Articles | Volume 14, issue 6
https://doi.org/10.5194/os-14-1385-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-14-1385-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A 3-year time series of volatile organic iodocarbons in Bedford Basin, Nova Scotia: a northwestern Atlantic fjord
Qiang Shi
CORRESPONDING AUTHOR
Department of Oceanography, Dalhousie University, Halifax, Canada
Douglas Wallace
Department of Oceanography, Dalhousie University, Halifax, Canada
Related authors
Steffen Fuhlbrügge, Birgit Quack, Susann Tegtmeier, Elliot Atlas, Helmke Hepach, Qiang Shi, Stefan Raimund, and Kirstin Krüger
Atmos. Chem. Phys., 16, 7569–7585, https://doi.org/10.5194/acp-16-7569-2016, https://doi.org/10.5194/acp-16-7569-2016, 2016
Short summary
Short summary
This study presents a novel estimate for the contribution of oceanic VSLS emissions to the atmospheric boundary layer and free troposphere during the SHIVA-Sonne cruise in the South China and Sulu seas in 2011. While oceanic emissions of CHBr3 and CH3I showed a significant contribution to their atmospheric abundances, atmospheric CH2Br2 appeared to be largely advected. Convective activity in the region can furthermore lead to low VSLS boundary layer mixing ratios despite high oceanic emissions.
Alizée Dale, Marion Gehlen, Douglas W. R. Wallace, Germain Bénard, Christian Éthé, and Elena Alekseenko
EGUsphere, https://doi.org/10.5194/egusphere-2023-2538, https://doi.org/10.5194/egusphere-2023-2538, 2023
Preprint archived
Short summary
Short summary
Diatom, which is at the base of a productive food chain that supports valuable fisheries, dominates the total primary production of the Labrador Sea (LS). The synthesis of biogenic silica frustules makes them peculiar among phytoplankton but also dependent on dissolved silicate (DSi). Regular oceanographic surveys show declining DSi concentrations since the mid-1990s. With a model-based approach, we show that weakening deep winter convection was the proximate cause of DSi decline in the LS.
Mathilde Jutras, Alfonso Mucci, Gwenaëlle Chaillou, William A. Nesbitt, and Douglas W. R. Wallace
Biogeosciences, 20, 839–849, https://doi.org/10.5194/bg-20-839-2023, https://doi.org/10.5194/bg-20-839-2023, 2023
Short summary
Short summary
The deep waters of the lower St Lawrence Estuary and gulf have, in the last decades, experienced a strong decline in their oxygen concentration. Below 65 µmol L-1, the waters are said to be hypoxic, with dire consequences for marine life. We show that the extent of the hypoxic zone shows a seven-fold increase in the last 20 years, reaching 9400 km2 in 2021. After a stable period at ~ 65 µmol L⁻¹ from 1984 to 2019, the oxygen level also suddenly decreased to ~ 35 µmol L-1 in 2020.
Jannes Koelling, Dariia Atamanchuk, Johannes Karstensen, Patricia Handmann, and Douglas W. R. Wallace
Biogeosciences, 19, 437–454, https://doi.org/10.5194/bg-19-437-2022, https://doi.org/10.5194/bg-19-437-2022, 2022
Short summary
Short summary
In this study, we investigate oxygen variability in the deep western boundary current in the Labrador Sea from multiyear moored records. We estimate that about half of the oxygen taken up in the interior Labrador Sea by air–sea gas exchange during deep water formation is exported southward the same year. Our results underline the complexity of the oxygen uptake and export in the Labrador Sea and highlight the important role this region plays in supplying oxygen to the deep ocean.
Krysten Rutherford, Katja Fennel, Dariia Atamanchuk, Douglas Wallace, and Helmuth Thomas
Biogeosciences, 18, 6271–6286, https://doi.org/10.5194/bg-18-6271-2021, https://doi.org/10.5194/bg-18-6271-2021, 2021
Short summary
Short summary
Using a regional model of the northwestern North Atlantic shelves in combination with a surface water time series and repeat transect observations, we investigate surface CO2 variability on the Scotian Shelf. The study highlights a strong seasonal cycle in shelf-wide pCO2 and spatial variability throughout the summer months driven by physical events. The simulated net flux of CO2 on the Scotian Shelf is out of the ocean, deviating from the global air–sea CO2 flux trend in continental shelves.
Nicolai von Oppeln-Bronikowski, Brad de Young, Dariia Atamanchuk, and Douglas Wallace
Ocean Sci., 17, 1–16, https://doi.org/10.5194/os-17-1-2021, https://doi.org/10.5194/os-17-1-2021, 2021
Short summary
Short summary
This paper describes challenges around the direct measurement of CO2 in the ocean using ocean gliders. We discuss our method of using multiple sensor platforms as test beds to carry out observing experiments and highlight the implications of our study for future glider missions. We also show high-resolution measurements and discuss challenges and lessons learned in the context of future ocean gas measurements.
Triona McGrath, Margot Cronin, Elizabeth Kerrigan, Douglas Wallace, Clynton Gregory, Claire Normandeau, and Evin McGovern
Earth Syst. Sci. Data, 11, 355–374, https://doi.org/10.5194/essd-11-355-2019, https://doi.org/10.5194/essd-11-355-2019, 2019
Short summary
Short summary
We report results from an intercomparison exercise on the analysis of nutrients at sea. Two independent teams (Marine Institute, Ireland and Dalhousie University Canada) carried out an analysis of a GO-SHIP hydrographic section. The cruise provided a unique opportunity to assess the likely comparability of nutrient data collected following GO-SHIP protocols. Datasets were high quality and compared well but highlighted a number of issues relevant to the comparability of global nutrient data.
Steffen Fuhlbrügge, Birgit Quack, Susann Tegtmeier, Elliot Atlas, Helmke Hepach, Qiang Shi, Stefan Raimund, and Kirstin Krüger
Atmos. Chem. Phys., 16, 7569–7585, https://doi.org/10.5194/acp-16-7569-2016, https://doi.org/10.5194/acp-16-7569-2016, 2016
Short summary
Short summary
This study presents a novel estimate for the contribution of oceanic VSLS emissions to the atmospheric boundary layer and free troposphere during the SHIVA-Sonne cruise in the South China and Sulu seas in 2011. While oceanic emissions of CHBr3 and CH3I showed a significant contribution to their atmospheric abundances, atmospheric CH2Br2 appeared to be largely advected. Convective activity in the region can furthermore lead to low VSLS boundary layer mixing ratios despite high oceanic emissions.
Related subject area
Approach: In situ Observations | Depth range: Surface | Geographical range: Shelf Seas | Phenomena: Air-Sea Fluxes
pCO2 variability in the surface waters of the eastern Gulf of Cádiz (SW Iberian Peninsula)
The spatial and interannual dynamics of the surface water carbonate system and air–sea CO2 fluxes in the outer shelf and slope of the Eurasian Arctic Ocean
Spatiotemporal variations of fCO2 in the North Sea
Dolores Jiménez-López, Ana Sierra, Teodora Ortega, Soledad Garrido, Nerea Hernández-Puyuelo, Ricardo Sánchez-Leal, and Jesús Forja
Ocean Sci., 15, 1225–1245, https://doi.org/10.5194/os-15-1225-2019, https://doi.org/10.5194/os-15-1225-2019, 2019
Short summary
Short summary
The present study describes the surface distribution of the partial pressure of CO2 in the continental shelf of the eastern Gulf of Cádiz. For this, eight oceanographic cruises were carried out between March 2014 and February 2016. This distribution presents a linear dependence with the temperature and it decreases with distance from the coast. The Gulf of Cádiz shows a mean rate of −0.18 ± 1.32 mmol m-2 d-1, with an annual uptake capacity of CO2 of 4.1 Gg C year-1.
Irina I. Pipko, Svetlana P. Pugach, Igor P. Semiletov, Leif G. Anderson, Natalia E. Shakhova, Örjan Gustafsson, Irina A. Repina, Eduard A. Spivak, Alexander N. Charkin, Anatoly N. Salyuk, Kseniia P. Shcherbakova, Elena V. Panova, and Oleg V. Dudarev
Ocean Sci., 13, 997–1016, https://doi.org/10.5194/os-13-997-2017, https://doi.org/10.5194/os-13-997-2017, 2017
Short summary
Short summary
The study of the outer shelf and the continental slope waters of the Eurasian Arctic seas has revealed a general trend in the surface pCO2 distribution, which manifested as an increase in pCO2 values eastward. It has been shown that the influence of terrestrial discharge on the carbonate system of East Siberian Arctic sea surface waters is not limited to the shallow shelf and that contemporary climate change impacts the carbon cycle of the Eurasian Arctic Ocean and influences air–sea CO2 flux.
A. M. Omar, A. Olsen, T. Johannessen, M. Hoppema, H. Thomas, and A. V. Borges
Ocean Sci., 6, 77–89, https://doi.org/10.5194/os-6-77-2010, https://doi.org/10.5194/os-6-77-2010, 2010
Cited articles
Amachi, S., Kamagata, Y., Kanagawa, T., and Muramatsu, Y.: Bacteria mediate
methylation of iodine in marine and terrestrial environments, Appl. Environ.
Microbiol., 67, 2718–2722, 2001.
Archer, S. D., Goldson, L. E., Liddicoat, M. I., Cummings, D. G., and Nightingale,
P. D.: Marked seasonality in the concentrations and sea-to-air flux of volatile
iodocarbon compounds in the western English Channel, J. Geophys. Res.-Oceans,
112, C08009, https://doi.org/10.1029/2006JC003963, 2007.
Bluhm, K., Croot, P. L., Huhn, O., Rohardt, G., and Lochte, K.: Distribution
of iodide and iodate in the Atlantic sector of the southern ocean during austral
summer, Deep-Sea Res. Pt. II, 58, 2733–2748, 2011.
Brownell, D. K., Moore, R. M., and Cullen, J. J.: Production of methyl halides
by Prochlorococcus and Synechococcus, Global Biogeochem. Cy., 24, GB2002,
https://doi.org/10.1029/2009GB003671, 2010.
Buckley, D. E. and Winters, G. V: Geochemical characteristics of contaminated
surficial sediments in Halifax Harbour: impact of waste discharge, Can. J.
Earth Sci., 29, 2617–2639, 1992.
Burt, W. J., Thomas, H., Fennel, K., and Horne, E.: Sediment-water column fluxes
of carbon, oxygen and nutrients in Bedford Basin, Nova Scotia, inferred from
224Ra measurements, Biogeosciences, 10, 53–66, https://doi.org/10.5194/bg-10-53-2013, 2013.
Carpenter, L. J.: Iodine in the marine boundary layer, Chem. Rev., 103, 4953–4962, 2003.
Carpenter, L. J., Malin, G., and Liss, P. S.: Novel biogenic iodine-containing
trihalomethanes and other, Global Biogeochem. Cy., 14, 1191–1204, 2000.
Carpenter, L. J., MacDonald, S. M., Shaw, M. D., Kumar, R., Saunders, R. W.,
Parthipan, R., Wilson, J., and Plane, J. M. C.: Atmospheric iodine levels
influenced by sea surface emissions of inorganic iodine, Nat. Geosci., 6, 108–111, 2013.
Carpenter, L. J., Reimann, S., Burkholder, J. B., Clerbaux, C., Hall, B. D.,
Hossaini, R., Laube, J. C., Yvon-Lewis, S. A., Engel, A., and Montzka, S. A.:
Update on ozone-depleting substances (ODSs) and other gases of interest to the
Montreal protocol, in Scientific assessment of ozone depletion: 2014, World
Meteorological Organization, Geneva, 1.1–1.101, 2014.
Davis, D., Crawford, J., Liu, S., McKeen, S., Bandy, A., Thornton, D., Rowland,
F., and Blake, D.: Potential impact of iodine on tropospheric levels of ozone
and other critical oxidants, J. Geophys. Res.-Atmos., 101, 2135–2147, 1996.
Duce, R. A., Liss, P. S., Merrill, J. T., Atlas, E. L., Buat-Menard, P., Hicks,
B. B., Miller, J. M., Prospero, J. M., Arimoto, R., Church, T. M., Ellis, W.,
Galloway, J. N., Hansen, L., Jickells, T. D., Knap, A. H., Reinhardt, K. H.,
Schneider, B., Soudine, A., Tokos, J. J., Tsunogai, S., Wollast, R., and Zhou,
M.: The atmospheric input of trace species to the world ocean, Global Biogeochem.
Cy., 5, 193–259, https://doi.org/10.1029/91GB01778, 1991.
Elliott, S. and Rowland, F. S.: Nucleophilic substitution rates and solubilities
for methyl halides in seawater, Geophys. Res. Lett., 20, 1043–1046, 1993.
Fuse, H., Inoue, H., Murakami, K., Takimura, O., and Yamaoka, Y.: Production
of free and organic iodine by Roseovarius spp., FEMS Microbiol. Lett., 229,
189–194, https://doi.org/10.1016/S0378-1097(03)00839-5, 2003.
Garland, J. A., Elzerman, A. W., and Penkett, S. A.: The mechanism for dry
deposition of ozone to seawater surfaces, J. Geophys. Res.-Oceans, 85, 7488–7492, 1980.
Giese, B., Laturnus, F., Adams, F. C., and Wiencke, C.: Release of Volatile
Iodinated C1–C4 Hydrocarbons by Marine Macroalgae from Various Climate Zones,
Environ. Sci. Technol., 33, 2432–2439, 1999.
Groszko, W. M.: An estimate of the global air-sea flux of methyl chloride,
methyl bromide, and methyl iodide, PhD Thesis, Dalhousie University, Dalhousie, 1999.
Hepach, H., Quack, B., Tegtmeier, S., Engel, A., Bracher, A., Fuhlbrügge,
S., Galgani, L., Atlas, E. L., Lampel, J., Frieß, U., and Krüger, K.:
Biogenic halocarbons from the Peruvian upwelling region as tropospheric halogen
source, Atmos. Chem. Phys., 16, 12219–12237, https://doi.org/10.5194/acp-16-12219-2016, 2016.
Hill, V. L. and Manley, S. L.: Release of reactive bromine and iodine from
diatoms and its possible role in halogen transfer in polar and tropical oceans,
Limnol. Oceanogr., 54, 812–822, https://doi.org/10.4319/lo.2009.54.3.0812, 2009.
Hughes, C., Malin, G., Turley, C. M., Keely, B. J., and Nightingale, P. D.:
The production of volatile iodocarbons by biogenic marine aggregates, Limnol.
Oceanogr., 53, 867–872, 2008.
Hughes, C., Franklin, D. J., and Malin, G.: Iodomethane production by two
important marine cyanobacteria: Prochlorococcus marinus (CCMP 2389) and
Synechococcus sp. (CCMP 2370), Mar. Chem., 125, 19–25, 2011.
Jones, C. E. and Carpenter, L. J.: Solar photolysis of CH2I2,
CH2ICl, and CH2IBr in water, saltwater, and seawater,
Environ. Sci. Technol., 39, 6130–6137, 2005.
Jones, C. E. and Carpenter, L. J.: Chemical destruction of CH3I,
C2H5I, 1-C3H7I, and 2-C3H7I in saltwater,
Geophys. Res. Lett., 34, 1–6, https://doi.org/10.1029/2007GL029775, 2007.
Jones, C. E., Hornsby, K. E., Dunk, R. M., Leigh, R. J., and Carpenter, L. J.:
Coastal measurements of short-lived reactive iodocarbons and bromocarbons at
Roscoff, Brittany during the RHaMBLe campaign, Atmos. Chem. Phys., 9, 8757–8769,
https://doi.org/10.5194/acp-9-8757-2009, 2009.
Jones, C. E., Hornsby, K. E., Sommariva, R., Dunk, R. M., Von Glasow, R.,
McFiggans, G., and Carpenter, L. J.: Quantifying the contribution of marine
organic gases to atmospheric iodine, Geophys. Res. Lett., 37, L18804, https://doi.org/10.1029/2010GL043990, 2010.
Kerrigan, E. A., Kienast, M., Thomas, H., and Wallace, D. W. R.: Using oxygen
isotopes to establish freshwater sources in Bedford Basin, Nova Scotia, a
Northwestern Atlantic fjord, Estuarine, Coast. Shelf Sci., 199, 96–104, 2017.
Klick, S.: Seasonal variations of biogenic and anthropogenic halocarbons in
seawater from a coastal site, Limnol. Oceanogr., 37, 1579–1585, 1992.
Kurihara, M. K., Kimura, M., Iwamoto, Y., Narita, Y., Ooki, A., Eum, Y. J.,
Tsuda, A., Suzuki, K., Tani, Y., Yokouchi, Y., Uematsu, M., and Hashimoto, S.:
Distributions of short-lived iodocarbons and biogenic trace gases in the open
ocean and atmosphere in the western North Pacific, Mar. Chem., 118, 156–170,
https://doi.org/10.1016/j.marchem.2009.12.001, 2010.
Li, B.: Changes in Planktonic Microbiota, in Preserving the enviroment of
Halifax Harbour, edited by: Willianm, L. K. W., Turner, G., and Ducharme, A.,
Fisheries and Oceans Canada, Halifax, 105–121, 2001.
Li, W. K. W.: Annual average abundance of heterotrophic bacteria and
Synechococcus in surface ocean waters, Limnol. Oceanogr., 43, 1746–1753, 1998.
Liss, P. S. and Slater, P. G.: Flux of Gases across the Air-Sea Interface,
Nature, 247, 181–184, https://doi.org/10.1038/247181a0, 1974.
Mahajan, A. S., Plane, J. M. C., Oetjen, H., Mendes, L., Saunders, R. W.,
Saiz-Lopez, A., Jones, C. E., Carpenter, L. J., and McFiggans, G. B.: Measurement
and modelling of tropospheric reactive halogen species over the tropical
Atlantic Ocean, Atmos. Chem. Phys., 10, 4611–4624, https://doi.org/10.5194/acp-10-4611-2010, 2010.
Mahajan, A. S., Gómez Martín, J. C., Hay, T. D., Royer, S.-J.,
Yvon-Lewis, S., Liu, Y., Hu, L., Prados-Roman, C., Ordóñez, C., Plane,
J. M. C., and Saiz-Lopez, A.: Latitudinal distribution of reactive iodine in
the Eastern Pacific and its link to open ocean sources, Atmos. Chem. Phys.,
12, 11609–11617, https://doi.org/10.5194/acp-12-11609-2012, 2012.
Manley, S. L. and de la Cuesta, J. L.: Methyl iodide production from marine
phytoplankton cultures, Limnol. Oceanogr., 42, 142–147, 1997.
Martino, M., Liss, P. S., and Plane, J. M. C.: The Photolysis of Dihalomethanes
in Surface Seawater, Environ. Sci. Technol., 39, 7097–7101, https://doi.org/10.1021/es048718s, 2005.
Martino, M., Liss, P. S., and Plane, J.: Wavelength-dependence of the photolysis
of diiodomethane in seawater, Geophys. Res. Lett., 33, L06606, https://doi.org/10.1029/2005GL025424, 2006.
Martino, M., Mills, G. P., Woeltjen, J., and Liss, P. S.: A new source of
volatile organoiodine compounds in surface seawater, Geophys. Res. Lett., 36,
L01609, https://doi.org/10.1029/2008GL036334, 2009.
McFiggans, G., Plane, J., Allan, B. J., Carpenter, L. J., Coe, H., and O'Dowd,
C.: A modeling study of iodine chemistry in the marine boundary layer, J.
Geophys. Res.-Atmos., 105, 14371–14385, 2000.
McFiggans, G., Coe, H., Burgess, R., Allan, J., Cubison, M., Alfarra, M. R.,
Saunders, R., Saiz-Lopez, A., Plane, J. M. C., Wevill, D., Carpenter, L.,
Rickard, A. R., and Monks, P. S.: Direct evidence for coastal iodine particles
from Laminaria macroalgae – linkage to emissions of molecular iodine, Atmos.
Chem. Phys., 4, 701–713, https://doi.org/10.5194/acp-4-701-2004, 2004.
Moore, R. M. and Tokarczyk, R.: Volatile biogenic halocarbons in the northwest
Atlantic, Global Biogeochem. Cy., 7, 195–210, 1993.
Moore, R. M. and Zafiriou, O. C.: Photochemical production of methyl iodide in
seawater, J. Geophys. Res.-Atmos., 99, 16415–16420, 1994.
Moore, R. M., Geen, C. E., and Tait, V. K.: Determination of Henry's law
constants for a suite of naturally occurring halogenated methanes in seawater,
Chemosphere, 30, 1183–1191, 1995.
Mössinger, J. C., Shallcross, D. E., and Cox, R. A.: UV–VIS absorption
cross-sections and atmospheric lifetimes of CH2Br2, CH2I2
and CH2BrI, J. Chem. Soc. Faraday Trans., 94, 1391–1396, 1998.
Nightingale, P. D., Malin, G., Law, C. S., Watson, A. J., Liss, P. S., Liddicoat,
M. I., Boutin, J., and Upstill-Goddard, R. C.: In situ evaluation of air–sea
gas exchange parameterizations using novel conservative and volatile tracers,
Global Biogeochem. Cy., 14, 373–387, 2000.
O'Dowd, C. D., Jimenez, J. L., Bahreini, R., Flagan, R. C., Seinfeld, J. H.,
Hameri, K., Pirjola, L., Kulmala, M., Jennings, S. G., and Hoffmann, T.: Marine
aerosol formation from biogenic iodine emissions, Nature, 417, 632–636,
https://doi.org/10.1038/nature00775, 2002.
Orlikowska, A. and Schulz-Bull, D. E.: Seasonal variations of volatile organic
compounds in the coastal Baltic Sea, Environ. Chem., 6, 495–507, https://doi.org/10.1071/EN09107, 2009.
Orlikowska, A., Stolle, C., Pollehne, F., Jürgens, K., and Schulz-Bull, D.
E.: Dynamics of halocarbons in coastal surface waters during short term mesocosm
experiments, Environ. Chem., 12, 515–525, https://doi.org/10.1071/EN14204, 2015.
Rasmussen, R. A., Khalil, M. A. K., Gunawardena, R., and Hoyt, S. D.: Atmospheric
methyl iodide (CH3I), J. Geophys. Res.-Oceans, 87, 3086–3090, 1982.
Rattigan, O. V., Shallcross, D. E., and Cox, R. A.: UV absorption cross-sections
and atmospheric photolysis rates of CF3I, CH3I, C2H5I
and CH2ICl, J. Chem. Soc. Faraday Trans., 93, 2839–2846, 1997.
Richter, U. and Wallace, D. W. R.: Production of methyl iodide in the tropical
Atlantic Ocean, Geophys. Res. Lett., 31, L23S03, https://doi.org/10.1029/2004GL020779, 2004.
Saiz-Lopez, A. and Von Glasow, R.: Reactive halogen chemistry in the troposphere,
Chem. Soc. Rev., 41, 6448, https://doi.org/10.1039/c2cs35208g, 2012.
Schall, C., Laturnus, F., and Heumann, K. G.: Biogenic volatile organoiodine
and organobromine compounds released from polar macroalgae, Chemosphere, 28,
1315–1324, https://doi.org/10.1016/0045-6535(94)90076-0, 1994.
Shan, S., Sheng, J., Thompson, K. R., and Greenberg, D. A.: Simulating the
three-dimensional circulation and hydrography of Halifax Harbour using a
multi-nested coastal ocean circulation model, Ocean Dynam., 61, 951–976, 2011.
Shi, Q. and Wallace, D.: A three-year time-series of volatile organic iodocarbons
in Bedford Basin, Nova Scotia: A Northwestern Atlantic Fjord, Mendeley Data, v1,
http://dx.doi.org/10.17632/5y2t4mkjbv.1, 2018.
Shi, Q., Petrick, G., Quack, B., Marandino, C., and Wallace, D. W. R.: A time
series of incubation experiments to examine the production and loss of
CH3I in surface seawater, J. Geophys. Res.-Oceans, 2, 1022–1037,
https://doi.org/10.1002/2013JC009415, 2014a.
Shi, Q., Petrick, G., Quack, B., Marandino, C., and Wallace, D.: Seasonal
variability of methyl iodide in the Kiel Fjord, J. Geophys. Res.-Oceans, 119,
1609–1620, https://doi.org/10.1002/2013JC009328, 2014b.
Shimizu, Y., Ooki, A., Onishi, H., Takatsu, T., Tanaka, S., Inagaki, Y., Suzuki,
K., Kobayashi, N., Kamei, Y., and Kuma, K.: Seasonal variation of volatile
organic iodine compounds in the water column of Funka Bay, Hokkaido, Japan, J.
Atmos. Chem., 74, 205–225, 2017.
Smythe-Wright, D., Boswell, S. M., Breithaupt, P., Davidson, R. D., Dimmer, C.
H., and Eiras Diaz, L. B.: Methyl iodide production in the ocean: Implications
for climate change, Global Biogeochem. Cy., 20, GB3003, https://doi.org/10.1029/2005GB002642, 2006.
Solomon, S., Garcia, R. R., and Ravishankara, A. R.: On the role of iodine in
ozone depletion, J. Geophys. Res.-Atmos., 99, 20491–20499, 1994.
Stemmler, I., Rothe, M., Hense, I., and Hepach, H.: Numerical modelling of
methyl iodide in the eastern tropical Atlantic, Biogeosciences, 10, 4211–4225,
https://doi.org/10.5194/bg-10-4211-2013, 2013.
Stemmler, I., Hense, I., Quack, B., and Maier-Reimer, E.: Methyl iodide
production in the open ocean, Biogeosciences, 11, 4459–4476, https://doi.org/10.5194/bg-11-4459-2014, 2014.
Tegtmeier, S., Krüger, K., Quack, B., Atlas, E., Blake, D. R., Boenisch, H.,
Engel, A., Hepach, H., Hossaini, R., Navarro, M. A., Raimund, S., Sala, S., Shi,
Q., and Ziska, F.: The contribution of oceanic methyl iodide to stratospheric
iodine, Atmos. Chem. Phys., 13, 11869–11886, https://doi.org/10.5194/acp-13-11869-2013, 2013.
Yamamoto, H., Yokouchi, Y., Otsuki, A., and Itoh, H.: Depth profiles of volatile
halogenated hydrocarbons in seawater in the Bay of Bengal, Chemosphere, 45,
371–377, https://doi.org/10.1016/S0045-6535(00)00541-5, 2001.
Yokouchi, Y., Osada, K., Wada, M., Hasebe, F., Agama, M., Murakami, R., Mukai,
H., Nojiri, Y., Inuzuka, Y., and Toom-Sauntry, D.: Global distribution and
seasonal concentration change of methyl iodide in the atmosphere, J. Geophys.
Res.-Atmos., 113, D18311, https://doi.org/10.1029/2008JD009861, 2008.
Yokouchi, Y., Saito, T., Ooki, A., and Mukai, H.: Diurnal and seasonal variations
of iodocarbons (CH2ClI, CH2I2, CH3I, and
C2H5I) in the marine atmosphere, J. Geophys. Res.-Atmos., 116,
D06301, https://doi.org/10.1029/2010JD015252, 2011.
Ziska, F., Quack, B., Abrahamsson, K., Archer, S. D., Atlas, E., Bell, T.,
Butler, J. H., Carpenter, L. J., Jones, C. E., and Harris, N. R. P.: Global
sea-to-air flux climatology for bromoform, dibromomethane and methyl iodide,
Atmos. Chem. Phys., 13, 8915–8934, https://doi.org/10.5194/acp-13-8915-2013, 2013.
Short summary
Time series observations can reveal processes and controlling factors underlying the production and loss of iodocarbons in the ocean and provide data for testing hypotheses and models. We report weekly observations from May 2015 to December 2017 at four depths in Bedford Basin, Canada. Iodocarbons in near-surface waters showed strong seasonal variability and similarities and differences in their correlation with temporal variations of potentially related properties and causal factors.
Time series observations can reveal processes and controlling factors underlying the production...