Articles | Volume 13, issue 1
https://doi.org/10.5194/os-13-61-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-13-61-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Numerical investigation of the Arctic ice–ocean boundary layer and implications for air–sea gas fluxes
Arash Bigdeli
CORRESPONDING AUTHOR
Graduate School of Oceanography, University of Rhode Island, Rhode
Island, 02882, USA
Brice Loose
Graduate School of Oceanography, University of Rhode Island, Rhode
Island, 02882, USA
An T. Nguyen
Institute of Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas, 78712, USA
Sylvia T. Cole
Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, 02543, USA
Related authors
No articles found.
Alessandra D'Angelo, Cynthia Garcia-Eidell, Zak Kerrigan, Jacob Strock, Frances Crable, Nikolas VanKeersbilck, Humair Raziuddin, Theressa Ewa, Samira Umar, Andrew L. King, Miquel Gonzelez-Meler, and Brice Loose
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-157, https://doi.org/10.5194/bg-2023-157, 2023
Manuscript not accepted for further review
Short summary
Short summary
In summer 2019, the Northwest Passage Project explored the Canadian Arctic Archipelago (CAA). Our study revealed methane oversaturation in upper CAA waters, driven by meltwater, turbidity, and specific microbial activity. It highlights the need to distinguish active methane zones. Western CAA showed higher methane activity, while the east had lower levels due to Atlantic Water influence. These findings contribute to understanding Arctic methane dynamics and its climate change implications.
Alessandra D'Angelo, Cynthia Garcia-Eidell, Zak Kerrigan, Jacob Strock, Frances Crable, Nikolas VanKeersbilck, Humair Raziuddin, Theressa Ewa, Samira Umar, Andrew L. King, Miquel Gonzelez-Meler, and Brice Loose
EGUsphere, https://doi.org/10.5194/egusphere-2023-74, https://doi.org/10.5194/egusphere-2023-74, 2023
Preprint archived
Short summary
Short summary
In this paper, we seek to further elucidate the methane budget in the Northwest Passage, and detect its main association with the environmental features and the biogenic control within the water column and the sea ice. Collectively, we can divide the entire study area into: (a) sea ice, with methane excess; (b) meltwaters, characterized by methane oxidations in oversaturated waters; (c) Pacific waters, with high methane oxidation rates; (d) Atlantic regime, mostly abiotic for methane.
Alessandra D'Angelo, Cynthia Garcia-Eidell, Christopher Knowlton, Andrea Gingras, Holly Morin, Dwight Coleman, Jessica Kaelblein, Humair Raziuddin, Nikolas VanKeersbilck, Tristan J. Rivera, Krystian Kopka, Yoana Boleaga, Korenna Estes, Andrea Nodal, Ericka Schulze, Theressa Ewa, Mirella Shaban, Samira Umar, Rosanyely Santana, Jacob Strock, Erich Gruebel, Michael Digilio, Rick Ludkin, Donglai Gong, Zak Kerrigan, Mia Otokiak, Frances Crable, Nicole Trenholm, Triston Millstone, Kevin Montenegro, Melvin Kim, Gibson Porter, Tomer Ketter, Max Berkelhammer, Andrew L. King, Miguel Angel Gonzalez-Meler, and Brice Loose
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-306, https://doi.org/10.5194/essd-2022-306, 2022
Manuscript not accepted for further review
Short summary
Short summary
The Canadian Arctic Archipelago (CAA) is characterized by advection from the Pacific (PW) and Atlantic waters (AW), ice melt, local river discharge and net precipitation. In a changing Arctic, it is crucial to monitor the hydrography of this Region. We combined chemical and physical parameters into an Optimal MultiParameter Analysis, for the detection of the source water fractions characterizing the CAA. The outcome was effective about the PW and AW, and discriminated the meltwaters origin.
Lisa Thompson, Madison Smith, Jim Thomson, Sharon Stammerjohn, Steve Ackley, and Brice Loose
The Cryosphere, 14, 3329–3347, https://doi.org/10.5194/tc-14-3329-2020, https://doi.org/10.5194/tc-14-3329-2020, 2020
Short summary
Short summary
The offshore winds around Antarctica can reach hurricane strength and produce intense cooling, causing the surface ocean to form a slurry of seawater and ice crystals. For the first time, we observed a buildup of heat and salt in the surface ocean, caused by loose ice crystal formation. We conclude that up to 1 m of ice was formed per day by the intense cooling, suggesting that unconsolidated crystals may be an important part of the total freezing that happens around Antarctica.
Cara C. Manning, Rachel H. R. Stanley, David P. Nicholson, Brice Loose, Ann Lovely, Peter Schlosser, and Bruce G. Hatcher
Biogeosciences, 16, 3351–3376, https://doi.org/10.5194/bg-16-3351-2019, https://doi.org/10.5194/bg-16-3351-2019, 2019
Short summary
Short summary
We measured rates of biological activity and gas exchange in a Canadian estuary during ice melt. We quantified gas exchange using inert, deliberately released tracers and found that the gas transfer rate at > 90 % ice cover was 6 % of the rate for nearly ice-free conditions. We measured oxygen concentration and isotopic composition and used the data to detect changes in the rates of photosynthesis and respiration (autotrophy and heterotrophy) as the ice melted.
Christiane Uhlig, John B. Kirkpatrick, Steven D'Hondt, and Brice Loose
Biogeosciences, 15, 3311–3329, https://doi.org/10.5194/bg-15-3311-2018, https://doi.org/10.5194/bg-15-3311-2018, 2018
Short summary
Short summary
To improve global budgets of the greenhouse gas methane, we studied methane consumption in sea-ice-covered Arctic seawater. The microbes using methane were present in abundances < 1 % in the seawater and sea ice. They consumed methane at rates increasing with increasing methane concentrations. In addition, differences in the methane concentrations and in the types of microbes between the ice and water indicate different microbial or physical processes in the two environments.
Cited articles
Acreman, D. M. and Jeffery, C. D.: The Use of Argo for Validation and Tuning of Mixed Layer Models, Ocean Model., 19, 53–69, https://doi.org/10.1016/j.ocemod.2007.06.005, 2007.
Adcroft, A. and Campin, J.-M.: Rescaled Height Coordinates for Accurate Representation of Free-Surface Flows in Ocean Circulation Models, Ocean Model., 7, 269–284, https://doi.org/10.1016/j.ocemod.2003.09.003, 2004.
Antonov, J., Locarnini, R., Boyer, T., Mishonov, A., and Garcia, H.: World Ocean Atlas 2005 Vol. 2 Salinity, NOAA Atlas NESDIS, 62, NOAA, Silver Spring, Md, 2006.
Bender, M. L., Kinter, S., Cassar, N., and Wanninkhof, R.: Evaluating Gas Transfer Velocity Parameterizations Using Upper Ocean Radon Distributions, J. Geophys. Res., 116, C02010, https://doi.org/10.1029/2009JC005805, 2011.
Blomquist, B. W., Huebert, B. J., Fairall, C. W., and Faloona, I. C.: Determining the sea-air flux of dimethylsulfide by eddy correlation using mass spectrometry, Atmos. Meas. Tech., 3, 1–20, https://doi.org/10.5194/amt-3-1-2010, 2010.
Brainerd, K. E. and Michael, C. G.: Surface Mixed and Mixing Layer Depths, Deep-Sea Res. Pt. I, 42, 1521–1543, https://doi.org/10.1016/0967-0637(95)00068-H, 1995.
Chaudhuri, A. H., Ponte, R. M., and Nguyen, A. T.: A Comparison of Atmospheric Reanalysis Products for the Arctic Ocean and Implications for Uncertainties in Air–Sea Fluxes, J. Climate, 27, 5411–1521, https://doi.org/10.1175/JCLI-D-13-00424.1, 2014.
Cole, S. T., Timmermans, M.-L., Toole, J. M., Krishfield, R. A., and Thwaites, F. T.: Ekman Veering, Internal Waves, and Turbulence Observed under Arctic Sea Ice, J. Phys. Oceanogr., 44, 1306–1328, https://doi.org/10.1175/JPO-D-12-0191.1, 2014.
Comiso, J.: Bootstrap Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS. Boulder, Colorado USA, NASA DAAC at the National Snow and Ice Data Center, 2000.
Crabeck, O., Delille, B., Rysgaard, S., Thomas, D. N., Geilfus, N.-X., Else, B., and Tison, J.-L.: First “in Situ” Determination of Gas Transport Coefficients (DO2, DAr, and DN2) from Bulk Gas Concentration Measurements (O2, N2, Ar) in Natural Sea Ice, J. Geophys. Res.-Oceans, 119, 6655–6668, https://doi.org/10.1002/2014JC009849, 2014.
de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A., and Iudicone, D.: Mixed Layer Depth over the Global Ocean: An Examination of Profile Data and a Profile-Based Climatology, J. Geophys. Res.-Oceans, 109, C12003, https://doi.org/10.1029/2004JC002378, 2004.
Dong, S., Sprintall, J., Gille, S. T., and Talley, L.: Southern Ocean Mixed-Layer Depth from Argo Float Profiles, J. Geophys. Res.-Oceans, 113, C06013, https://doi.org/10.1029/2006JC004051, 2008.
Fenty, I. and Heimbach, P.: Coupled Sea Ice–Ocean-State Estimation in the Labrador Sea and Baffin Bay, J. Phys. Oceanogr., 43, 884–904, https://doi.org/10.1175/JPO-D-12-065.1, 2012.
Forget, G., Campin, J.-M., Heimbach, P., Hill, C. N., Ponte, R. M., and Wunsch, C.: ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation, Geosci. Model Dev., 8, 3071–3104, https://doi.org/10.5194/gmd-8-3071-2015, 2015.
Gerdes, R. and KöBerle, C.: Comparison of Arctic Sea Ice Thickness Variability in IPCC Climate of the 20th Century Experiments and in Ocean-Sea Ice Hindcasts, J. Geophys. Res.-Oceans, 112, C04S13, https://doi.org/10.1029/2006JC003616, 2007.
Heimbach, P., Menemenlis, D., Losch, M., Campin, J.-M., and Hill, C.: On the Formulation of Sea-Ice Models. Part 2: Lessons from Multi-Year Adjoint Sea-Ice Export Sensitivities through the Canadian Arctic Archipelago, Ocean Model., 33, 145–158, https://doi.org/10.1016/j.ocemod.2010.02.002, 2010.
Ho, D. T., Law, C. S., Smitth, M. J., Schlosser, P., Harvey, M., and Hill, P.: Measurements of Air-Sea Gas Exchange at High Wind Speeds in the Southern Ocean: Implications for Global Parameterizations, Geophys. Res. Lett., 33, L16611, https://doi.org/10.1029/2006GL026817, 2006.
Hyndman, R. J. and Koehler, A. B.: Another Look at Measures of Forecast Accuracy, Int. J. Forecasting, 22, 679–688, https://doi.org/10.1016/j.ijforecast.2006.03.001, 2006.
Ivanova, N., Pedersen, L. T., Tonboe, R. T., Kern, S., Heygster, G., Lavergne, T., Sørensen, A., Saldo, R., Dybkjær, G., Brucker, L., and Shokr, M.: Inter-comparison and evaluation of sea ice algorithms: towards further identification of challenges and optimal approach using passive microwave observations, The Cryosphere, 9, 1797–1817, https://doi.org/10.5194/tc-9-1797-2015, 2015.
Jackson, J. M., Carmack, E. C., McLaughlin, F. A., Allen, S. E., and Ingram, R. G.: Identification, Characterization, and Change of the near-Surface Temperature Maximum in the Canada Basin, 1993–2008, J. Geophys. Res., 115, C05021, https://doi.org/10.1029/2009JC005265, 2010.
Jähne, B. and Haubecker, H.: Air-Water Gas Exchange, Annu. Rev. Fluid Mech., 30, 443–448, https://doi.org/10.1146/annurev.fluid.30.1.443, 1998.
Johnson, M., Gaffigan, S., Hunke, E., and Gerdes, R.: A Comparison of Arctic Ocean Sea Ice Concentration among the Coordinated AOMIP Model Experiments, J. Geophys. Res.-Oceans, 112, C04S11, https://doi.org/10.1029/2006JC003690, 2007.
Johnson, M., Proshutinsky, A., Aksenov, Y., Nguyen, A. T., Lindsay, R., Haas, C., Zhang, J., Diansky, N., Kwok, R., Maslowski, W., and Haekkinen, S.: Evaluation of Arctic Sea Ice Thickness Simulated by Arctic Ocean Model Intercomparison Project Models, J. Geophys. Res., 117, C00D13, https://doi.org/10.1029/2011JC007257, 2012.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., and Zhu, Y.: The NCEP/NCAR 40-year reanalysis project, B. Am. Meteorol. Soc., 77, 437–471, 1996.
Kara, A. B.: Mixed Layer Depth Variability over the Global Ocean, J. Geophys. Res., 108, 3079, https://doi.org/10.1029/2000JC000736, 2003.
Kohout, A. L. and Meylan, M. H.: An Elastic Plate Model for Wave Attenuation and Ice Floe Breaking in the Marginal Ice Zone, J. Geophys. Res., 113, C09016, https://doi.org/10.1029/2007JC004434, 2008.
Krishfield, R., Toole, J., Proshutinsky, A., and Timmermans, M.-L.: Automated Ice-Tethered Profilers for Seawater Observations under Pack Ice in All Seasons, J. Atmos. Ocean. Tech., 25, 2091–2105, https://doi.org/10.1175/2008JTECHO587.1, 2008.
Krishfield, R. A., Proshutinsky, A., Tateyama, K., Williams, W. J., Carmack, E. C., McLaughlin, F. A., and Timmermans, M.-L.: Deterioration of Perennial Sea Ice in the Beaufort Gyre from 2003 to 2012 and Its Impact on the Oceanic Freshwater Cycle, J. Geophys. Res.-Oceans, 119, 1271–1305, https://doi.org/10.1002/2013JC008999, 2014.
Large, W. G., McWilliams, J. C., and Doney, S. C.: Oceanic Vertical Mixing: A Review and a Model with a Nonlocal Boundary Layer Parameterization, Rev. Geophys., 32, 363–403, https://doi.org/10.1029/94RG01872, 1994.
Legge, O. J., Bakker, D. C. E., Johnson, M. T., Meredith, M. P., Venables, H. J., Brown, P. J., and Lee, G. A.: The Seasonal Cycle of Ocean-Atmosphere CO2 Flux in Ryder Bay, West Antarctic Peninsula, Geophys. Res. Lett., 42, 2934–2942, https://doi.org/10.1002/2015GL063796, 2015.
Lindsay, R., Wensnahan, M., Schweiger, A., and Zhang, J.: Evaluation of Seven Different Atmospheric Reanalysis Products in the Arctic, J. Climate, 27, 2588–2606, 2014.
Lindsay, R. W. and Rothrock, D. A.: Arctic Sea Ice Leads from Advanced Very High Resolution Radiometer Images, J. Geophys. Res., 100, 4533–4544, 1995.
Locarnini, R., Mishonov, J., Boyer, T., Antonov, J. I., and Garcia, H. E.: World Ocean Atlas 2005, Vol. 1 Temreature, NOAA Atlas NESDIS 62 (NOAA, Silver Spring, Md.), 2006.
Loose, B., McGillis, W. R., Schlosser, P., Perovich, D., and Takahashi, T.: Effects of Freezing, Growth, and Ice Cover on Gas Transport Processes in Laboratory Seawater Experiments, Geophys. Res. Lett., 36, L05603, https://doi.org/10.1029/2008GL036318, 2009.
Loose, B., Schlosser, P., Perovich, D., Ringelberg, D., Ho, D. T., Takahashi, T., Richter-Menge, J., Reynolds, C. M., Mcgillis, W. R., and Tison, J.-L.: Gas Diffusion through Columnar Laboratory Sea Ice: Implications for Mixed-Layer Ventilation of CO2 in the Seasonal Ice Zone, Tellus B, 63, 23–39, https://doi.org/10.1111/j.1600-0889.2010.00506.x, 2011.
Loose, B., McGillis, W. R., Perovich, D., Zappa, C. J., and Schlosser, P.: A Parameter Model of Gas Exchange for the Seasonal Sea Ice Zone, Ocean Sci., 10, 1–16, https://doi.org/10.5194/os-10-1-2014, 2014.
Loose, B., Kelly, R., Bigdeli, A., Krishfield, R. A., Rutgers Van Der Loeff, M., and Moran, B.: How Well Does Wind Speed Predict Air-Sea Gas Transfer in the Sea Ice Zone? A Synthesis of Radon Deficit Profiles in the Upper Water Column of the Arctic Ocean, J. Geophys. Res., accepted, 2016.
Lorbacher, K., Dommenget, D., Niiler, P. P., and Köhl, A.: Ocean Mixed Layer Depth: A Subsurface Proxy of Ocean-Atmosphere Variability, J. Geophys. Res.-Oceans, 111, C07010, https://doi.org/10.1029/2003JC002157, 2006.
Losch, M., Menemenlis, D., Campin, J.-M., Heimbach, P., and Hill, C.: On the Formulation of Sea-Ice Models. Part 1: Effects of Different Solver Implementations and Parameterizations, Ocean Model., 33, 129–144, https://doi.org/10.1016/j.ocemod.2009.12.008, 2010.
Marshall, J., Adcroft, A., Hill, C., Perelman, L., and Heisey, C.: A Finite-Volume, Incompressible Navier Stokes Model for Studies of the Ocean on Parallel Computers, J. Geophys. Res.-Oceans, 102, 5753–5766, https://doi.org/10.1029/96JC02775, 1997.
McPhee, M. G.: Advances in Understanding Ice–ocean Stress during and since AIDJEX, Cold Reg. Sci. Technol., 76–77, 24–36, https://doi.org/10.1016/j.coldregions.2011.05.001, 2012.
McPhee, M. G., Proshutinsky, A., Morison, J. H., Steele, M., and Alkire, M. B.: Rapid Change in Freshwater Content of the Arctic Ocean, Geophys. Res. Lett., 36, L04606, https://doi.org/10.1029/2008GL036587, 2009.
McPhee, M. and Martinson, D. G.: Turbulent Mixing under Drifting Pack Ice in the Weddell Sea, Science, 263, 218–220, 1992.
Menemenlis, D., Fukumori, I., and Lee, T.: Using Green's Functions to Calibrate an Ocean General Circulation Model, Mon. Weather Rev., 133, 1224–1240, https://doi.org/10.1175/MWR2912.1, 2005.
Menemenlis, D., Campin, J.-M., Heimbach, P., Hill, C., Lee, T., Nguyen, A., Schodlok, M., and Zhang, H.: ECCO2: High Resolution Global Ocean and Sea Ice Data Synthesis, Mercator Ocean Quarterly Newsletter, 31, 13–21, 2008.
Morison, J. H., McPhee, M. G., Curtin, T. B., and Paulson, C. A.: The oceanography of winter leads, J. Geophys. Res., 97, 199–11, 1992.
Nguyen, A. T., Menemenlis, D., and Kwok, R.: Improved Modeling of the Arctic Halocline with a Subgrid-Scale Brine Rejection Parameterization, J. Geophys. Res., 114, C11014, https://doi.org/10.1029/2008JC005121, 2009.
Nguyen, A. T., Menemenlis, D., and Kwok, R.: Arctic Ice-Ocean Simulation with Optimized Model Parameters: Approach and Assessment, J. Geophys. Res.-Oceans, 116, C04025, https://doi.org/10.1029/2010JC006573, 2011.
Nguyen, A. T., Kwok, R., and Menemenlis, D.: Source and Pathway of the Western Arctic Upper Halocline in a Data-Constrained Coupled Ocean and Sea Ice Model, J. Phys. Oceanogr., 42, 802–823, https://doi.org/10.1175/JPO-D-11-040.1, 2012.
Nightingale, P. D., Malin, G. M., Law, C., Watson, A., Liss, P. S., Liddicoat, M. I., Boutin, J., and Upstill-Goddard, R. C.: In Situ Evaluation of Air-Sea Gas Exchange Parameterizations Using Novel Conservative and Volatile Tracers, Global Biogeochem. Cy., 14, 373–387, 2000.
Ohno, Y., Iwasaka, N., Kobashi, F., and Sato, Y.: Mixed Layer Depth Climatology of the North Pacific Based on Argo Observations, J. Oceanogr., 65, 1–16, https://doi.org/10.1007/s10872-009-0001-4, 2008.
Onogi, K., Tsutsui, J., Koide, H., Sakamoto, M., Kobayashi, S., Hatsushika, H., Matsumoto, T. et al.: The JRA-25 Reanalysis, J. Meteorol. Soc. Jpn. Ser. II, 85, 369–432, https://doi.org/10.2151/jmsj.85.369, 2007.
Peng, T.-H., Broecker, W. S., Mathieu, G. G., and Li, Y.-H.: Radon Evasion Rates in the Atlantic and Pacific Oceans as Determined during the Geosecs Program, J. Geophys. Res., 84, 2471–2486, 1979.
Peralta-Ferriz, C. and Woodgate, R. A.: Seasonal and Interannual Variability of Pan-Arctic Surface Mixed Layer Properties from 1979 to 2012 from Hydrographic Data, and the Dominance of Stratification for Multiyear Mixed Layer Depth Shoaling, Prog. Oceanogr., 134, 19–53, https://doi.org/10.1016/j.pocean.2014.12.005, 2015.
Perovich, D. and Maykut, G. A.: Solar Heating of a Stratified Ocean in the Presence of a Static Ice Cover, J. Geophys. Res., 95, 18233–18245, https://doi.org/10.1029/JC095iC10p18233, 1990.
Proshutinsky, A., Steele, M., Zhang, J., Holloway, G., Steiner, N., Hakkinen, S., Holland, D., Gerdes, R., Koeberle, C., Karcher, M., and Johnson, M.: Multinational Effort Studies Differences among Arctic Ocean Models, EOS Transact American Geophysical Union, 82, 637–644, https://doi.org/10.1029/01EO00365, 2001.
Proshutinsky, A., Gerdes, R., Holland, D., Holloway, G. and Steele, M.: AOMIP: Coordinated activities to improve models and model predictions, CLIVAR Exchanges, 13 (1), (Exchanges; 44), 17, http://eprints.soton.ac.uk/50120/01/Exch_44.pdf (last access: 20 September 2015), 2008.
Proshutinsky, A., Krishfield, R., Timmermans, M.-L., Toole, J., Carmack, E., McLaughlin, F., Williams, W. J., Zimmermann, S., Itoh, M., and Shimada, K.: Beaufort Gyre Freshwater Reservoir: State and Variability from Observations, J. Geophys. Res., 114, C00A10, https://doi.org/10.1029/2008JC005104, 2009.
Rutgers Van Der Loeff, M., Cassar, N., Nicolaus, M., Rabe, B., and Stimac, I.: The Influence of Sea Ice Cover on Air-Sea Gas Exchange Estimated with Radon-222 Profiles, J. Geophys. Res.-Oceans, 119, 2735–2751, https://doi.org/10.1002/2013JC009321, 2014.
Salter, M. E., Upstill-Goddard, R. C., Nightingale, P. D., Archer, S. D., Blomquist, B., Ho, D. T., Huebert, B., Schlosser, P., and Yang, M.: Impact of an Artificial Surfactant Release on Air-Sea Gas Fluxes during Deep Ocean Gas Exchange Experiment II, J. Geophys. Res., 116, C11016, https://doi.org/10.1029/2011JC007023, 2011.
Shaw, W. J., Stanton, T. P., McPhee, M. G., Morison, J. H., and Martinson, D. G.: Role of the Upper Ocean in the Energy Budget of Arctic Sea Ice during SHEBA, J. Geophys. Res., 114, C06012, https://doi.org/10.1029/2008JC004991, 2009.
Shimada, K., Carmack, E. C., Hatakeyama, K., and Takizawa, T.: Varieties of Shallow Temperature Maximum Waters in the Western Canadian Basin of the Arctic Ocean, Geophys. Res. Lett., 28, 3441–3444, 2001.
Smethie, W. M., Takahashi, T., Chipman, D. W., and Ledwell, J. R.: Gas Exchange and CO2 Flux in the Tropical Atlantic Ocean Determined from 222Rn and pCO2 Measurements, J. Geophys. Res.-Oceans, 90, 7005–7022, 1985.
Spall, M. A., Pickart, R. S., Fratantoni, P. S., and Plueddemann, A. J.: Western Arctic Shelfbreak Eddies: Formation and Transport, J. Phys. Oceanogr., 38, 1644–1668, https://doi.org/10.1175/2007JPO3829.1, 2008.
Sweeney, C., Gloor, E., Jacobson, A. R., Key, R. M., McKinley, G., Sarmiento, J.-L., and Wanninkhof, R.: Constraining Global Air-Sea Gas Exchange for CO2 with Recent Bomb 14C Measurements, Global Biogeochem. Cy., 21, GB2015, https://doi.org/10.1029/2006GB002784, 2007.
Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., and Watson, A.: Climatological Mean and Decadal Change in Surface Ocean pCO2, and Net Sea-Air CO2 Flux over the Global Oceans, Deep-Sea Res. Pt. II, 56, 554–577, 2009.
Thomson, R. E. and Fine, I. V.: Estimating Mixed Layer Depth from Oceanic Profile Data, J. Atmos. Ocean. Tech., 20, 319–329, https://doi.org/10.1175/1520-0426(2003)020<0319:EMLDFO>2.0.CO;2, 2003.
Timmermans, M.-L., Proshutinsky, A., Krishfield, R. A., Perovich, D. K., Richter-Menge, J. A., Stanton, T. P., and Toole, J. M.: Surface Freshening in the Arctic Ocean's Eurasian Basin: An Apparent Consequence of Recent Change in the Wind-Driven Circulation, J. Geophys. Res., 116, C00D03, https://doi.org/10.1029/2011JC006975, 2011.
Toole, J. M., Timmermans, M. L., Perovich, D. K., Krishfield, R. A., Proshutinsky, A., and Richter-Menge, J. A.: Nfluences of the Ocean Surface Mixed Layer and Thermohaline Stratification on Arctic Sea Ice in the Central Canada Basin, J. Geophys. Res., 115, C10018, https://doi.org/10.1029/2009JC005660, 2010.
Wadhams, P., Squire, V. A., Ewing, J. A., and Pascal, R. W.: The Effect of the Marginal Ice Zone on the Directional Wave Spectrum of the Ocean, J. Phys. Oceanogr., 16, 358–376, 1986.
Wanninkhof, R.: Relationship between Wind Speed and Gas Exchange over the Ocean, J. Geophys. Res.-Oceans, 97, 7373–7382, https://doi.org/10.1029/92JC00188, 1992.
Wanninkhof, R. and McGillis, W. R.: A Cubic Relationship between Air-Sea CO2 Exchangeand Wind Speed, Geophys. Res. Lett., 26, 1889–1892, 1999.
Wijesekera, H. W. and Gregg, M. C.: Surface Layer Response to Weak Winds, Westerly Bursts, and Rain Squalls in the Western Pacific Warm Pool, J. Geophys. Res.-Oceans, 101, 977–997, https://doi.org/10.1029/95JC02553, 1996.
Williams, A. J., Thwaites, F. T., Morrison, A. T., Toole, J. M., and Krishfield, R. A.: Motion Tracking in an Acoustic Point-Measurement Current Meter, IEEE, https://doi.org/10.1109/OCEANSSYD.2010.5603862, 2010.
Wunsch, C. and Heimbach, P.: Dynamically and Kinematically Consistent Global Ocean Circulation and Ice State Estimates, in: In Ocean Circulation and Climate: A 21 Century Perspective, Elsevier, BV, https://dash.harvard.edu/handle/1/12136112 (last access: 14 January 2017), 2013.
Zemmelink, H. J., Delille, B., Tison, J. L., Hintsa, E. J., Houghton, L., and Dacey, J. W. H.: CO2 Deposition over Multi-Year Ice of the Western Weddell Sea, Geophys. Res. Lett., 33, L13606, https://doi.org/10.1029/2006GL026320, 2006.
Zemmelink, H. J., Dacey, J. W. H., Houghton, L., Hintsa, E. J., and Liss, P. S.: Dimethylsulfide Emissions over the Multi-Year Ice of the Western Weddell Sea, Geophys. Res. Lett., 35, L06603, https://doi.org/10.1029/2007GL031847, 2008.
Zhang, J. and Rothrock, D. A.: Modeling Global Sea Ice with a Thickness and Enthalpy Distribution Model in Generalized Curvilinear Coordinates, Mon. Weather Rev., 131, 845–861, https://doi.org/10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2, 2003.
Zhao, M. and Timmermans, M.-L.: Vertical Scales and Dynamics of Eddies in the Arctic Ocean's Canada Basin, J. Geophys. Res.-Oceans, 120, 8195–8209, https://doi.org/10.1002/2015JC011251, 2015.
Zhao, M., Timmermans, M.-L., Cole, S., Krishfield, R., Proshutinsky, A., and Toole, J.: Characterizing the Eddy Field in the Arctic Ocean Halocline, J. Geophys. Res.-Oceans, 119, 8800–8817, https://doi.org/10.1002/2014JC010488, 2014.
Zhao, M., Timmermans, M. L., Cole, S., Krishfield, R., and Toole, J.: Evolution of the eddy field in the Arctic Ocean's Canada Basin, 2005–2015, Geophys. Res. Lett., 43, 8106–8114, 2016.
Short summary
We evaluated if numerical model output helps us to better estimate the physical forcing that drives the air–sea gas exchange rate (k) in sea ice zones. We used 36, 9 and 2 km horizontal resolution of regional MITgcm configuration with fine vertical spacing to evaluate the capability of the model to reproduce sea ice velocity, concentration, mixed layer depth and water velocities. We found that even the coarse-resolution model can make a modest contribution to gas exchange parameterization.
We evaluated if numerical model output helps us to better estimate the physical forcing that...