Articles | Volume 14, issue 1
https://doi.org/10.5194/os-14-117-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-14-117-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An analytical study of M2 tidal waves in the Taiwan Strait using an extended Taylor method
The First Institute of Oceanography, State Oceanic Administration,
Qingdao, 266061, China
Guohong Fang
CORRESPONDING AUTHOR
The First Institute of Oceanography, State Oceanic Administration,
Qingdao, 266061, China
Laboratory for Regional Oceanography and Numerical Modeling, Qingdao
National Laboratory for Marine Science and Technology, Qingdao, 266237,
China
Xinmei Cui
The First Institute of Oceanography, State Oceanic Administration,
Qingdao, 266061, China
Laboratory for Regional Oceanography and Numerical Modeling, Qingdao
National Laboratory for Marine Science and Technology, Qingdao, 266237,
China
Fei Teng
The First Institute of Oceanography, State Oceanic Administration,
Qingdao, 266061, China
Laboratory for Regional Oceanography and Numerical Modeling, Qingdao
National Laboratory for Marine Science and Technology, Qingdao, 266237,
China
Related authors
Di Wu, Guohong Fang, Zexun Wei, and Xinmei Cui
Ocean Sci., 17, 579–591, https://doi.org/10.5194/os-17-579-2021, https://doi.org/10.5194/os-17-579-2021, 2021
Short summary
Short summary
The Korea Strait is a major navigation passage linking the Japan Sea to the East China Sea and Yellow Sea. This paper establishes a theoretical model for the tides in the Korea Strait and Japan Sea using the extended Taylor method. The model solution explains the formation mechanism of the tidal amphidromic systems in the Korea Strait, and why the K1 amphidromic point is located farther away from the shelf break separating the Korea Strait and Japan Sea in comparison to the M2 amphidromic point.
Dingqi Wang, Guohong Fang, Shuming Jiang, Qinzeng Xu, Guanlin Wang, Zexun Wei, Yonggang Wang, and Tengfei Xu
EGUsphere, https://doi.org/10.5194/egusphere-2022-547, https://doi.org/10.5194/egusphere-2022-547, 2022
Preprint archived
Short summary
Short summary
The JES is a mid-latitude “Miniature Ocean” featured by multiscale oceanic dynamical processes and sea ice, which strongly influence the JES SSC. However, the dominant factors that favor and/or restrict SSC and how they influence JES SSC on different time scales are not clear. In this study, these issues are investigated using EOF and PCA methods based on high-resolution satellite-derived SSC data provided by the Copernicus Marine Environment Monitoring Service (CMEMS).
Di Wu, Guohong Fang, Zexun Wei, and Xinmei Cui
Ocean Sci., 17, 579–591, https://doi.org/10.5194/os-17-579-2021, https://doi.org/10.5194/os-17-579-2021, 2021
Short summary
Short summary
The Korea Strait is a major navigation passage linking the Japan Sea to the East China Sea and Yellow Sea. This paper establishes a theoretical model for the tides in the Korea Strait and Japan Sea using the extended Taylor method. The model solution explains the formation mechanism of the tidal amphidromic systems in the Korea Strait, and why the K1 amphidromic point is located farther away from the shelf break separating the Korea Strait and Japan Sea in comparison to the M2 amphidromic point.
Xinmei Cui, Guohong Fang, and Di Wu
Ocean Sci., 15, 321–331, https://doi.org/10.5194/os-15-321-2019, https://doi.org/10.5194/os-15-321-2019, 2019
Short summary
Short summary
The resonant period of the Gulf of Thailand is potentially close to 1 day. However, the classic quarter-wavelength resonant theory fails to give a diurnal resonant period. In this study, we first perform a series of numerical experiments showing that the resonance of the South China Sea body has a critical impact on the resonance of the gulf. An idealised two-channel model that can reasonably explain the dynamics of the tidal resonance in the Gulf of Thailand is then established in this study.
Zexun Wei, Guohong Fang, R. Dwi Susanto, Tukul Rameyo Adi, Bin Fan, Agus Setiawan, Shujiang Li, Yonggang Wang, and Xiumin Gao
Ocean Sci., 12, 517–531, https://doi.org/10.5194/os-12-517-2016, https://doi.org/10.5194/os-12-517-2016, 2016
Short summary
Short summary
Harmonic constants of tides and tidal currents are obtained from long-term observations. Diurnal tides and tidal currents dominate in southern Natuna Sea and Karimata and Gaspar straits. Existing numerical model results are not accurate in the study area. Existing tidal models based on satellite observation need to be improved for the area.
Cited articles
Cheng, Y. C. and Andersen, O. B.: Multimission empirical ocean tide
modeling for shallow waters and polar seas, J. Geophys. Res.-Ocean, 116, 1130–1146, doi:10.1029/2011JC007172, 2011.
Cui, X., Fang, G., Teng, F., and Wu, D.: Estimating peak response
frequencies in a tidal band in the seas adjacent to China with a numerical
model, Acta Oceanol. Sin., 34, 29–37, doi:10.1007/s13131-015-0593-z, 2015.
Dean, R. G. and Dalrymple, R. A.: Water Wave Mechanics for Engineers and
Scientists, World Scientific Publishing Co. Pte. Ltd, Singapore, 353 pp.,
1984.
Defant, A.: Physical oceanography, Vol. II, Pergamon Press, New York, 598 pp, 1961.
Dronkers, J. J.: Tidal Computations in Rivers and Coastal Waters,
North-Holland Publishing Company, Amsterdam, 518 pp, 1964.
Fang, G. H., Yang, J. F., and Thao, Y. C.: A two-dimensional numerical model
for tidal motion in the Taiwan Strait, Mar. Geophys. Res., 7,
267–276, doi:10.1007/BF00305426, 1984.
Fang, G. H. and Wang, J. S.: Tides and tidal streams in gulfs, Oceanologia
et Limnologia Sinica, 8, 60–77 (in Chinese with English abstract), 1966.
Fang, G. H., Kwok, Y. K., Yu, K. J., and Zhu, Y. H.: Numerical simulation of
principal tidal constituents in the South China Sea, Gulf of Tonkin and Gulf
of Thailand, Cont. Shelf Res., 19, 845–869, doi:10.1016/S0278-4343(99)00002-3,
1999.
Fang, Z., Ye, A. L., and Fang, G. H.: Solutions of tidal motions in a
semi-closed rectangular gulf with open boundary condition specified, Tidal
Hydrodynamics, edited by: Paker, B. B., John Wiley & Sons Inc., New York,
153–168, 1991.
Godin, G.: Some remarks on the tidal motion in a narrow rectangular sea of
constant depth, Deep-Sea Res., 12, 461–468, doi:10.1016/0011-7471(65)90400-6, 1965.
Hendershott, M. C. and Speranza, A.: Co-oscillating tides in long, narrow
bays; the Taylor problem revisited, Deep-Sea Res., 18, 959–980, doi:10.1016/0011-7471(71)90002-7, 1971.
Hu, C. K., Chiu, C. T., Chen, S. H., Kuo, J. Y., Jan, S., and Tseng, Y. H.:
Numerical simulation of barotropic tides around Taiwan, Terr. Atmos. Ocean. Sci., 21, 71–84, doi:10.3319/TAO.2009.05.25.02(IWNOP), 2010.
Jan, S., Chern, C. S., and Wang, J.: Transition of tidal waves from the East
to South China Seas over the Taiwan Strait: Influence of the abrupt step in
the topography, J. Oceanogr., 58, 837–850, doi:10.1023/A:1022827330693, 2002.
Jan, S., Chern, C. S., Wang, J., and Chao S. Y.: The anomalous amplification
of M2 tide in the Taiwan Strait, Geophys. Res. Lett., 31,
L07308, https://doi.org/10.1029/2003GL019373, 2004a.
Jan, S., Wang, Y. H., Wang D. P., and Chao, S. Y.: Incremental inference of
boundary forcing for a three-dimensional tidal model: tides in the Taiwan
Strait, Cont. Shelf Res., 24, 337–351, doi:10.1016/j.csr.2003.11.005, 2004b.
Jung, K. T., Park, C. W., Oh, I. S., and So, J. K.: An analytical model with
three sub-regions for M2 tide in the Yellow Sea and the East China Sea,
Ocean Sci. J., 40, 191–200, doi:10.1007/BF03023518, 2005.
Lin, M. C., Juang, W. J., and Tsay, T. K.: Application of the mild-slope
equation to tidal computations in the Taiwan Strait, J. Oceanogr., 56, 625–642, doi:10.1023/A:1011169515322, 2000.
Lin, M. C., Juang, W. J., and Tsay, T. K.: Anomalous amplifications of
semidiurnal tides along the western coast of Taiwan, Ocean Eng., 28,
1171–1198, doi:10.1016/S0029-8018(00)00049-4, 2001.
Lü, X. G. and Sha, W. Y.: Three-dimensional numerical simulation of
M2 tide in the Taiwan Strait, J. Oceanogr. Huanghai Bohai Seas, 17, 16–25 (in Chinese with English abstract), 1999.
Rienecker, M. M. and Teubner, M. D.: A note on frictional effects in
Taylor's problem, J. Mar. Res., 38, 183–191, 1980.
Roos, P. C. and Schuttelaars H. M.: Influence of topography on tide
propagation and amplification in semi-enclosed basins, Ocean Dynam., 61,
21–38, doi:10.1007/s10236-010-0340-0, 2011.
Roos, P. C., Velema, J. J., Hulscher, S. J. M. H., and Stolk, A.: An
idealized model of tidal dynamics in the North Sea: Resonance properties and
response to large-scale changes, Ocean Dynam., 61, 2019–2035, doi:10.1007/s10236-011-0456-x, 2011.
Taylor, G. I.: Tidal oscillations in gulfs and rectangular basins,
P. Lond. Math. Soc., Ser., 20, 148–181, doi:10.1112/plms/s2-20.1.148, 1922.
Ye, A. L., Chen, Z. Y., and Yu, Y. F.: Numerical investigation of
three-dimensional semidiurnal waves in the Taiwan Strait and its adjacent
areas, Ocean. Limnol. Sin., 16, 439–450 (in Chinese with
English abstract), 1985.
Yin, F. and Chen, S. H.: Tidal Computation on Taiwan Strait, J. Waterway Port Coast. Ocean Div., 108, 539–553, 1982.
Yu, H. Q., Yu, H. M., Ding, Y., Wang, L., and Kuang, L.: On M2 tidal
amplitude enhancement in the Taiwan Strait and its asymmetry in the
cross-strait direction, Cont. Shelf Res., 109, 198–209, doi:10.1016/j.csr.2015.09.005, 2015.
Yu, H. Q., Yu, H. M., Wang, L., and Kuang, L., Wang, H., Ding, Y., Ito, S.
I., and Lawen, J.: Tidal propagation and dissipation in the Taiwan Strait,
Cont. Shelf Res., 136, 57–73, doi:10.1016/j.csr.2016.12.006, 2017.
Zeng, G., Hu, J., Hong, H., and Qi, Y.: Numerical study on M2 tidal
system in the Taiwan Strait, Proc. Environ. Sci., 12, 702–707,
doi:10.1016/j.proenv.2012.01.337, 2012.
Zhu, J., Hu J. Y., Zhang, W. Z., Zeng, G. N., Chen, D. W., Chen J. Q., Shang
S. P.: Numerical study on tides in the Taiwan Strait and its adjacent area,
Mar. Sci. Bull., 11, 23–36, 2009.
Short summary
Taylor's problem is a classical tidal dynamic problem and in its previous applications all of the studied basins had a closed end. In this study, the Taylor's method is extended so that it can also provide an analytical model for the M2 tide in the Taiwan Strait (TS), which shows that the reflection of the southward wave at the abruptly deepened topography south of the TS is a major contribution to the formation of the northward propagating wave in the strait.
Taylor's problem is a classical tidal dynamic problem and in its previous applications all of...