Articles | Volume 12, issue 4
https://doi.org/10.5194/os-12-875-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-12-875-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Modelling wave–current interactions off the east coast of Scotland
Alessandro D. Sabatino
CORRESPONDING AUTHOR
Marine Population Modelling Group, Department of Mathematics and Statistics, University of Strathclyde, Glasgow, UK
Chris McCaig
Marine Population Modelling Group, Department of Mathematics and Statistics, University of Strathclyde, Glasgow, UK
now at: Brookes Bell, 280 St. Vincent Street, Glasgow, UK
Rory B. O'Hara Murray
Marine Scotland Science, Marine Laboratory, Aberdeen, UK
Michael R. Heath
Marine Population Modelling Group, Department of Mathematics and Statistics, University of Strathclyde, Glasgow, UK
Related authors
Robert J. Wilson, Douglas C. Speirs, Alessandro Sabatino, and Michael R. Heath
Earth Syst. Sci. Data, 10, 109–130, https://doi.org/10.5194/essd-10-109-2018, https://doi.org/10.5194/essd-10-109-2018, 2018
Short summary
Short summary
We provide new maps of the sedimentary environment in the north-west European Continental Shelf. Maps are blended products of interpolated field estimates and statistical predictions. Data products include mud, sand and gravel percentages, median grain sizes, rock cover, carbon and nitrogen content, porosity and permeability, wave and tidal velocities, and natural disturbance rates. These maps can be used in applications such as species distribution modelling and ecosystem modelling.
Robert J. Wilson, Douglas C. Speirs, Alessandro Sabatino, and Michael R. Heath
Earth Syst. Sci. Data, 10, 109–130, https://doi.org/10.5194/essd-10-109-2018, https://doi.org/10.5194/essd-10-109-2018, 2018
Short summary
Short summary
We provide new maps of the sedimentary environment in the north-west European Continental Shelf. Maps are blended products of interpolated field estimates and statistical predictions. Data products include mud, sand and gravel percentages, median grain sizes, rock cover, carbon and nitrogen content, porosity and permeability, wave and tidal velocities, and natural disturbance rates. These maps can be used in applications such as species distribution modelling and ecosystem modelling.
J. A. Bradley, A. M. Anesio, J. S. Singarayer, M. R. Heath, and S. Arndt
Geosci. Model Dev., 8, 3441–3470, https://doi.org/10.5194/gmd-8-3441-2015, https://doi.org/10.5194/gmd-8-3441-2015, 2015
Short summary
Short summary
Recent climate warming causing ice retreat exposes new terrestrial ecosystems that have potentially significant yet largely unexplored roles on large-scale biogeochemical cycling and climate. SHIMMER (Soil biogeocHemIcal Model for Microbial Ecosystem Response) is a new numerical model designed to simulate microbial community establishment and elemental cycling (C, N and P) during initial soil formation in exposed glacier forefields. It is also transferable to other extreme ecosystem types.
W. Melle, J. A. Runge, E. Head, S. Plourde, C. Castellani, P. Licandro, J. Pierson, S. H. Jónasdóttir, C. Johnson, C. Broms, H. Debes, T. Falkenhaug, E. Gaard, A. Gislason, M. R. Heath, B. Niehoff, T. G. Nielsen, P. Pepin, E. K. Stenevik, and G. Chust
Earth Syst. Sci. Data, 7, 223–230, https://doi.org/10.5194/essd-7-223-2015, https://doi.org/10.5194/essd-7-223-2015, 2015
Cited articles
Adcock, T., Taylor, P., Yan, S., Ma, Q., and Janssen, P.: Did the Draupner wave occur in a crossing sea?, P. Roy. Soc. Lond. A-Conta., 467, 3004–3021, 2011.
Adcock, T. A., Draper, S., Houlsby, G. T., Borthwick, A. G., and Serhadlıoğlu, S.: The available power from tidal stream turbines in the Pentland Firth, P. Roy. Soc. Lond. A Mat., 469, 20130072, https://doi.org/10.1098/rspa.2013.0072, 2013.
Baston, S. and Harris, R.: Modelling the hydrodynamic characteristics of tidal flow in the Pentland Firth, EWTEC 2011, Southampton, UK, 5–9 September 2011, 2011.
Battjes, J.: Surf similarity, Coast. Eng. Proc., 1, 466–480, 1974.
Battjes, J. and Janssen, J.: Energy loss and set-up due to breaking of random waves, Coast. Eng. Proc., 1, 569–587, 1978.
Battjes, J. and Stive, M.: Calibration and verification of a dissipation model for random breaking waves, J. Geophys. Res.-Ocean., 90, 9159–9167, 1985.
Benetazzo, A., Carniel, S., Sclavo, M., and Bergamasco, A.: Wave–current interaction: Effect on the wave field in a semi-enclosed basin, Ocean Model., 70, 152–165, 2013.
Benjamin, B. T. and Feir, J.: The disintegration of wave train on deep water, J. Fluid Mech., 27, 417–430, 1967.
Bennis, A.-C., Ardhuin, F., and Dumas, F.: On the coupling of wave and three-dimensional circulation models: Choice of theoretical framework, practical implementation and adiabatic tests, Ocean Model., 40, 260–272, 2011.
Berrisford, P., Kållberg, P., Kobayashi, S., Dee, D., Uppala, S., Simmons, A., Poli, P., and Sato, H.: Atmospheric conservation properties in ERA-Interim, Q. J. Roy. Meteor. Soc., 137, 1381–1399, 2011.
Bowen, A. J., Inman, D. L., and Simmons, V. P.: Wave set-down and set-Up, J. Geophys. Res., 73, 2569–2577, 1968.
Bresnan, E., Hay, S., Hughes, S., Fraser, S., Rasmussen, J., Webster, L., Slesser, G., Dunn, J., and Heath, M.: Seasonal and interannual variation in the phytoplankton community in the north east of Scotland, J. Sea Res., 61, 17–25, 2009.
Bretherton, F. P. and Garrett, C. J.: Wavetrains in inhomogeneous moving media, P. R. Soc. Lond. A Mat., 302, 529–554, 1968.
Bryden, I. G. and Couch, S. J.: ME1 – marine energy extraction: tidal resource analysis, Renew. Energ., 31, 133–139, 2006.
Cavaleri, L., Bertotti, L., Torrisi, L., Bitner-Gregersen, E., Serio, M., and Onorato, M.: Rogue waves in crossing seas: the Louis Majesty accident, J. Geophys. Res.-Ocean., 117, 1–8, 2012.
Chawla, A. and Kirby, J. T.: Experimental study of wave breaking and blocking on opposing currents, Coast. Eng. Proc., 1, 759–772, 1998.
Chawla, A. and Kirby, J. T.: Monochromatic and random wave breaking at blocking points, J. Geophys. Res.-Ocean., 107, 4–1, 2002.
Codiga, D. L.: Unified tidal analysis and prediction using the UTide Matlab functions, Graduate School of Oceanography, University of Rhode Island Narragansett, RI, 2011.
Davies, A., Sauvel, J., and Evans, J.: Computing near coastal tidal dynamics from observations and a numerical model, Cont. Shelf Res., 4, 341–366, 1985.
Deardorff, J.: On the magnitude of the subgrid scale eddy coefficient, J. Comput. Phys., 7, 120–133, 1971.
Dee, D., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M., Balsamo, G., Bauer, P., et al.: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, 2011.
DHI: MIKE 3 Hydrodynamics User Manual, vol. 1, 2011a.
DHI: MIKE 21 Wave modelling User Manual, vol. 1, 2011b.
Dietrich, G.: Die natürlichen Regionen von Nord-und Ostsee auf hydrographischer Grundlage, Kieler Meeresforsch, 7, 35–69, 1950.
Donelan, M. A., Hamilton, J., and Hui, W.: Directional spectra of wind-generated waves, Philosophical Transactions of the Royal Society of London A: Mathematical, Phys. Eng. Sci., 315, 509–562, 1985.
Drennan, W. M., Graber, H. C., Hauser, D., and Quentin, C.: On the wave age dependence of wind stress over pure wind seas, J. Geophys. Res.-Ocean., 108, 1–13, 2003.
Earle, M.: Development of algorithms for separation of sea and swell, National Data Buoy Center Tech Rep MEC-87-1, Hancock County, 53, 1–53, 1984.
Egbert, G. D., Erofeeva, S. Y., and Ray, R. D.: Assimilation of altimetry data for nonlinear shallow-water tides: Quarter-diurnal tides of the Northwest European Shelf, Cont. Shelf Res., 30, 668–679, 2010.
Eldeberky, Y. and Battjes, J.: Parameterization of triad interactions in wave energy models, Coast. Dynam., 140–148, 1995.
Eldeberky, Y. and Battjes, J. A.: Spectral modeling of wave breaking: application to Boussinesq equations, J. Geophys. Res.-Ocean., 101, 1253–1264, 1996.
Ferziger, J. H. and Perić, M.: Computational methods for fluid dynamics, vol. 3, Springer Berlin, 2002.
Flather, R.: Estimates of extreme conditions of tide and surge using a numerical model of the north-west European continental shelf, Estuarine, Coast. Shelf Sci., 24, 69–93, 1987.
Gommenginger, C., Srokosz, M., Challenor, P., and Cotton, P.: Measuring ocean wave period with satellite altimeters: A simple empirical model, Geophys. Res. Lett., 30, 1–5, 2003.
Guedes Soares, C.: Representation of double-peaked sea wave spectra, Ocean Eng., 11, 185–207, 1984.
Hasselmann, K.: On the spectral dissipation of ocean waves due to white capping, Bound.-Lay. Meteorol., 6, 107–127, 1974.
Haver, S.: A possible freak wave event measured at the Draupner jacket 1 January 1995, Rogue waves 2004, 1–8, 2004.
Hearn, C., Hunter, J., and Heron, M.: The effects of a deep channel on the wind-induced flushing of a shallow bay or harbor, J. Geophys. Res.-Ocean., 92, 3913–3924, 1987.
Heath, M. R., Sabatino, A. D., Serpetti, N., and O'Hara Murray, R.: Scoping the impact tidal and wave energy extraction on suspended sediment concentrations and underwater light climate, TeraWatt Position Papers, MASTS, 2015.
Huthnance, J.: Physical oceanography of the North Sea, Ocean and Shoreline Management, Environment and Sea Use Planning, 16, 199–231, 1991.
Janssen, P. A. E. M.: Nonlinear four-wave interaction and freak waves, J. Phys. Oceanogr., 33, 863–884, 2003.
Johnson, H. K. and Kofoed-Hansen, H.: Influence of bottom friction on sea surface roughness and its impact on shallow water wind wave modeling, J. Phys. Oceanogr., 30, 1743–1756, 2000.
Kaminsky, G. M. and Kraus, N. C.: Evaluation of depth-limited wave breaking criteria, in: Ocean Wave Measurement and Analysis, 180–193, ASCE, 1993.
Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., and Janssen, P.: Dynamics and modelling of ocean waves, Cambridge university press, 1996.
Lavrenov, I.: The wave energy concentration at the Agulhas current off South Africa, Nat. Hazards, 17, 117–127, 1998.
Lavrenov, I. and Porubov, A.: Three reasons for freak wave generation in the non-uniform current, Eur. J. Mech. B-Fluid., 25, 574–585, 2006.
Lilly, D.: On the application of the eddy viscosity concept in the inertial sub-range of turbulence, NCAR Manuscript No. 123, National Center for Atmospheric Research, Boulder, CO, 1966.
Longuet-Higgins, M. S. and Stewart, R. W.: Radiation stress and mass transport in gravity waves, with application to “surf beats”, J. Fluid Mech., 13, 481–504, 1962.
Ma, Y., Ma, X., Perlin, M., and Dong, G.: Extreme waves generated by modulational instability on adverse currents, Phys. Fluids, 25, 114109, https://doi.org/10.1063/1.4832715, 2013.
Mallory, J.: Abnormal waves on the southeast coast of South Africa, Int. Hydrogr. Rev., 51, 99–129, 1974.
Michaud, H., Marsaleix, P., Leredde, Y., Estournel, C., Bourrin, F., Lyard, F., Mayet, C., and Ardhuin, F.: Three-dimensional modelling of wave-induced current from the surf zone to the inner shelf, Ocean Sci., 8, 657–681, https://doi.org/10.5194/os-8-657-2012, 2012.
Nelson, R. C.: Design wave heights on very mild slopes-an experimental study, Transactions of the Institution of Engineers, Australia, Civil Eng., 29, 157–161, 1987.
Nelson, R. C.: Depth limited design wave heights in very flat regions, Coast. Eng., 23, 43–59, 1994.
Nikuradse, J.: Strömungsgestze in rauhen Rohren, 1933.
Onorato, M., Osborne, A. R., and Serio, M.: Extreme wave events in directional, random oceanic sea states, Phys. Fluids, 14, L25–L28, 2002.
Onorato, M., Osborne, A., and Serio, M.: Modulational instability in crossing sea states: A possible mechanism for the formation of freak waves, Phys. Rev. Lett., 96, 014503, https://doi.org/10.1103/PhysRevLett.96.014503, 2006.
Onorato, M., Proment, D., and Toffoli, A.: Freak waves in crossing seas, Eur. Phys. J.-Spec. Top., 185, 45–55, 2010.
Onorato, M., Proment, D., and Toffoli, A.: Triggering rogue waves in opposing currents, Phys. Rev. Lett., 107, 184502, https://doi.org/10.1103/PhysRevLett.107.18450, 2011.
Osuna, P. and Monbaliu, J.: Wave–current interaction in the Southern North Sea, J. Mar. Syst., 52, 65–87, 2004.
Otto, L., Zimmerman, J., Furnes, G., Mork, M., Saetre, R., and Becker, G.: Review of the physical oceanography of the North Sea, Neth. J. Sea Res., 26, 161–238, 1990.
Phillips, O. M.: The Dynamics of the Upper Ocean, 2. Edition, Cambridge-London-New York-Melbourne, Cambridge University Press, 1977.
Ponce de León, S. and Guedes Soares, C.: Extreme wave parameters under North Atlantic extratropical cyclones, Ocean Model., 81, 78–88, 2014.
Proudman, J. and Doodson, A. T.: The Principal Constituent of the Tides of the North Sea, Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 224, 185–219, 1924.
Ris, R. and Holthuijsen, L.: Spectral modelling of current induced wave-blocking, Coast. Eng. Proc., 1, 1247–1254, 1996.
Rusu, E.: Modelling of wave–current interactions at the mouths of the Danube, J. Mar. Sci. Technol., 15, 143–159, 2010.
Sabatino, A. D. and Serio, M.: Experimental investigation on statistical properties of wave heights and crests in crossing sea conditions, Ocean Dynam., 65, 707–720, 2015.
Serpetti, N., Heath, M., Armstrong, E., and Witte, U.: Blending single beam RoxAnn and multi-beam swathe QTC hydro-acoustic discrimination techniques for the Stonehaven area, Scotland, UK, J. Sea Res., 65, 442–455, 2011.
Serpetti, N., Heath, M., Rose, M., and Witte, U.: High resolution mapping of sediment organic matter from acoustic reflectance data, Hydrobiologia, 680, 265–284, 2012.
Shields, M. A., Dillon, L. J., Woolf, D. K., and Ford, A. T.: Strategic priorities for assessing ecological impacts of marine renewable energy devices in the Pentland Firth (Scotland, UK), Mar. Policy, 33, 635–642, 2009.
Shields, M. A., Woolf, D. K., Grist, E. P., Kerr, S. A., Jackson, A., Harris, R. E., Bell, M. C., Beharie, R., Want, A., Osalusi, E., Gibb, S. W., and Side, J.: Marine renewable energy: The ecological implications of altering the hydrodynamics of the marine environment, Ocean Coast. Manage., 54, 2–9, 2011.
Shrira, V. and Slunyaev, A.: Nonlinear dynamics of trapped waves on jet currents and rogue waves, Phys. Rev. E, 89, 041002, https://doi.org/10.1103/PhysRevE.89.041002, 2014.
Signell, R. P., Beardsley, R. C., Graber, H., and Capotondi, A.: Effect of wave-current interaction on wind-driven circulation in narrow, shallow embayments, J. Geophys. Res.-Ocean., 95, 9671–9678, 1990a.
Signell, R. P., Beardsley, R. C., Graber, H. C., and Capotondi, A.: Effect of Wave Current Interaction on Wind Driven Circulation In Narrow Shallow Embayments, J. Geophys. Res., 95, 9671–9678, 1990b.
Smagorinsky, J.: General circulation experiments with the primitive equations: I. The basic experiment, Mon. Weather Rev., 91, 99–164, 1963.
Song, Y. and Haidvogel, D.: A semi-implicit ocean circulation model using a generalized topography-following coordinate system, J. Comput. Phys., 115, 228–244, 1994.
Stive, M.: A scale comparison of waves breaking on a beach, Coast. Eng., 9, 151–158, 1985.
Tamura, H., Waseda, T., and Miyazawa, Y.: Freakish sea state and swell-windsea coupling: Numerical study of the Suwa-Maru incident, Geophys. Res. Lett., 36, 1–5, 2009.
Toffoli, A., Bitner-Gregersen, E., Osborne, A., Serio, M., Monbaliu, J., and Onorato, M.: Extreme waves in random crossing seas: Laboratory experiments and numerical simulations, Geophys. Res. Lett., 38, 1–5, 2011a.
Toffoli, A., Cavaleri, L., Babanin, A., Benoit, M., Bitner-Gregersen, E., Monbaliu, J., Onorato, M., Osborne, A., and Stansberg, C.: Occurrence of extreme waves in three-dimensional mechanically generated wave fields propagating over an oblique current, Nat. Hazards Earth Syst. Sci., 11, 895–903, https://doi.org/10.5194/nhess-11-895-2011, 2011b.
Toffoli, A., Waseda, T., Houtani, H., Kinoshita, T., Collins, K., Proment, D., and Onorato, M.: Excitation of rogue waves in a variable medium: An experimental study on the interaction of water waves and currents, Phys. Rev. E., 87, 051201, https://doi.org/10.1103/PhysRevE.87.051201, 2013.
Toffoli, A., Waseda, T., Houtani, H., Cavaleri, L., Greaves, D., and Onorato, M.: Rogue waves in opposing currents: an experimental study on deterministic and stochastic wave trains, J. Fluid Mech., 769, 277–297, 2015.
Tolman, H. L.: Effects of tides and storm surges on North Sea wind waves, J. Phys. Oceanogr., 21, 766–781, 1991.
Toro, E. F.: Riemann solvers and numerical methods for fluid dynamics: a practical introduction, Springer Science & Business Media, 2009.
Venugopal, V. and Nemalidinne, R.: Marine Energy Resource Assessment for Orkney and Pentland Waters With a Coupled Wave and Tidal Flow Model, in: ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, V09BT09A010, American Society of Mechanical Engineers, 2014.
Venugopal, V. and Nemalidinne, R.: Wave resource assessment for Scottish waters using a large scale North Atlantic spectral wave model, Renew. Energ., 76, 503–525, 2015.
Waseda, T., Kinoshita, T., and Tamura, H.: Interplay of resonant and quasi-resonant interaction of the directional ocean waves, J. Phys. Oceanogr., 39, 2351–2362, 2009.
Waseda, T., Hallerstig, M., Ozaki, K., and Tomita, H.: Enhanced freak wave occurrence with narrow directional spectrum in the North Sea, Geophys. Res. Lett., 38, 1–6, 2011.
Whewell, W.: Essay towards a First Approximation to a Map of Cotidal Lines, Philos. T. Roy. Soc. Lond., 3, 188–190, 1830.
Woolf, D. K., Challenor, P., and Cotton, P.: Variability and predictability of the North Atlantic wave climate, J. Geophys. Res.-Ocean., 107, 9–1, 2002.
Xie, L., Liu, H., and Peng, M.: The effect of wave–current interactions on the storm surge and inundation in Charleston Harbor during Hurricane Hugo 1989, Ocean Model., 20, 252–269, 2008.
Young, I. R.: Wind generated ocean waves, vol. 2, Elsevier, 1999.
Short summary
The present research describes the effect of wave–current interactions and wave–wave interactions during severe storms on the east coast of Scotland. In this area, results show that the currents contribute substantially to the modification of wave properties in the shallow coastal areas, while the wave–wave interactions are more important offshore.
The present research describes the effect of wave–current interactions and wave–wave...