., and Antonov, J. I.: World
Ocean
Atlas 2005, Volume 4: Nutrients (phosphate, nitrate, silicate), in: NOAA
Atlas NESDIS 64, edited by: Levitus, S., p. 396, U.S. Government Printing
Office, Washington, DC, 2006b. a
Gray, J. S., Wu, R. S., and Or, Y. Y.: Effects of hypoxia and organic
enrichment on the coastal marine environment, Mar. Ecol. Prog. Ser., 238, 249–279, 2002. a
Griffies, S. M.: Elements of the Modular Ocean Model (MOM): 2012 release,
GFDL Ocean Group Technical Report No. 7, 3, 1–631, 2012. a
Griffies, S. M., Winton, M., Anderson, W. G., Benson, R., Delworth, T. L.,
Dufour, C. O., Dunne, J. P., Goddard, P., Morrison, A. K., Rosati, A.,
Wittenberg, A. T., Yin, J., and Zhang, R.: Impacts on ocean heat from
transient mesoscale eddies in a hierarchy of climate models, J. Climate, 28, 952–977, 2015. a
Gruber, N.: Warming up, turning sour, losing breath: ocean biogeochemistry
under global change, Philos. T. Roy. Soc. A, 369, 1980–1996, 2011. a
Han, W., Meehl, G. A., Hu, A., Alexander, M., Yamagata, T., Yuan, D., Ishii,
M., Pegion, P., Zheng, J., Hamlington, B., Quan, X.-W., and Leben, R.:
Intensification of decadal and multi-decadal sea level variability in the
western tropical Pacific during recent decades, J. Climate, 43,
1357–1379, 2013. a
Hoerling, M. P. and Kumar, A.: Why do North American climate anomalies
differ
from one El Niño event to another?, Geophys. Res. Lett., 24,
1059–1062, 1997. a
Hoerling, M. P., Kumar, A., and Zhong, M.: El Niño, La Niña, and
the nonlinearity of their teleconnections, J. Climate, 10,
1769–1786, 1997. a
Hopcroft, R. R., Clarke, C., and Chavez, F. P.: Copepod communities in
Monterey Bay during the 1997–1999 El Niño and La Niña, Prog. Oceanogr., 54, 251–264, 2002. a
Huyer, A. and Smith, R. L.: The Signature of El Niño off Oregon,
1982–1983, J. Geophys. Res., 90, 7133–7142, 1985. a
Jacox, M. G., Moore, A. M., Edwards, C. A., and Fiechter, J.: Spatially
resolved upwelling in the California Current System, Geophys. Res. Lett., 41, 3189–3196, 2014. a
Jacox, M. G., Hazen, E. L., Zaba, K. D., Rudnick, D. L., Edwards, C. A.,
Moore,
A. M., and Bograd, S. J.: Impacts of the 2015–2016 El Niño on the
California Current System: Early assessment and comparison to past events,
Geophys. Res. Lett., 43, 7072–7080, 2016. a
Kahru, M. and Mitchell, B. G.: Influence of the 1997–98 El Niño on the
surface chlorophyll in the California Current, Geophys. Res. Lett.,
27, 2937–2940, 2000. a
Kahru, M. and Mitchell, B. G.: Influence of the El Niño-La Niña
cycle on satellite-derived primary production in the California Current,
Geophys. Res. Lett., 29, 1846, https://doi.org/10.1029/2002GL014963, 2002. a
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A.,
Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.
C., Ropelewski, C., Wang, J., Jenne, R., and Joseph, D.: The NCEP/NCAR
40-year reanalysis project, B. Am. Meteorol. Soc., 77, 437–471,
https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996 (data available
at: https://www.esrl.noaa.gov/psd/data/gridded/, last access:
1 June 2016).
Key, R. M., Kozyr, A., Sabine, C. L., Lee, K., Wanninkhof, R., Bullister,
J. L., Feely, R. A., Millero, F. J., Mordy, C., and Peng, T.-H.: A global
ocean carbon climatology: Results from Global Data Analysis Project
(GLODAP), Global Biogeochem. Cy., 18, GB4031, https://doi.org/10.1029/2004GB002247, 2004. a
Kosro, P. M.: A poleward jet and an equatorward undercurrent observed off
Oregon and northern California, during the 1997–98 El Niño, Prog. Oceanogr., 54, 343–360, 2002. a
Kudela, R. M. and Chavez, F. P.: Multi-platform remote sensing of new
production in central California during the 1997–1998 El Niño,
Prog. Oceanogr., 54, 233–249, 2002. a
Lewis, E. and Wallace, D.: Program Developed for CO2 System
Calculations,
Tech. rep., ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak
Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee,
1998. a
Li, J., Xie, S.-P., Cook, E. R., Huang, G., D'Arrigo, R., Liu, F., Ma, J.,
and
Zheng, X.-T.: Interdecadal modulation of El Niño amplitude during the
past millennium, Nat. Clim. Change, 1, 114–118, 2011. a
Lovenduski, N. S., Gruber, N., Doney, S. C., and Lima, I. D.: Enhanced
CO2
outgassing in the Southern Ocean from a positive phase of the Southern
Annular Mode, Global Biogeochem. Cy., 21, GB2026, https://doi.org/10.1029/2006GB002900, 007. a
Lynn, R. J. and Bograd, S. J.: Dynamic evolution of the 1997–1999 El
Niño-La Niña cycle in the southern California Current System,
Prog. Oceanogr., 54, 59–75, 2002. a
Macias, D., Landry, M. R., Gershunov, A., Miller, A. J., and Franks, P.
J. S.:
Climatic control of upwelling variability along the western North-American
coast, PloS one, 7, e30436, https://doi.org/10.1371/journal.pone.0030436, 2012. a
Mantua, N. J. and Hare, S. R.: The Pacific Decadal Oscillation, J. Oceanogr., 58, 35–44, 2002. a
Messié, M., Ledesma, J., Kolber, D. D., Michisaki, R. P., Foley, D. G.,
and Chavez, F. P.: Potential new production estimates in four eastern
boundary upwelling ecosystems, Prog. Oceanogr., 83, 151–158, 2009. a
Murphree, T., Bograd, S. J., Schwing, F. B., and Ford, B.: Large scale
atmosphere-ocean anomalies in the northeast Pacific during 2002, Geophys. Res. Lett., 30, 8026,
https://doi.org/10.1029/2003GL017303, 2003. a
Narayan, N., Paul, A., Mulitza, S., and Schulz, M.: Trends in coastal
upwelling intensity during the late 20th century, Ocean Sci., 6, 815–823,
https://doi.org/10.5194/os-6-815-2010, 2010. a
NASA: Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology
Processing Group, Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Ocean Color
Data, 2014 Reprocessing, NASA OB.DAAC, Greenbelt, MD, USA,
https://doi.org/10.5067/ORBVIEW-2/SEAWIFS_OC.2014.0, last access: 21 June 2016.
Neveu, E., Moore, A. M., Edwards, C. A., Fiechter, J., Drake, P., Crawford,
W. J., Jacox, M. G., and Nuss, E.: An historical analysis of the California
Current circulation using ROMS 4D-Var: System configuration and diagnostics,
Ocean Model., 99, 133–151, https://doi.org/10.1016/j.ocemod.2015.11.012, 2016 (data available at: http://oceanmodeling.ucsc.edu, last access: 1 March 2017). a
Newman, M., Alexander, M. A., Ault, T. R., Cobb, K. M., Deser, C., Di
Lorenzo, E., Mantua, N. J., Miller, A. J., Minobe, S., Nakamura, H.,
Schneider, N., Vimont, D. J., Phillips, A. S., Scott, J. D., and Smith,
C. A.: The Pacific Decadal Oscillation, revisited, J. Climate, 29,
4399–4427, 2016. a
Pearcy, W. G.: Marine nekton off Oregon and the 1997–98 El Niño,
Prog. Oceanogr., 54, 399–403, 2002. a
Peterson, W. T., Keister, J. E., and Feinberg, L. R.: The effects of the
1997–99 El Niño/La Niña events on hydrography and zooplankton off
the central Oregon coast, Prog. Oceanogr., 54, 381–398, 2002. a
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L.
V., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea
surface temperature, sea ice, and night marine air temperature since the late
nineteenth century, J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670,
2003 (data available at: http://www.metoffice.gov.uk/hadobs/hadisst/,
last access: 1 July 2016).
Robbins, L. L., Hansen, M. E., Kleypas, J. A., and Meylan, S. C.: CO2calc –
A
user-friendly seawater carbon calculator for Windows, Mac OS X, and iOS
(iPhone), Tech. rep., U.S. Geological Survey Open-File Report 2010–1280,
2010. a
Ryan, H. F. and Noble, M.: Sea level response to ENSO along the central
California coast: How the 1997–1998 event compares with the historic record,
Prog. Oceanogr., 54, 149–169, 2002. a
Rykaczewski, R. R., Dunne, J. P., Sydeman, W. J., García-Reyes, M.,
Black, B. A., and Bograd, S. J.: Poleward displacement of coastal
upwelling-favorable winds in the ocean's eastern boundary currents through
the 21st century, Geophys. Res. Lett., 42, 6424–6431, 2015. a
Sardeshmukh, P. D., Compo, G. P., and Penland, C.: Changes of probability
associated with El Niño, J. Climate, 13, 4268–4286, 2000. a
Schwing, F. B., Gaxiola-Castro, G., Goméz-Valdéz, J., Kosro,
P. M.,
Mantyla, A. W., Smith, R. L., Bograd, S. J., García, J., Huyer, A.,
Lavaniegos, B. E., Ohman, M. D., Sydeman, W. J., Wheeler, P. A., Collins,
C. A., Goericke, R., Hyrenbach, K. D., Lynn, R. J., Peterson, W. T., and
Venrick, E.: The state of the California Current, 2001–2002: Will the
California Current System keep its cool, or is El Niño looming?,
California Cooperative Oceanic Fisheries Investigations Reports, 43, 31–68,
2002a. a
Schwing, F. B., Murphree, T., DeWitt, L., and Green, P. M.: The evolution of
oceanic and atmospheric anomalies in the northeast Pacific during the El
Niño and La Niña events of 1995–2001, Prog. Oceanogr.,
54, 459–491, 2002b. a
Schwing, F. B., Palacios, D. M., and Bograd, S. J.: El Niño impacts on
the California Current ecosystem, U.S. CLIVAR Newsletter, 3, 5–8, 2005. a
Screen, J. A., Deser, C., Simmonds, I., and Tomas, R.: Atmospheric impacts
of
Arctic sea-ice loss, 1979–2009: Separating forced change from atmospheric
internal variability, Clim. Dynam., 43, 333–344, 2014. a
Simpson, J. J.: Large-scale thermal anomalies in the California Current
during
the 1982–1983 El Niño, Geophys. Res. Lett., 10, 937–940,
1983. a
Smirnov, D., Newman, M., Alexander, M. A., Kwon, Y.-O., and Frankignoul, C.:
Investigating the local atmospheric response to a realistic shift in the
Oyashio sea surface temperature front, J. Climate, 28, 1126–1147,
2015. a
Stock, C. A., Alexander, M. A., Bond, N. A., Brander, K. M., Cheung, W.
W. L.,
Curchitser, E. N., Delworth, T. L., Dunne, J. P., Griffies, S. M., Haltuch,
M. A., Hare, J. A., Hollowed, A. B., Lehodey, P., Levin, S. A., Link, J. S.,
Rose, K. A., Rykaczewski, R. R., Sarmiento, J. L., Stouffer, R. J., Schwing,
F. B., Vecchi, G. A., and Werner, F. E.: On the use of IPCC-class models to assess the impact of climate on Living Marine Resources, Prog. Oceanogr., 88,
1–27, 2011. a
Stock, C. A., Dunne, J. P., and John, J. G.: Drivers of trophic amplification
of ocean productivity trends in a changing climate, Biogeosciences, 11,
7125–7135, https://doi.org/10.5194/bg-11-7125-2014, 2014a. a, b
Stock, C. A., Dunne, J. P., and John, J. G.: Global-scale carbon and energy
flows through the marine planktonic food web: An analysis with a coupled
physical-biological model, Prog. Oceanogr., 120, 1–28,
2014b. a
Stock, C. A., John, J. G., Rykaczewski, R. R., Asch, R. G., Cheung, W. W. L.,
Dunne, J. P., Friedland, K. D., Lam, V. W. Y., Sarmiento, J. L., and Watsen,
R. A.: Reconciling fisheries catch and ocean productivity, P. Natl. Acad. Sci. USA, 114,
E1441–E1449, 2017. a
Turi, G., Lachkar, Z., and Gruber, N.: Spatiotemporal variability and drivers
of pCO2 and air–sea CO2 fluxes in the California Current System: an
eddy-resolving modeling study, Biogeosciences, 11, 671–690,
https://doi.org/10.5194/bg-11-671-2014, 2014. a
Turi, G., Lachkar, Z., Gruber, N., and Münnich, M.: Climatic
modulation
of recent trends in ocean acidification in the California Current System,
Environ. Res. Lett., 11, 014007, https://doi.org/10.1088/1748-9326/11/1/014007, 2016. a, b, c
Vaquer-Sunyer, R. and Duarte, C. M.: Thresholds of hypoxia for marine
biodiversity, P. Natl. Acad. Sci. USA, 105, 15452–15457, 2008. a
Wang, D., Gouhier, T. C., Menge, B. A., and Ganguly, A. R.: Intensification
and spatial homogenization of coastal upwelling under climate change,
Nature, 518, 390–394, 2015. a
Weiss, R. F.: The solubility of nitrogen, oxygen, and argon in water and
seawater, Deep Sea Research and Oceanographic Abstracts, 17, 721–735, 1970. a
Zhou, Z.-Q., Xie, S.-P., Zheng, X.-T., Liu, Q., and Wang, H.: Global
warming-induced changes in El Niño teleconnections over the North
Pacific and North America, J. Climate, 27, 9050–9064, 2014. a
Short summary
A high-resolution global model was used to study the influence of El Niño/La Niña events on the California Current System (CalCS). The mean surface oxygen (O2) response extends well offshore, where the pH response occurs within ~ 100 km of the coast. The surface O2 (pH) is primarily driven by temperature (upwelling) changes. Below 100 m, anomalously low O2 and low pH occurred during La Niña events near the coast, potentially stressing the ecosystem, but there are large variations between events.
A high-resolution global model was used to study the influence of El Niño/La Niña events on...