Articles | Volume 14, issue 6
Ocean Sci., 14, 1435–1447, 2018
https://doi.org/10.5194/os-14-1435-2018
Ocean Sci., 14, 1435–1447, 2018
https://doi.org/10.5194/os-14-1435-2018
Research article
20 Nov 2018
Research article | 20 Nov 2018

Better Baltic Sea wave forecasts: improving resolution or introducing ensembles?

Torben Schmith et al.

Related authors

The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6
Ralf Döscher, Mario Acosta, Andrea Alessandri, Peter Anthoni, Thomas Arsouze, Tommi Bergman, Raffaele Bernardello, Souhail Boussetta, Louis-Philippe Caron, Glenn Carver, Miguel Castrillo, Franco Catalano, Ivana Cvijanovic, Paolo Davini, Evelien Dekker, Francisco J. Doblas-Reyes, David Docquier, Pablo Echevarria, Uwe Fladrich, Ramon Fuentes-Franco, Matthias Gröger, Jost v. Hardenberg, Jenny Hieronymus, M. Pasha Karami, Jukka-Pekka Keskinen, Torben Koenigk, Risto Makkonen, François Massonnet, Martin Ménégoz, Paul A. Miller, Eduardo Moreno-Chamarro, Lars Nieradzik, Twan van Noije, Paul Nolan, Declan O'Donnell, Pirkka Ollinaho, Gijs van den Oord, Pablo Ortega, Oriol Tintó Prims, Arthur Ramos, Thomas Reerink, Clement Rousset, Yohan Ruprich-Robert, Philippe Le Sager, Torben Schmith, Roland Schrödner, Federico Serva, Valentina Sicardi, Marianne Sloth Madsen, Benjamin Smith, Tian Tian, Etienne Tourigny, Petteri Uotila, Martin Vancoppenolle, Shiyu Wang, David Wårlind, Ulrika Willén, Klaus Wyser, Shuting Yang, Xavier Yepes-Arbós, and Qiong Zhang
Geosci. Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-2973-2022,https://doi.org/10.5194/gmd-15-2973-2022, 2022
Short summary
Identifying robust bias adjustment methods for European extreme precipitation in a multi-model pseudo-reality setting
Torben Schmith, Peter Thejll, Peter Berg, Fredrik Boberg, Ole Bøssing Christensen, Bo Christiansen, Jens Hesselbjerg Christensen, Marianne Sloth Madsen, and Christian Steger
Hydrol. Earth Syst. Sci., 25, 273–290, https://doi.org/10.5194/hess-25-273-2021,https://doi.org/10.5194/hess-25-273-2021, 2021
Short summary
Does the AO index have predictive power regarding extreme cold temperatures in Europe?
Tamás Bódai and Torben Schmith
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-117,https://doi.org/10.5194/nhess-2020-117, 2020
Manuscript not accepted for further review
Short summary

Cited articles

Alari, V., Staneva, J., Breivik, Ø., Bidlot, J.-R., Mogensen, K., and Janssen, P.: Surface wave effects on water temperature in the Baltic Sea: simulations with the coupled NEMO-WAM model, Ocean Dyn., 66, 917–930, 2016. 
Alves, J.-H. G., Wittmann, P., Sestak, M., Schauer, J., Stripling, S., Bernier, N. B., McLean, J., Chao, Y., Chawla, A., Tolman, H., Nelson, G., and Klotz, S.: The NCEP–FNMOC combined wave ensemble product: Expanding benefits of interagency probabilistic forecasts to the oceanic environment, B. Am. Meteorol. Soc., 94, 1893–1905, 2013. 
Amante, C. and Eakins, B. W.: ETOPO1 1 arc-minute global relief model: procedures, data, sources and analysis, National Geophysical Data Center, Marine Geology and Geophysics Division, Boulder, Colorado, 2009. 
Battjes, J. A. and Janssen, J. P. F. M.: Energy Loss and Set-Up Due to Breaking of Random Waves, Proceedings of 16th Conference on Coastal Engineering, Hamburg, Germany, 1978. 
Behrens, A.: Development of an ensemble prediction system for ocean surface waves in a coastal area, Ocean Dyn., 65, 469–486, https://doi.org/10.1007/s10236-015-0825-y, 2015. 
Download
Short summary
Using the Baltic Sea as an example, the benefit of increased wave model resolution as opposed to ensemble forecasting is examined, on the premise that the extra computational effort tends to be of the same order of magnitude in both cases. For offshore waters, an ensemble mean is shown to outperform high-resolution modeling. However, for nearshore or shallow waters, where fine-scale depth or coastal features gain importance, this is not necessarily found to be the case.