Articles | Volume 12, issue 4
https://doi.org/10.5194/os-12-909-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-12-909-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Accessing diverse data comprehensively – CODM, the COSYNA data portal
Gisbert Breitbach
CORRESPONDING AUTHOR
Helmholtz-Zentrum Geesthacht, Institute for Coastal Research, Max-Planck-Str. 1, 21502 Geesthacht, Germany
Hajo Krasemann
Helmholtz-Zentrum Geesthacht, Institute for Coastal Research, Max-Planck-Str. 1, 21502 Geesthacht, Germany
Daniel Behr
Helmholtz-Zentrum Geesthacht, Institute for Coastal Research, Max-Planck-Str. 1, 21502 Geesthacht, Germany
Steffen Beringer
Helmholtz-Zentrum Geesthacht, Institute for Coastal Research, Max-Planck-Str. 1, 21502 Geesthacht, Germany
Uwe Lange
Brockmann Consult, Geesthacht, Germany
Nhan Vo
Smile Consult GmbH, Hannover, Germany
Friedhelm Schroeder
Helmholtz-Zentrum Geesthacht, Institute for Coastal Research, Max-Planck-Str. 1, 21502 Geesthacht, Germany
Related authors
Wilhelm Petersen, Susanne Reinke, Gisbert Breitbach, Michail Petschatnikov, Henning Wehde, and Henrike Thomas
Earth Syst. Sci. Data, 10, 1729–1734, https://doi.org/10.5194/essd-10-1729-2018, https://doi.org/10.5194/essd-10-1729-2018, 2018
Short summary
Short summary
From 2002 to 2005 a FerryBox system was installed aboard two different ferries traveling between Cuxhaven (Germany) and Harwich (UK) on a daily basis. The FerryBox system is an automated flow-through monitoring system for measuring oceanographic and biogeochemical parameters installed on ships of opportunity. The data set provides the parameters water temperature, salinity, dissolved oxygen and chlorophyll a fluorescence.
Burkard Baschek, Friedhelm Schroeder, Holger Brix, Rolf Riethmüller, Thomas H. Badewien, Gisbert Breitbach, Bernd Brügge, Franciscus Colijn, Roland Doerffer, Christiane Eschenbach, Jana Friedrich, Philipp Fischer, Stefan Garthe, Jochen Horstmann, Hajo Krasemann, Katja Metfies, Lucas Merckelbach, Nino Ohle, Wilhelm Petersen, Daniel Pröfrock, Rüdiger Röttgers, Michael Schlüter, Jan Schulz, Johannes Schulz-Stellenfleth, Emil Stanev, Joanna Staneva, Christian Winter, Kai Wirtz, Jochen Wollschläger, Oliver Zielinski, and Friedwart Ziemer
Ocean Sci., 13, 379–410, https://doi.org/10.5194/os-13-379-2017, https://doi.org/10.5194/os-13-379-2017, 2017
Short summary
Short summary
The Coastal Observing System for Northern and Arctic Seas (COSYNA) was established in order to better understand the complex interdisciplinary processes of northern seas and the Arctic coasts in a changing environment. Particular focus is given to the heavily used German Bight in the North Sea. The automated observing and modelling system is designed to monitor real-time conditions, to provide short-term forecasts and data products, and to assess the impact of anthropogenically induced change.
Wilhelm Petersen, Susanne Reinke, Gisbert Breitbach, Michail Petschatnikov, Henning Wehde, and Henrike Thomas
Earth Syst. Sci. Data, 10, 1729–1734, https://doi.org/10.5194/essd-10-1729-2018, https://doi.org/10.5194/essd-10-1729-2018, 2018
Short summary
Short summary
From 2002 to 2005 a FerryBox system was installed aboard two different ferries traveling between Cuxhaven (Germany) and Harwich (UK) on a daily basis. The FerryBox system is an automated flow-through monitoring system for measuring oceanographic and biogeochemical parameters installed on ships of opportunity. The data set provides the parameters water temperature, salinity, dissolved oxygen and chlorophyll a fluorescence.
Burkard Baschek, Friedhelm Schroeder, Holger Brix, Rolf Riethmüller, Thomas H. Badewien, Gisbert Breitbach, Bernd Brügge, Franciscus Colijn, Roland Doerffer, Christiane Eschenbach, Jana Friedrich, Philipp Fischer, Stefan Garthe, Jochen Horstmann, Hajo Krasemann, Katja Metfies, Lucas Merckelbach, Nino Ohle, Wilhelm Petersen, Daniel Pröfrock, Rüdiger Röttgers, Michael Schlüter, Jan Schulz, Johannes Schulz-Stellenfleth, Emil Stanev, Joanna Staneva, Christian Winter, Kai Wirtz, Jochen Wollschläger, Oliver Zielinski, and Friedwart Ziemer
Ocean Sci., 13, 379–410, https://doi.org/10.5194/os-13-379-2017, https://doi.org/10.5194/os-13-379-2017, 2017
Short summary
Short summary
The Coastal Observing System for Northern and Arctic Seas (COSYNA) was established in order to better understand the complex interdisciplinary processes of northern seas and the Arctic coasts in a changing environment. Particular focus is given to the heavily used German Bight in the North Sea. The automated observing and modelling system is designed to monitor real-time conditions, to provide short-term forecasts and data products, and to assess the impact of anthropogenically induced change.
Katja Metfies, Friedhelm Schroeder, Johanna Hessel, Jochen Wollschläger, Sebastian Micheller, Christian Wolf, Estelle Kilias, Pim Sprong, Stefan Neuhaus, Stephan Frickenhaus, and Wilhelm Petersen
Ocean Sci., 12, 1237–1247, https://doi.org/10.5194/os-12-1237-2016, https://doi.org/10.5194/os-12-1237-2016, 2016
Short summary
Short summary
Here we introduce a new molecular-based observation strategy for high-resolution assessment of marine microbes (e.g., microalgae) in space and time. The observation strategy combines automated sampling on board ships or observation platforms with a variety of different molecular genetic methods for refined observation of marine microbes at adaquate scales, in order to better understand the impact of climate change on this group of organisms, which are at the base of marine food webs.
Jaime Pitarch, Gianluca Volpe, Simone Colella, Hajo Krasemann, and Rosalia Santoleri
Ocean Sci., 12, 379–389, https://doi.org/10.5194/os-12-379-2016, https://doi.org/10.5194/os-12-379-2016, 2016
Short summary
Short summary
Several operational satellite chlorophyll a (CHL) in the Baltic Sea were tested at a regional scale. Comparison to an extensive in situ CHL dataset showed low linearity. Bias-corrected CHL annual cycles were computed. The Gulf of Bothnia displays a single CHL peak during spring. In Skagerrak and Kattegat, there is a small bloom in spring and a minimum in summer. In the central Baltic, CHL follows a dynamic of a mild spring bloom followed by a much stronger bloom in summer.
Cited articles
Baschek, B., Brix, H., Badewien, T., Breitbach, G., Colijn, F., Doerffer, R., Emeis, K.-C., Eschenbach, C., Friedrich, J., Fischer, P., Garthe, S., Horstmann, J., Ohle, N., Petersen, W., Riethmueller, R., Roettgers, R., Schlueter, M., Schroeder, F., Schulz-Stellenfleth, J., Seemann, J., Stanev, E., Winter, C., Wirtz, K., Zielinski, O., and Ziemer, F.: COSYNA – Coastal Observing System for Northern and Arctic Seas, Special Issue, Ocean Science and BioGeoScience, https://doi.org/10.5194/os-2016-31, 2016.
Behrens, A. and Guenther, H.: Operational wave prediction of extreme storms in Northern Europe, Nat. Hazards, 49, 387–399, 2009.
Blower, J. D., Gemmell, A. L., Griffiths, G. H., Haines, K., Santokhee, A., and Yang, X.: A Web Map Service implementation for the visualization of multidimensional gridded environmental data, Environ. Modell. Software, 47, 218–224, 2013.
Botts, R.: OpenGIS® SensorML: Model and XML Encoding Standard, https://portal.opengeospatial.org/files/?artifact_id=55939, 2014.
Botts, R. and Reed, D. (Eds.): OGC® Sensor Web Enablement: Overview And High Level Architecture, http://portal.opengeospatial.org/files/?artifact_id=15540, 2006.
Brittain, J. and Darwin, I. F.: Tomcat: the definitive guide at www.books.google.com, 2008.
Carlson, D. and Pfeiffenberger, H.: Earth System Science Data, the data publishing journal, D-Lib Magazine, January/February 2011, Vol. 17, https://doi.org/10.1045/january2011-pfeiffenberger, 2009.
Steve Coast: OpenStreetMap, https://www.openstreetmap.org, 2004.
Cornillon, P., Adams, J., Blumenthal, M. B., Chassignet, E., Davis, E., Hankin, S., Kinter, J., Mendelssohn, R., Potemra, J. T., Srinivasan, A., and Sirott, J.: NVODS and the development of OPeNDAP, Oceanography, 22, 116–127, 2009.
Diepenbroek, M., Grobe, H., Reinke, M., Schindler, U., Schlitzer, R., Sieger, R., and Wefer, G.: PANGAEA – an information system for environmental sciences, Comput. Geosci., 28, 1201–1210, 2002.
Doerffer, R. and Schiller, H.: The MERIS Case 2 water algorithm, Int. J. Remote Sens., 28, 517–535, https://doi.org/10.1080/01431160600821127, 2007.
Donlon, C. J., Martin, M., Stark, J., Roberts-Jones, J., Fiedler, E., and Wimmer, W.: The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system, Remote Sens. Environ., 116, 140–158, 2012.
Eaton, G., Drach, T., and Hankin, S.: netCDF Climate and Forecast (CF) Metadata Conventions, Version 1.5, http://cfconventions.org/Data/cf-conventions/cf-conventions-1.5/build/cf-conventions.html, 2010.
Geoserver Project: Geoserver, http://docs.geoserver.org/2.4.x/en/user/index.html, 2001.
INSPIRE: Directive 2007/2/EC of the European Parliament and of the Council of 14 March 2007 establishing an Infrastructure for Spatial Information in the European Community, http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2007:108:0001:0014:EN:PDF, 2007.
IOOS Office: US Integrated Ocean Observing System: A Blueprint for Full Capability Version 1.0, http://www.ioos.noaa.gov/library/us_ioos_blueprint_ver1.pdf, 2010.
ISO 19115: Geographic information – Metadata, http://www.iso.org, 2003.
Lefort, L., Henson, C., and Taylor, K. (Eds.): Semantic Sensor Network XG Final Report, http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/, 2011.
Lehfeldt, R. and Reimers, H.-C.: Informations-Infrastrukturen fuer Nord- und Ostseekueste als Beitrag zu einem Integrierten Kuestenzonenmanagement. Informations-Infrastrukturen fuer ein Integriertes Kuesteningenieurwesen (03 KIS 049, KFKI) und fuer einen Integrierten Kuestengewaesserschutz (03F0412B, LLUR), Abschlussbericht 1 September 2004–31 Oktober 2008, http://www.nokis.org/fileadmin/publications/reports/20090730-03KIS049-Abschlussbericht-1-2.pdf, 2009.
Lulla, K., Nellis, M. D., and Rundquist, B.: The Global Earth Observation System of Systems (GEOSS): a vital source for information, Geocarto International, 29, 591–591, 2014.
Na, A. and Priest, M.: Sensor observation service, Implementation Standard OGC, http://portal.opengeospatial.org/files/?artifact_id=26667, 2007.
Nebert, W. and Vretanos, P.: OpenGIS® Catalogue Services Specification, http://portal.opengeospatial.org/files/?artifact_id=20555, 2007.
Novellino, A., Gorringe, P., Schaap, D., Pouliquen, S., Rickards, L., and Manzella, G.: European Marine Observation Data Network – EMODnet Physics, IEEE Xplore, 1–3, ISBN: 978-1-4799-5707-1, INSPEC Accession Number: 14562592, 2014.
Parkinson, C. L., Ward, A., and King, M. D. (Eds.): Earth Science Reference Handbook – A Guide to NASA's Earth Science Program and Earth Observing Satellite Missions, National Aeronautics and Space Administration Washington, DC, available at: http://eospso.gsfc.nasa.gov/ftp_docs/2006ReferenceHandbook.pdf, 2006.
Porter, D. E., Dorton, J., Leonard, L., Kelsey, H., Ramage, D., Cothran, J., Jones, A., Galvarino, C., Subramanian, V., andHernandez, D.: Integration Environmental Monitoring and Observing Systems in Support of Science To Inform Decision-Making, in: Case Studies for the Southeast, edited by: Liu, Y., Kerkering, H., and Weisberg, R. H., Coastal Observing Systems, Elsevier, ISBN: 978-0-12-802022-7, 416–428 2015.
Rew, R. and Davis, G.: NetCDF: an interface for scientific data access in Computer Graphics and Applications, IEEE, 10, 4, https://doi.org/10.1109/38.56302, 1990.
Schut, P. (Ed.): OpenGIS® Web Processing Service, Open Geospatial Consortium, Wayland, MA, USA, 2007.
SeaDataNet: Standards for Data Quality Control, http://www.seadatanet.org/standards_software/data_quality_control, 2010.
Seemann, J., Ziemer, F., Gurgel, K. W., Schlick, T., and Voulgaris, G.: Hf Radar Based Current Observation System In The German Bight, Ieee – Oceans Spain Book Series, OCEANS-IEEE Published, 2011.
Stanev, E. V., Schulz-Stellenfleth, J., Staneva, J., Grayek, S., Seemann, J., and Petersen, W.: Coastal observing and forecasting system for the German Bight – estimates of hydrophysical states, Ocean Sci., 7, 569–583, https://doi.org/10.5194/os-7-569-2011, 2011.
Stips, A., Bolding, K., Pohlmann, T., and Burchard, H.: Simulating the temporal and spatial dynamics of the North Sea using the new model GETM (general estuarine transport model), Ocean Dynam., 54, 266–283, 2004.
Trull, T. W., Schulz, E., Bray, S. G., Pender, L., McLaughlan, D., Tilbrook, B., Rosenberg, M., and Lynch, T.: The Australian Integrated Marine Observing System Southern Ocean Time Series facility, OCEANS, IEEE, Sydney, 24–27 May 2010, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5603514, 2010.
Vretanos, P. A.: OpenGIS® Web Feature Service Implementation Specification, http://portal.opengeospatial.org/files/?artifact_id=7176, 2002.
WMS: OGC Web Map Service Interface, edited by: de la Beaujardiere, J., http://portal.opengeospatial.org/files/?artifact_id=4756, 2004.
Short summary
The coastal observation system COSYNA aims to describe the physical and biogeochemical state of a regional coastal system. The COSYNA data management (CODM) is the link between observations, model results and data usage.
The challenge for CODM is the integration of diverse data sources in terms of parameters, dimensionality and observation methods to gain a comprehensive view of the observations.
How this is achieved is described in the paper.
The coastal observation system COSYNA aims to describe the physical and biogeochemical state of...