Articles | Volume 14, issue 3
https://doi.org/10.5194/os-14-515-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-14-515-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Electromagnetic characteristics of ENSO
Johannes Petereit
CORRESPONDING AUTHOR
GFZ German Research Centre
for Geosciences, Potsdam, Germany
Freie Universität Berlin, Institute of Meteorology, Berlin, Germany
Jan Saynisch
GFZ German Research Centre
for Geosciences, Potsdam, Germany
Christopher Irrgang
GFZ German Research Centre
for Geosciences, Potsdam, Germany
Tobias Weber
GFZ German Research Centre
for Geosciences, Potsdam, Germany
Maik Thomas
GFZ German Research Centre
for Geosciences, Potsdam, Germany
Freie Universität Berlin, Institute of Meteorology, Berlin, Germany
Related authors
No articles found.
Reyko Schachtschneider, Jan Saynisch-Wagner, Volker Klemann, Meike Bagge, and Maik Thomas
Nonlin. Processes Geophys., 29, 53–75, https://doi.org/10.5194/npg-29-53-2022, https://doi.org/10.5194/npg-29-53-2022, 2022
Short summary
Short summary
Glacial isostatic adjustment is the delayed reaction of the Earth's lithosphere and mantle to changing mass loads of ice sheets or water. The deformation behaviour of the Earth's surface depends on the ability of the Earth's mantle to flow, i.e. its viscosity. It can be estimated from sea level observations, and in our study, we estimate mantle viscosity using sea level observations from the past. This knowledge is essential for understanding current sea level changes due to melting ice.
Linsong Wang, Liangjing Zhang, Chao Chen, Maik Thomas, and Mikhail K. Kaban
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-142, https://doi.org/10.5194/tc-2018-142, 2018
Preprint withdrawn
Short summary
Short summary
The Greenland ice sheet (GrIS) variations estimated from GRACE gravity fields and SMB data have been investigated with respect to ice melting of Greenland and its contributions to sea level changes. Greenland contributes about 31 % of the total terrestrial water storage transferring to the sea level rise from 2003 to 2015. We also found that variations of the GrIS contribution to sea level have an opposite V shape during 2010–2012, while a clear global mean sea level drop also took place.
Jan Saynisch, Christopher Irrgang, and Maik Thomas
Ann. Geophys., 36, 1009–1014, https://doi.org/10.5194/angeo-36-1009-2018, https://doi.org/10.5194/angeo-36-1009-2018, 2018
Short summary
Short summary
By induction, ocean tides generate electromagnetic signals. Since the launch of magnetometer satellite missions, these signals are increasingly used to infer electromagnetic properties of the Earth. In many of these inversions, ocean tide models are used to estimate oceanic tidal electromagnetic signals which are generated via electromagnetic induction. This study's goal is to provide tide model errors for electromagnetic inversion studies.
Milena Latinović, Volker Klemann, Christopher Irrgang, Meike Bagge, Sebastian Specht, and Maik Thomas
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-50, https://doi.org/10.5194/cp-2018-50, 2018
Revised manuscript not accepted
Short summary
Short summary
By using geological samples we are trying to validate the models that are reconstructing the sea level in the past 20 000 years. We applied proposed statistical method using 4 types of shells that were found in the area of the Hudson Bay on 140 members of model ensemble. After the comparison of the the results with studies from this area, we concluded that the method is suitable for validation of model ensemble based sea-level change caused by land movement of the Earth due to ice-age burden.
Christopher Irrgang, Jan Saynisch-Wagner, and Maik Thomas
Ann. Geophys., 36, 167–180, https://doi.org/10.5194/angeo-36-167-2018, https://doi.org/10.5194/angeo-36-167-2018, 2018
Jorge Bernales, Irina Rogozhina, Ralf Greve, and Maik Thomas
The Cryosphere, 11, 247–265, https://doi.org/10.5194/tc-11-247-2017, https://doi.org/10.5194/tc-11-247-2017, 2017
Short summary
Short summary
This study offers a hard test to the models commonly used to simulate an ice sheet evolution over multimillenial timescales. Using an example of the Antarctic Ice Sheet, we evaluate the performance of such models against observations and highlight a strong impact of different approaches towards modeling rapidly flowing ice sectors. In particular, our results show that inferences of previous studies may need significant adjustments to be adopted by a different type of ice sheet models.
C. Irrgang, J. Saynisch, and M. Thomas
Ocean Sci., 12, 129–136, https://doi.org/10.5194/os-12-129-2016, https://doi.org/10.5194/os-12-129-2016, 2016
Short summary
Short summary
In this study, the influence of a spatio-temporally variable seawater conductivity on ocean-circulation-induced magnetic signals is investigated. To simulate the ocean-circulation-induced magnetic field, a combination of an ocean general circulation model (OMCT) and an electromagnetic induction model is used. It is found that a spatially varying seawater conductivity has a significant impact on the temporal variability of the induced magnetic field.
Related subject area
Approach: Numerical Models | Depth range: Thermocline | Geographical range: Deep Seas: Equatorial Ocean | Phenomena: Temperature, Salinity and Density Fields
High frequency fluctuations in the heat content of an ocean general circulation model
A. M. Huerta-Casas and D. J. Webb
Ocean Sci., 8, 813–825, https://doi.org/10.5194/os-8-813-2012, https://doi.org/10.5194/os-8-813-2012, 2012
Cited articles
Bamston, A. G., Chelliah, M., and Goldenberg, S. B.: Documentation of a highly
ENSO related SST region in the equatorial Pacific: Research note,
Atmos. Ocean, 35, 367–383, 1997. a
Cai, W., Borlace, S., Lengaigne, M., Van Rensch, P., Collins, M., Vecchi, G.,
Timmermann, A., Santoso, A., McPhaden, M. J., Wu, L., England, M. H., Wang, G., Guilyardi, E., and Jin, F.-F.: Increasing
frequency of extreme El Niño events due to greenhouse warming, Nat.
Clim. Change, 4, 111–116, 2014. a
Chave, A. D. and Luther, D. S.: Low-frequency, motionally induced
electromagnetic fields in the ocean: 1. Theory, J. Geophys.
Res.-Oceans, 95, 7185–7200, 1990. a
Egbert, G. D. and Erofeeva, S. Y.: Efficient inverse modeling of barotropic
ocean tides, J. Atmos. Ocean. Tech., 19, 183–204,
2002. a
Egbert, G. D., Bennett, A. F., and Foreman, M. G.: TOPEX/POSEIDON tides
estimated using a global inverse model, J. Geophys. Res.-Oceans, 99, 24821–24852, 1994. a
Everett, M. E., Constable, S., and Constable, C. G.: Effects of near-surface
conductance on global satellite induction responses, Geophys. J.
Int., 153, 277–286, 2003. a
Gillet, N., Lesur, V., and Olsen, N.: Geomagnetic Core Field Secular Variation
Models, Space Sci. Rev., 155, 129–145, 2010. a
Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J.,
Böttinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak, K.,
Gayler, V., Haak, H., Hollweg, H.-D., Ilyina, T., Kinne, S., Kornblueh, L.,
Matei, D., Mauritsen, T., Mikolajewicz, U., Mueller, W., Notz, D., Pithan,
F., Raddatz, T., Rast, S., Redler, R., Roeckner, E., Schmidt, H., Schnur, R.,
Segschneider, J., Six, K. D., Stockhause, M., Timmreck, C., Wegner, J.,
Widmann, H., Wieners, K.-H., Claussen, M., Marotzke, J., and Stevens, B.:
Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for
the Coupled Model Intercomparison Project phase 5, J. Adv. Model. Earth. Sy., 5, 572–597, 2013. a
Glynn, P. and De Weerdt, W.: Elimination of two reef-building hydrocorals
following the 1982–83 El Niño warming event, Science, 253,
69–71, 1991. a
Grayver, A. V., Schnepf, N. R., Kuvshinov, A. V., Sabaka, T. J., Manoj, C., and
Olsen, N.: Satellite tidal magnetic signals constrain oceanic
lithosphere-asthenosphere boundary, Science Advances, 2, e1600798, https://doi.org/10.1126/sciadv.1600798, 2016. a
Hanley, D. E., Bourassa, M. A., O'Brien, J. J., Smith, S. R., and Spade, E. R.:
A quantitative evaluation of ENSO indices, J. Climate, 16,
1249–1258, 2003. a
IOC, SCOR, and APSO: The International thermodynamic equation of
seawater–2010: Calculation and use of thermodynamic properties,
Intergovernmental Oceanographic Commission, UNESCO, 196 pp., 2010. a
Irrgang, C., Saynisch, J., and Thomas, M.: Impact of variable seawater
conductivity on motional induction simulated with an ocean general
circulation model, Ocean Sci., 12, 129–136, https://doi.org/10.5194/os-12-129-2016,
2016a. a, b
Irrgang, C., Saynisch, J., and Thomas, M.: Ensemble simulations of the magnetic
field induced by global ocean circulation: Estimating the uncertainty,
J. Geophys. Res.-Oceans, 121, 1866–1880, 2016b. a
Irrgang, C., Saynisch, J., and Thomas, M.: Utilizing oceanic electromagnetic
induction to constrain an ocean general circulation model: A data
assimilation twin experiment, J. Adv. Model. Earth Sy.,
9, 1703–1720, 2017. a
Irrgang, C., Saynisch-Wagner, J., and Thomas, M.: Depth of origin of
ocean-circulation-induced magnetic signals, Ann. Geophys., 36, 167–180,
https://doi.org/10.5194/angeo-36-167-2018, 2018. a
Jager, T., Léger, J.-M., Bertrand, F., Fratter, I., and Lalaurie, J.: SWARM
Absolute Scalar Magnetometer accuracy: analyses and measurement results, IEEE Sensors, 2392–2395, https://doi.org/10.1109/ICSENS.2010.5690960, 2010. a
Ji, M., Reynolds, R. W., and Behringer, D. W.: Use of TOPEX/Poseidon Sea Level
Data for Ocean Analyses and ENSO Prediction: Some Early Results, J.
Climate, 13, 216–231, 2000. a
Jungclaus, J. H., Fischer, N., Haak, H., Lohmann, K., Marotzke, J., Matei, D.,
Mikolajewicz, U., Notz, D., and von Storch, J. S.: Characteristics of the
ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean
component of the MPI-Earth system model, J. Adv. Model.
Earth Sy., 5, 422–446, 2013. a
Kominis, I. K., Kornack, T. W., Allred, J. C., and Romalis, M. V.: A
subfemtotesla multichannel atomic magnetometer, Nature, 422, 596–599, https://doi.org/10.1038/nature01484, 2003. a
Kuvshinov, A. V.: 3-D Global Induction in the Oceans and Solid Earth:
Recent Progress in Modeling Magnetic and Electric Fields from Sources of
Magnetospheric, Ionospheric and Oceanic Origin, Surv. Geophysics, 29,
139–186, 2008. a
Laske, G. and Masters, G.: A Global Digital Map of Sediment Thickness, EOS
Trans. AGU, 78, F483, available at:
https://igppweb.ucsd.edu/~gabi/sediment.html (last access: 18 June
2018), 1997. a
Maus, S. and Kuvshinov, A.: Ocean tidal signals in observatory and satellite
magnetic measurements, Geophys. Res. Lett., 31, https://doi.org/10.1029/2004GL020090, 2004. a, b
McPhaden, M. J.: Genesis and Evolution of the 1997–98 El Niño, Science,
283, 950–954, 1999. a
Meinen, C. S. and McPhaden, M. J.: Observations of warm water volume changes in
the equatorial Pacific and their relationship to El Niño and La
Niña, J. Climate, 13, 3551–3559, 2000. a
Minami, T.: Motional Induction by Tsunamis and Ocean Tides: 10 Years of
Progress, Surv. Geophys., 38, 1097–1132, 2017. a
Null, J.: El Niño and La Niña years and intensities, available at:
http://ggweather.com/enso/oni.htm (last access: 18 June 2018), 2017. a
Pankratov, O. V., Avdeyev, D. B., and Kuvshinov, A. V.: Electromagnetic field
scattering in a heterogeneous earth: A solution to the forward problem, Physics of the Solid
Earth, 31, 201–209, 1995. a
Philander, S.: Meteorology: Anomalous El Niño of 1982–83, Nature,
305, 16–16, 1983. a
Picaut, J., Ioualalen, M., Menkes, C., Delcroix, T., and McPhaden, M. J.:
Mechanism of the Zonal Displacements of the Pacific Warm Pool:
Implications for ENSO, Science, 274, 1486–1489, 1996. a
Picaut, J., Hackert, E., Busalacchi, A. J., Murtugudde, R., and Lagerloef, G.
S. E.: Mechanisms of the 1997–1998 El Niño-La Niña, as inferred
from space-based observations, J. Geophys. Res.-Oceans, 107,
5-1–5-18, 2002. a
Püthe, C., Kuvshinov, A., Khan, A., and Olsen, N.: A new model of Earth's
radial conductivity structure derived from over 10 yr of satellite and
observatory magnetic data, Geophys. J. Int., 203, 1864, https://doi.org/10.1093/gji/ggv407,
2015. a
Saynisch, J., Irrgang, C., and Thomas, M.: On the Use of Satellite Altimetry to
Detect Ocean Circulation's Magnetic Signals, J. Geophys. Res.-Oceans, 123, 2305–2314, https://doi.org/10.1002/2017JC013742, 2018. a
Schmelz, M., Stolz, R., Zakosarenko, V., Schönau, T., Anders, S., Fritzsch,
L., Mück, M., and Meyer, H.: Field-stable SQUID magnetometer with sub-fT
Hz- 1/2 resolution based on sub-micrometer cross-type Josephson tunnel
junctions, Supercond. Sci. Tech., 24, 065009, https://doi.org/10.1016/j.physc.2012.06.005, 2011. a
Schönau, T., Schmelz, M., Zakosarenko, V., Stolz, R., Meyer, M., Anders,
S., Fritzsch, L., and Meyer, H. G.: SQUID-based setup for the absolute
measurement of the Earth's magnetic field, Supercond. Sci.
Tech., 26, 035013, https://doi.org/10.1088/0953-2048/26/3/035013, 2013. a
Singer, B. S. and Fainberg, E.: Generalization of the iterative dissipative
method for modeling electromagnetic fields in nonuniform media with
displacement currents, J. Appl. Geophys., 34, 41–46, 1995. a
Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S.,
Salzmann, M., Schmidt, H., Bader, J., Block, K., Brokopf, R., Fast, I.,
Kinne, S., Kornblueh, L., Lohmann, U., Pincus, R., Reichler, T., and
Roeckner, E.: Atmospheric component of the MPI-M Earth System Model: ECHAM6,
J. Adv. Model. Earth Sy., 5, 146–172, 2013. a
Thébault, E., Finlay, C. C., Beggan, C. D., Alken, P., Aubert, J., Barrois,
O., Bertrand, F., Bondar, T., Boness, A., Brocco, L., Canet, E., Chambodut,
A., Chulliat, A., Coïsson, P., Civet, F., Du, A., Fournier, A., Fratter,
I., Gillet, N., Hamilton, B., Hamoudi, M., Hulot, G., Jager, T., Korte, M.,
Kuang, W., Lalanne, X., Langlais, B., Léger, J.-M., Lesur, V., Lowes,
F. J., Macmillan, S., Mandea, M., Manoj, C., Maus, S., Olsen, N., Petrov, V.,
Ridley, V., Rother, M., Sabaka, T. J., Saturnino, D., Schachtschneider, R.,
Sirol, O., Tangborn, A., Thomson, A., Tøffner-Clausen, L., Vigneron, P.,
Wardinski, I., and Zvereva, T.: International Geomagnetic Reference Field:
the 12th generation, Earth Planets Space, 67, 79, https://doi.org/10.1186/s40623-015-0228-9, 2015. a
Tyler, R. H. and Mysak, L. A.: Motionally-induced electromagnetic fields
generated by idealized ocean currents, Geophys. Astro. Fluid, 80, 167–204, 1995. a
Vincent, E. M., Lengaigne, M., Menkes, C. E., Jourdain, N. C., Marchesiello,
P., and Madec, G.: Interannual variability of the South Pacific Convergence
Zone and implications for tropical cyclone genesis, Clim. Dynam., 36,
1881–1896, 2011. a
Wang, C. and Picaut, J.: Understanding Enso Physics-A Review,
American Geophysical Union, 21–48 2013. a
Wilhite, D. A., Wood, D., and Meyer, S.: Climate-related impacts in the
United States during the 1982–83 El Niño,
National Center for Atmospheric Research, 75–78, 1987. a
Short summary
The study finds that changes in seawater temperature due to El Niño and La Niña, anomalous warm and cold events, are in principle detectable by means of the oceanic tidally induced magnetic field. Furthermore, subsurface processes in the onset of those anomalous events lead the surface processes by several months. This causes a lead in the oceanic tidally induced magnetic field signals over sea-surface temperature signals.
The study finds that changes in seawater temperature due to El Niño and La Niña, anomalous warm...