Articles | Volume 14, issue 6
https://doi.org/10.5194/os-14-1385-2018
https://doi.org/10.5194/os-14-1385-2018
Research article
 | 
08 Nov 2018
Research article |  | 08 Nov 2018

A 3-year time series of volatile organic iodocarbons in Bedford Basin, Nova Scotia: a northwestern Atlantic fjord

Qiang Shi and Douglas Wallace

Related authors

The contribution of oceanic halocarbons to marine and free tropospheric air over the tropical West Pacific
Steffen Fuhlbrügge, Birgit Quack, Susann Tegtmeier, Elliot Atlas, Helmke Hepach, Qiang Shi, Stefan Raimund, and Kirstin Krüger
Atmos. Chem. Phys., 16, 7569–7585, https://doi.org/10.5194/acp-16-7569-2016,https://doi.org/10.5194/acp-16-7569-2016, 2016
Short summary

Related subject area

Approach: In situ Observations | Depth range: Surface | Geographical range: Shelf Seas | Phenomena: Air-Sea Fluxes
pCO2 variability in the surface waters of the eastern Gulf of Cádiz (SW Iberian Peninsula)
Dolores Jiménez-López, Ana Sierra, Teodora Ortega, Soledad Garrido, Nerea Hernández-Puyuelo, Ricardo Sánchez-Leal, and Jesús Forja
Ocean Sci., 15, 1225–1245, https://doi.org/10.5194/os-15-1225-2019,https://doi.org/10.5194/os-15-1225-2019, 2019
Short summary
The spatial and interannual dynamics of the surface water carbonate system and air–sea CO2 fluxes in the outer shelf and slope of the Eurasian Arctic Ocean
Irina I. Pipko, Svetlana P. Pugach, Igor P. Semiletov, Leif G. Anderson, Natalia E. Shakhova, Örjan Gustafsson, Irina A. Repina, Eduard A. Spivak, Alexander N. Charkin, Anatoly N. Salyuk, Kseniia P. Shcherbakova, Elena V. Panova, and Oleg V. Dudarev
Ocean Sci., 13, 997–1016, https://doi.org/10.5194/os-13-997-2017,https://doi.org/10.5194/os-13-997-2017, 2017
Short summary
Spatiotemporal variations of fCO2 in the North Sea
A. M. Omar, A. Olsen, T. Johannessen, M. Hoppema, H. Thomas, and A. V. Borges
Ocean Sci., 6, 77–89, https://doi.org/10.5194/os-6-77-2010,https://doi.org/10.5194/os-6-77-2010, 2010

Cited articles

Amachi, S., Kamagata, Y., Kanagawa, T., and Muramatsu, Y.: Bacteria mediate methylation of iodine in marine and terrestrial environments, Appl. Environ. Microbiol., 67, 2718–2722, 2001. 
Archer, S. D., Goldson, L. E., Liddicoat, M. I., Cummings, D. G., and Nightingale, P. D.: Marked seasonality in the concentrations and sea-to-air flux of volatile iodocarbon compounds in the western English Channel, J. Geophys. Res.-Oceans, 112, C08009, https://doi.org/10.1029/2006JC003963, 2007. 
Bluhm, K., Croot, P. L., Huhn, O., Rohardt, G., and Lochte, K.: Distribution of iodide and iodate in the Atlantic sector of the southern ocean during austral summer, Deep-Sea Res. Pt. II, 58, 2733–2748, 2011. 
Brownell, D. K., Moore, R. M., and Cullen, J. J.: Production of methyl halides by Prochlorococcus and Synechococcus, Global Biogeochem. Cy., 24, GB2002, https://doi.org/10.1029/2009GB003671, 2010. 
Buckley, D. E. and Winters, G. V: Geochemical characteristics of contaminated surficial sediments in Halifax Harbour: impact of waste discharge, Can. J. Earth Sci., 29, 2617–2639, 1992. 
Download
Short summary
Time series observations can reveal processes and controlling factors underlying the production and loss of iodocarbons in the ocean and provide data for testing hypotheses and models. We report weekly observations from May 2015 to December 2017 at four depths in Bedford Basin, Canada. Iodocarbons in near-surface waters showed strong seasonal variability and similarities and differences in their correlation with temporal variations of potentially related properties and causal factors.