Articles | Volume 13, issue 6
https://doi.org/10.5194/os-13-851-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-13-851-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
On deep convection events and Antarctic Bottom Water formation in ocean reanalysis products
Wilton Aguiar
CORRESPONDING AUTHOR
Laboratório de Estudos dos Oceanos e Clima, Instituto de Oceanografia, Universidade Federal do Rio Grande – FURG. Rio Grande, RS, 96203-900, Brazil
Mauricio M. Mata
Laboratório de Estudos dos Oceanos e Clima, Instituto de Oceanografia, Universidade Federal do Rio Grande – FURG. Rio Grande, RS, 96203-900, Brazil
Rodrigo Kerr
Laboratório de Estudos dos Oceanos e Clima, Instituto de Oceanografia, Universidade Federal do Rio Grande – FURG. Rio Grande, RS, 96203-900, Brazil
Related authors
No articles found.
Tiago S. Dotto, Mauricio M. Mata, Rodrigo Kerr, and Carlos A. E. Garcia
Earth Syst. Sci. Data, 13, 671–696, https://doi.org/10.5194/essd-13-671-2021, https://doi.org/10.5194/essd-13-671-2021, 2021
Short summary
Short summary
A novel seasonal three-dimensional high-resolution hydrographic gridded data set for the northern Antarctic Peninsula (NAP) based on measurements obtained from 1990–2019 by the ship-based Argo profilers and tagged marine mammals is presented. The main oceanographic features of the NAP are well represented, with the final product having many advantages compared to low-resolution climatologies. In addition, new information on the regional water mass pathways and their characteristics is unveiled.
G. S. Pilo, M. M. Mata, and J. L. L. Azevedo
Ocean Sci., 11, 629–641, https://doi.org/10.5194/os-11-629-2015, https://doi.org/10.5194/os-11-629-2015, 2015
Short summary
Short summary
Oceanic eddies are closed circulation features that transport water between regions, taking part in the ocean's heat and salt balance. We perform a comparative eddy census in the East Australian, Agulhas and Brazil currents. We find that eddy propagation in all systems is steered by the local mean flow and bathymetry. Also, eddies present a geographic segregation according to size. Investigating eddy propagation helps us to better understand their effect in local mixing.
M. Azaneu, R. Kerr, and M. M. Mata
Ocean Sci., 10, 923–946, https://doi.org/10.5194/os-10-923-2014, https://doi.org/10.5194/os-10-923-2014, 2014
Short summary
Short summary
We analyzed the ability of the ECCO2 reanalysis to represent the hydrographic properties and variability of Antarctic Bottom Water in the Southern Ocean. After 2004, the opening of an oceanic polynya in the Weddell Sea sector and consequent intense dense water production leads to an unrealistic scenario. Even before 2004, bottom waters are warmer and less dense than expected, while the absolute volume transport and velocity estimates are underrepresented.
J. M. Marson, I. Wainer, M. M. Mata, and Z. Liu
Clim. Past, 10, 1723–1734, https://doi.org/10.5194/cp-10-1723-2014, https://doi.org/10.5194/cp-10-1723-2014, 2014
A. Castagna, H. Evangelista, L. G. Tilstra, and R. Kerr
Biogeosciences Discuss., https://doi.org/10.5194/bgd-11-11671-2014, https://doi.org/10.5194/bgd-11-11671-2014, 2014
Revised manuscript not accepted
T. S. Dotto, R. Kerr, M. M. Mata, M. Azaneu, I. Wainer, E. Fahrbach, and G. Rohardt
Ocean Sci., 10, 523–546, https://doi.org/10.5194/os-10-523-2014, https://doi.org/10.5194/os-10-523-2014, 2014
Cited articles
Abernathey, R. P., Cerovecki, I., Holland, P. R., Newsom, E., Mazloff, M. and Talley, L. D.: Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning, Nat. Geosci., 9, 596–601, https://doi.org/10.1038/ngeo2749, 2016.
Aksenov, Y., Karcher, M., Proshutinsky, A., Gerdes, R., de Cuevas, B., Golubeva, E., Kauker, F., Nguyen, A. T., Platov, G. A., Wadley, M., Watanabe, E., Coward, A. C., and Nurser, A. J. G.: Arctic pathways of Pacific Water: Arctic Ocean Model Intercomparison experiments, J. Geophys. Res.-Ocean., 121, 27–59, https://doi.org/10.1002/2015JC011299, 2016.
Azaneu, M., Kerr, R., Mata, M. M., and Garcia, C. A. E.: Trends in the deep Southern Ocean (1958–2010): Implications for Antarctic Bottom Water properties and volume export, J. Geophys. Res.-Oceans, 118, 4213–4227, https://doi.org/10.1002/jgrc.20303, 2013.
Azaneu, M., Kerr, R., and Mata, M. M.: Assessment of the representation of Antarctic Bottom Water properties in the ECCO2 reanalysis, Ocean Sci., 10, 923–946, https://doi.org/10.5194/os-10-923-2014, 2014.
Berge-Nguyen, M., Cazenave, A., Lombard, A., Llovel, W., Viarre, J., and Cretaux, J. F.: Reconstruction of past decades sea level using thermosteric sea level, tide gauge, satellite altimetry and ocean reanalysis data, Global. Planet. Change, 62, 1–13, https://doi.org/10.1016/j.gloplacha.2007.11.007, 2008.
Carmack, E. C.: A quantitative characterization of water masses in the Weddell sea during summer, Deep-Sea Res.-Oceanogr. Abstr., 21, 431–443, https://doi.org/10.1016/0011-7471(74)90092-8, 1974.
Carmack, E. C. and Foster, T. D.: On the flow of water out of the Weddell Sea, Deep-Sea Res.-Oceanogr. Abstr., 22, 711–724, https://doi.org/10.1016/0011-7471(75)90077-7, 1975.
Carsey, F. D.: Microwave Observation of the Weddell Polynya, Mon. Weather Rev., 108, 2032–2044, https://doi.org/10.1175/1520-0493(1980)108<2032:MOOTWP>2.0.CO;2, 1980.
Carton, J. A., Giese, B. S., and Grodsky, S. A.: Sea level rise and the warming of the oceans in the Simple Ocean Data Assimilation (SODA) ocean reanalysis, J. Geophys. Res.-Ocean., 110, C09006, https://doi.org/10.1029/2004JC002817, 2005.
Cheon, W. G., Lee, S.-K., Gordon, A. L., Liu, Y., Cho, C.-B., and Park, J. J.: Replicating the 1970s' Weddell Polynya using a coupled ocean-sea ice model with reanalysis surface flux fields, Geophys. Res. Lett., 42, 5411–5418, https://doi.org/10.1002/2015GL064364, 2015.
Close, S. E. and Goosse, H.: Entrainment-driven modulation of Southern Ocean mixed layer properties and sea ice variability in CMIP5 models, J. Geophys. Res.-Ocean., 118, 2811–2827, https://doi.org/10.1002/jgrc.20226, 2013.
Comiso, J. C. and Gordon, A. L.: Recurring polynyas over the Cosmonaut Sea and the Maud Rise, J. Geophys. Res.-Ocean., 92, 2819–2833, https://doi.org/10.1029/JC092iC03p02819, 1987.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V, Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
de Steur, L., Holland, D. M., Muench, R. D., and McPhee, M. G.: The warm-water “Halo” around Maud Rise: Properties, dynamics and Impact, Deep-Sea Res. Pt. I, 54, 871–896, https://doi.org/10.1016/j.dsr.2007.03.009, 2007.
Dotto, T. S., Kerr, R., Mata, M. M., Azaneu, M., Wainer, I., Fahrbach, E., and Rohardt, G.: Assessment of the structure and variability of Weddell Sea water masses in distinct ocean reanalysis products, Ocean Sci., 10, 523–546, https://doi.org/10.5194/os-10-523-2014, 2014.
Dufour, C. O., Morrison, A. K., Griffies, S. M., Frenger, I., Zanowski, H., and Winton, M.: Preconditioning of the Weddell Sea Polynya by the Ocean Mesoscale and Dense Water Overflows, J. Climate, 30, 7719–7737, https://doi.org/10.1175/JCLI-D-16-0586.1, 2017.
Fahrbach, E., Hoppema, M., Rohardt, G., Boebel, O., Klatt, O., and Wisotzki, A.: Deep-Sea Research II Warming of deep and abyssal water masses along the Greenwich meridian on decadal time scales: The Weddell gyre as a heat buffer, Deep-Sea Res.-Pt. II, 58, 2509–2523, https://doi.org/10.1016/j.dsr2.2011.06.007, 2011.
Ferreira, M. L. C. and Kerr, R.: Source water distribution and quantification of North Atlantic Deep Water and Antarctic Bottom Water in the Atlantic Ocean, Prog. Oceanogr., 153, 66–83, https://doi.org/10.1016/j.pocean.2017.04.003, 2017.
Ferry, N., Barnier, B., Garric, G., Haines, K., Masina, S., Parent, L., Storto, A., Valdivieso, M., and Guinehut, S.: Nemo: The modelling engine of global ocean reanalysis, Mercat. Ocean Q. Newsl., 46, 46–59, 2012.
Fichefet, T. and Maqueda, M. A. M.: Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics, J. Geophys. Res., 102, 12609–12646, https://doi.org/10.1029/97JC00480, 1997.
Foldvik, A., Gammelsrød, T., and Tørresen, T.: Circulation and Water Masses on the Southern Weddell Sea Shelf, in Oceanology of the Antarctic Continental Shelf, American Geophysical Union, 5–20, 1985.
Forget, G.: Mapping Ocean Observations in a Dynamical Framework: A 2004–06 Ocean Atlas, J. Phys. Oceanogr., 40, 1201–1221, https://doi.org/10.1175/2009JPO4043.1, 2010.
Foster, T. D. and Carmack, E. C.: Frontal zone mixing and Antarctic Bottom water formation in the southern Weddell Sea, Deep-Sea Res.-Oceanogr. Abstr., 23, 301–317, https://doi.org/10.1016/0011-7471(76)90872-X, 1976.
Franco, B. C., Mata, M. M., Piola, A. R., and Garcia, C. A. E.: Northwestern Weddell Sea deep outflow into the Scotia Sea during the austral summers of 2000 and 2001 estimated by inverse methods, Deep-Sea Res. Pt. I, 54, 1815–1840, https://doi.org/10.1016/j.dsr.2007.06.003, 2007.
Gordon, A. L.: Deep Antarctic Convection West of Maud Rise, J. Phys. Oceanogr., 8, 600–612, https://doi.org/10.1175/1520-0485(1978)008<0600:DACWOM>2.0.CO;2, 1978.
Gordon, A. L., Visbeck, M., and Comiso, J. C.: A possible link between the Weddell Polynya and the southern annular mode, J. Climate, 20, 2558–2571, https://doi.org/10.1175/JCLI4046.1, 2007.
Heuzé, C., Heywood, K. J., Stevens, D. P., and Ridley, J. K.: Southern Ocean bottom water characteristics in CMIP5 models, Geophys. Res. Lett., 40, 1409–1414, https://doi.org/10.1002/grl.50287, 2013.
Heuzé, C., Ridley, J. K., Calvert, D., Stevens, D. P., and Heywood, K. J.: Increasing vertical mixing to reduce Southern Ocean deep convection in NEMO3.4, Geosci. Model Dev., 8, 3119–3130, https://doi.org/10.5194/gmd-8-3119-2015, 2015.
Hibler, W. D.: Modeling a Variable Thickness Sea Ice Cover, Mon. Weather Rev., 108, 1943–1973, https://doi.org/10.1175/1520-0493(1980)108<1943:MAVTSI>2.0.CO;2, 1980.
Hirabara, M., Tsujino, H., Nakano, H., and Yamanaka, G.: Formation mechanism of the Weddell Sea Polynya and the impact on the global abyssal ocean, J. Oceanogr., 68, 771–796, https://doi.org/10.1007/s10872-012-0139-3, 2012.
Holland, D. M.: Explaining the Weddell Polynya-a Large Ocean Eddy Shed at Maud Rise, Science, 292, 1697–1700, https://doi.org/10.1126/science.1059322, 2001a.
Holland, D. M.: Transient sea-ice polynya forced by oceanic flow variability, Prog. Oceanogr., 48, 403–460, https://doi.org/10.1016/S0079-6611(01)00010-6, 2001b.
Jackett, D. R. and McDougall, T. J.: A Neutral Density Variable for the World's Oceans, J. Phys. Oceanogr., 27, 237–263, 1997.
Jullion, L., Garabato, A. C. N., Bacon, S., Meredith, M. P., Brown, P. J., Torres-Valdés, S., Speer, K. G., Holland, P. R., Dong, J., Bakker, D., Hoppema, M., Loose, B., Venables, H. J., Jenkins, W. J., Messias, M.-J., and Fahrbach, E.: The contribution of the Weddell Gyre to the lower limb of the Global Overturning Circulation, J. Geophys. Res.-Ocean., 119, 3357–3377, https://doi.org/10.1002/2013JC009725, 2014.
Kerr, R., Wainer, I., and Mata, M. M.: Representation of the Weddell Sea deep water masses in the ocean component of the NCAR-CCSM model, Antarct. Sci., 21, 301–312, https://doi.org/10.1017/S0954102009001825, 2009.
Kerr, R., Heywood, K. J., Mata, M. M., and Garcia, C. A. E.: On the outflow of dense water from the Weddell and Ross Seas in OCCAM model, Ocean Sci., 8, 369-388, https://doi.org/10.5194/os-8-369-2012, 2012a.
Kerr, R., Wainer, I., Mata, M. M., and Garcia, C. A. E.: Quantifying Antarctic deep waters in SODA reanalysis product, Pesqui. Antártica Bras., 59, 47–59, 2012b.
Kerr, R., Dotto, T. S., Mata, M. M., and Hellmer, H. H.: Three decades of deep water mass investigation in the Weddell Sea (1984–2014): temporal variability and changes, Deep-Sea Res. Pt. II, in review, 2017.
Killworth, P. D.: Deep convection in the World Ocean, Rev. Geophys., 21, 1, https://doi.org/10.1029/RG021i001p00001, 1983.
Kitade, Y., Shimada, K., Tamura, T., Williams, G. D., Aoki, S., Fukamachi, Y., Roquet, F., Hindell, M., Ushio, S., and Ohshima, K. I.: Antarctic Bottom Water production from the Vincennes Bay Polynya, East Antarctica, Geophys. Res. Lett., 41, 3528–3534, https://doi.org/10.1002/2014GL059971, 2014.
Köhl, A. and Stammer, D.: Decadal Sea Level Changes in the 50-Year GECCO Ocean Synthesis, J. Climate, 21, 1876–1890, https://doi.org/10.1175/2007JCLI2081.1, 2008.
Latif, M., Martin, T., and Park, W.: Southern ocean sector centennial climate variability and recent decadal trends, J. Climate, 26, 7767–7782, https://doi.org/10.1175/JCLI-D-12-00281.1, 2013.
Lavergne, C., Palter, J. B., Galbraith, E. D., Bernardello, R., and Marinov, I.: Cessation of deep convection in the open Southern Ocean under anthropogenic climate change, Nat. Clim. Chang., 4, 278–282, 2014.
Lee, T., Awaji, T., Balmaseda, M. A., Greiner, E., and Stammer, D.: Ocean State Estimation for Climate Research, Oceanography, 22, https://doi.org/10.5670/oceanog.2009.74, 2009.
Limpasuvan, V. and Hartmann, D. L.: Eddies and the annular modes of climate variability, Geophys. Res. Lett., 26, 3133–3136, https://doi.org/10.1029/1999GL010478, 1999.
Marshall, J., Adcroft, A., Hill, C., Perelman, L., and Heisey, C.: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers, 102, 5753–5766, 1997.
Marsland, S. J., Haak, H., Jungclaus, J. H., Latif, M., and Röske, F.: The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates, Ocean Model., 5, 91–127, https://doi.org/10.1016/S1463-5003(02)00015-X, 2003.
Martin, T., Park, W., and Latif, M.: Multi-centennial variability controlled by Southern Ocean convection in the Kiel Climate Model, Clim. Dynam., 40, 2005–2022, https://doi.org/10.1007/s00382-012-1586-7, 2013.
Massonnet, F., Fichefet, T., Goosse, H., Vancoppenolle, M., Mathiot, P., and König Beatty, C.: On the influence of model physics on simulations of Arctic and Antarctic sea ice, The Cryosphere, 5, 687–699, https://doi.org/10.5194/tc-5-687-2011, 2011.
Maximenko, N. A. and Niiler, P. P.: Hybrid decade-mean global sea level with mesoscale resolution, Recent Adv. Mar. Sci. Technol., 2004, 55–59, 2005.
Mazloff, M. R., Heimbach, P., and Wunsh, C.: An Eddy-Permitting Southern Ocean State Estimate, J. Phys. Oceanogr., 40, 880–899, https://doi.org/10.1175/2009JPO4236.1, 2010.
Meccia, V., Wainer, I., Tonelli, M., and Curchitser, E.: Coupling a thermodynamically active ice shelf to a regional simulation of the Weddell Sea, Geosci. Model Dev., 6, 1209–1219, https://doi.org/10.5194/gmd-6-1209-2013, 2013.
Menemenlis, D., Campin, J. M., Heimbach, P., Hill, C., Lee, T., Nguyen, A., Schodlok, M., and Zhang, H.: ECCO2: High resolution global ocean and sea ice data synthesis, Mercat. Ocean Q. Newsl., 31, 13–21, 2008.
Meredith, M. P., Locarnini, R. A., Van Scoy, K. A., Watson, A. J., Heywood, K. J., and King, B. A.: On the sources of Weddell Gyre Antarctic Bottom Water, J. Geophys. Res.-Ocean., 105, 1093–1104, https://doi.org/10.1029/1999JC900263, 2000.
Morales Maqueda, M. A., Willmott, A. J., and Biggs, N. R. T.: Polynya Dynamics: a Review of Observations and Modeling, Rev. Geophys., 42, 2002RG000116, https://doi.org/10.1029/2002RG000116, 2004.
Naveira Garabato, A. C., Heywood, K. J., and Stevens, D. P.: Modification and pathways of Southern Ocean Deep Waters in the Scotia Sea, Deep Sea Res.-Pt. I, 49, 681–705, https://doi.org/10.1016/S0967-0637(01)00071-1, 2002.
Orsi, A. H., Johnson, G. C., and Bullister, J. L.: Circulation, mixing, and production of Antarctic Bottom Water, Prog. Oceanogr., 43, 55–109, https://doi.org/10.1016/S0079-6611(99)00004-X, 1999.
Pardo, P. C., Pérez, F. F., Velo, A., and Gilcoto, M.: Water masses distribution in the Southern Ocean: Improvement of an extended {OMP} (eOMP) analysis, Prog. Oceanogr., 103, 92–105, https://doi.org/10.1016/j.pocean.2012.06.002, 2012.
Parkinson, C. L.: On the Development and Cause of the Weddell Polynya in a Sea Ice Simulation, J. Phys. Oceanogr., 13, 501–511, https://doi.org/10.1175/1520-0485(1983)013<0501:OTDACO>2.0.CO;2, 1983.
Parkinson, C. L. and Cavalieri, D. J.: Antarctic sea ice variability and trends, 1979–2010, The Cryosphere, 6, 871–880, https://doi.org/10.5194/tc-6-871-2012, 2012.
Pedro, J. B., Martin, T., Steig, E. J., Jochum, M., Park, W., and Rasmussen, S. O.: Southern Ocean deep convection as a driver of Antarctic warming events, Geophys. Res. Lett., 43, 2192–2199, https://doi.org/10.1002/2016GL067861, 2016.
Potter, J. R. and Paren, J. G.: Interaction Between Ice Shelf and Ocean in George VI Sound, Antarctica, in Oceanology of the Antarctic Continental Shelf, American Geophysical Union, 35–58, 1985.
Renner, A. H. H., Heywood, K. J., and Thorpe, S. E.: Validation of three global ocean models in the Weddell Sea, Ocean Model., 30, 1–15, https://doi.org/10.1016/j.ocemod.2009.05.007, 2009.
Schiller, A., Oke, P. R., Brassington, G., Entel, M., Fiedler, R., Griffin, D. A., and Mansbridge, J. V.: Eddy-resolving ocean circulation in the Asian–Australian region inferred from an ocean reanalysis effort, Prog. Oceanogr., 76, 334–365, https://doi.org/10.1016/j.pocean.2008.01.003, 2008.
Serazin, G.: An approximate Neutral Density variable for the world's oceans, École Centrale de Lyon, MS Thesis, cooperation with CSIRO Centre for Marine and Atmospheri Research, 85 pp., 2011.
Shaffrey, L. C., Stevens, I., Norton, W. A., Roberts, M. J., Vidale, P. L., Harle, J. D., Jrrar, A., Stevens, D. P., Woodage, M. J., Demory, M. E., Donners, J., Clark, D. B., Clayton, A., Cole, J. W., Wilson, S. S., Connolley, W. M., Davies, T. M., Iwi, A. M., Johns, T. C., King, J. C., New, A. L., Slingo, J. M., Slingo, A., Steenman-Clark, L., and Martin, G. M.: U.K. HiGEM: The New U.K. High-Resolution Global Environment Model – Model Description and Basic Evaluation, J. Climate, 22, 1861–1896, https://doi.org/10.1175/2008JCLI2508.1, 2009.
Storkey, D., Blockley, E. W., Furner, R., Guiavarc'h, C., Lea, D., Martin, M. J., Barciela, R. M., Hines, A., Hyder, P., and Siddorn, J. R.: Forecasting the ocean state using NEMO:The new FOAM system, J. Oper. Oceanogr., 8778, 3–15, https://doi.org/10.1080/1755876X.2010.11020109, 2010.
Stössel, A., Yang, K., and Kim, S.-J.: On the Role of Sea Ice and Convection in a Global Ocean Model, J. Phys. Oceanogr., 32, 1194–1208, https://doi.org/10.1175/1520-0485(2002)032<1194:OTROSI>2.0.CO;2, 2002.
Talley, L. D.: Closure of the Global Overturning Circulation Through the Indian, Pacific, and Southern Oceans: Schematics and Transports, Oceanography, 26, 1, https://doi.org/10.5670/oceanog.2013.07, 2013.
Timmermann, R. and Beckmann, A.: Parameterization of vertical mixing in the Weddell Sea, Ocean Model., 6, 83–100, https://doi.org/10.1016/S1463-5003(02)00061-6, 2004.
Tomczak, M. and Liefrink, S.: Interannual variations of water mass volumes in the Southern Ocean, J. Atmos. Ocean Sci., 10, 31–42, https://doi.org/10.1080/17417530500062838, 2005.
Valdivieso, M., Haines, K., Zuo, H., and Lea, D.: Freshwater and heat transports from global ocean synthesis, J. Geophys. Res.-Ocean., 119, 394–409, https://doi.org/10.1002/2013JC009357, 2014.
Whitworth, T. and Orsi, A. H.: Antarctic Bottom Water production and export by tides in the Ross Sea, Geophys. Res. Lett., 33, L12609, https://doi.org/10.1029/2006GL026357, 2006.
Whitworth, T., Orsi, A. H., Kim, S.-J., Nowlin, W. D., and Locarnini, R. A.: Water Masses and Mixing Near the Antarctic Slope Front, in: Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin, edited by: Jacobs, S. S. and Weiss, R. F., American Geophysical Union, Washington, D.C., https://doi.org/10.1029/AR075p0001, 1985.
Williams, G. D., Bindoff, N. L., Marsland, S. J., and Rintoul, S. R.: Formation and export of dense shelf water from the Adélie Depression, East Antarctica, J. Geophys. Res.-Ocean., 113, L12609, https://doi.org/10.1029/2007JC004346, 2008.
Williams, G. D., Herraiz-Borreguero, L., Roquet, F., Tamura, T., Ohshima, K. I., Fukamachi, Y., Fraser, A. D., Gao, L., Chen, H., McMahon, C. R., Harcourt, R., and Hindell, M.: The suppression of Antarctic bottom water formation by melting ice shelves in Prydz Bay, Nat. Commun., 7, 12577, https://doi.org/10.1038/ncomms12577, 2016.
Whitworth, T., Orsi, A. H., Kim, S.-J., Nowlin, W. D., and Locarnini, R. A.: Water Masses and Mixing Near the Antarctic Slope Front, in Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin, edited by: Jacobs, S. S. and Weiss, R. F., American Geophysical Union, Washington, D. C., https://doi.org/10.1029/AR075p0001, 1985.
Wunsch, C., Ponte, R. M., and Heimbach, P.: Decadal Trends in Sea Level Patterns: 1993–2004, J. Climate, 20, 5889–5911, https://doi.org/10.1175/2007JCLI1840.1, 2007.
Zhang, J., Hibler, W. D., Steele, M., and Rothrock, D. A.: Arctic Ice – Ocean Modeling with and without Climate Restoring, J. Phys. Oceanogr., 28, 191–217, 1998.
Zhu, J., Huang, B., and Balmaseda, M. A.: An ensemble estimation of the variability of upper-ocean heat content over the tropical Atlantic Ocean with multi-ocean reanalysis products, Clim. Dynam., 39, 1001–1020, https://doi.org/10.1007/s00382-011-1189-8, 2012.
Short summary
In ocean models, Antarctic Bottom Water (AABW) formation is frequently misrepresented. Hence, assessing the causes of spurious formation is important to ensure accurate future simulations. Only one of the state-of-art reanalyses investigated showed AABW formation accurately. Spurious formation in the other two products resulted from opening of open ocean polynyas. The relatively accurate AABW formation in one of the products is an important advance in the simulation of deep ocean circulation.
In ocean models, Antarctic Bottom Water (AABW) formation is frequently misrepresented. Hence,...