Articles | Volume 11, issue 5
https://doi.org/10.5194/os-11-803-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-11-803-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Distribution of intermediate water masses in the subtropical northeast Atlantic
MARE – Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
Departamento de Engenharia Geográfica, Geofísica e Energia (DEGGE), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
Laboratory of Oceanography at the Institute of Earth Science of the St. Petersburg State University (SPbSU), 10th line 33/35, St. Petersburg, Russia
Â. Nascimento
MARE – Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
MARE – Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
T. Menezes
MARE – Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
N. V. Koldunov
Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany
Related authors
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Anna V. Vesman, Igor L. Bashmachnikov, Pavel A. Golubkin, and Roshin P. Raj
Ocean Sci. Discuss., https://doi.org/10.5194/os-2020-109, https://doi.org/10.5194/os-2020-109, 2020
Revised manuscript not accepted
Short summary
Short summary
Atlantic Waters carry heat and salt towards Arctic. The goal of this study was to study how the heat flux changes with its journey to the north. It was shown that despite the fact that there is some connection between variability of the heat flux near the shores of Norway and heat fluxes in the northern part of the Fram Strait. There are different processes governing this variability, which results in a different tendencies in the southern and northern regions of the study.
I. Bashmachnikov, F. Neves, Â. Nascimento, J. Medeiros, I. Ambar, J. Dias, and X. Carton
Ocean Sci., 11, 215–236, https://doi.org/10.5194/os-11-215-2015, https://doi.org/10.5194/os-11-215-2015, 2015
Short summary
Short summary
The present study defines new interpolation functions for hydrological data. These functions are applied to generate climatological maps of temperature-salinity distribution with a 25m depth interval and a 30km space interval (MEDTRANS data set). The MEDTRANS climatology gives more details of the distribution of water characteristics in the subtropical northeastern Atlantic than other alternative climatologies and is able to reproduce a number of dynamic features described in the literature.
I. Bashmachnikov, D. Boutov, and J. Dias
Ocean Sci., 9, 249–259, https://doi.org/10.5194/os-9-249-2013, https://doi.org/10.5194/os-9-249-2013, 2013
Tomás Calheiros, Akli Benali, Mário Pereira, João Silva, and João Nunes
Nat. Hazards Earth Syst. Sci., 22, 4019–4037, https://doi.org/10.5194/nhess-22-4019-2022, https://doi.org/10.5194/nhess-22-4019-2022, 2022
Short summary
Short summary
Fire weather indices are used to assess the effect of weather on wildfires. Fire weather risk was computed and combined with large wildfires in Portugal. Results revealed the influence of vegetation cover: municipalities with a prevalence of shrublands, located in eastern parts, burnt under less extreme conditions than those with higher forested areas, situated in coastal regions. These findings are a novelty for fire science in Portugal and should be considered for fire management.
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Anna V. Vesman, Igor L. Bashmachnikov, Pavel A. Golubkin, and Roshin P. Raj
Ocean Sci. Discuss., https://doi.org/10.5194/os-2020-109, https://doi.org/10.5194/os-2020-109, 2020
Revised manuscript not accepted
Short summary
Short summary
Atlantic Waters carry heat and salt towards Arctic. The goal of this study was to study how the heat flux changes with its journey to the north. It was shown that despite the fact that there is some connection between variability of the heat flux near the shores of Norway and heat fluxes in the northern part of the Fram Strait. There are different processes governing this variability, which results in a different tendencies in the southern and northern regions of the study.
I. Bashmachnikov, F. Neves, Â. Nascimento, J. Medeiros, I. Ambar, J. Dias, and X. Carton
Ocean Sci., 11, 215–236, https://doi.org/10.5194/os-11-215-2015, https://doi.org/10.5194/os-11-215-2015, 2015
Short summary
Short summary
The present study defines new interpolation functions for hydrological data. These functions are applied to generate climatological maps of temperature-salinity distribution with a 25m depth interval and a 30km space interval (MEDTRANS data set). The MEDTRANS climatology gives more details of the distribution of water characteristics in the subtropical northeastern Atlantic than other alternative climatologies and is able to reproduce a number of dynamic features described in the literature.
I. Bashmachnikov, D. Boutov, and J. Dias
Ocean Sci., 9, 249–259, https://doi.org/10.5194/os-9-249-2013, https://doi.org/10.5194/os-9-249-2013, 2013
Related subject area
Approach: In situ Observations | Depth range: All Depths | Geographical range: Deep Seas: North Atlantic | Phenomena: Temperature, Salinity and Density Fields
High-resolution physical–biogeochemical structure of a filament and an eddy of upwelled water off northwest Africa
IEOOS: the Spanish Institute of Oceanography Observing System
Temperature–salinity distribution in the northeastern Atlantic from ship and Argo vertical casts
Seasonality of intermediate waters hydrography west of the Iberian Peninsula from an 8 yr semiannual time series of an oceanographic section
Surface expression of Mediterranean Water dipoles and their contribution to the shelf/slope – open ocean exchange
Adjustment of the basin-scale circulation at 26° N to variations in Gulf Stream, deep western boundary current and Ekman transports as observed by the Rapid array
Wilken-Jon von Appen, Volker H. Strass, Astrid Bracher, Hongyan Xi, Cora Hörstmann, Morten H. Iversen, and Anya M. Waite
Ocean Sci., 16, 253–270, https://doi.org/10.5194/os-16-253-2020, https://doi.org/10.5194/os-16-253-2020, 2020
Short summary
Short summary
Nutrient-rich water is moved to the surface near continental margins. Then it forms rich but difficult to observe spatial structures of physical and biological/biogeochemical properties. Here we present a high resolution (2.5 km) section through such features obtained in May 2018 with a vehicle towed behind a ship. Considering that such interactions of physics and biology are common in the ocean, they likely strongly influence the productivity of such systems and their role in CO2 uptake.
Elena Tel, Rosa Balbin, Jose-Manuel Cabanas, Maria-Jesus Garcia, M. Carmen Garcia-Martinez, Cesar Gonzalez-Pola, Alicia Lavin, Jose-Luis Lopez-Jurado, Carmen Rodriguez, Manuel Ruiz-Villarreal, Ricardo F. Sánchez-Leal, Manuel Vargas-Yáñez, and Pedro Vélez-Belchí
Ocean Sci., 12, 345–353, https://doi.org/10.5194/os-12-345-2016, https://doi.org/10.5194/os-12-345-2016, 2016
Short summary
Short summary
The Spanish Institute of Oceanography supports different operational programmes in order to observe and measure ocean characteristics. Their combination allows responses to ocean research activities and marine ecosystem management, as well as official agency requirements and industrial and main society demands. All these networks are linked to international initiatives, framed largely in supranational Earth observation sponsored by the United Nations and the European Union.
I. Bashmachnikov, F. Neves, Â. Nascimento, J. Medeiros, I. Ambar, J. Dias, and X. Carton
Ocean Sci., 11, 215–236, https://doi.org/10.5194/os-11-215-2015, https://doi.org/10.5194/os-11-215-2015, 2015
Short summary
Short summary
The present study defines new interpolation functions for hydrological data. These functions are applied to generate climatological maps of temperature-salinity distribution with a 25m depth interval and a 30km space interval (MEDTRANS data set). The MEDTRANS climatology gives more details of the distribution of water characteristics in the subtropical northeastern Atlantic than other alternative climatologies and is able to reproduce a number of dynamic features described in the literature.
E. Prieto, C. González-Pola, A. Lavín, R. F. Sánchez, and M. Ruiz-Villarreal
Ocean Sci., 9, 411–429, https://doi.org/10.5194/os-9-411-2013, https://doi.org/10.5194/os-9-411-2013, 2013
N. Serra, I. Ambar, and D. Boutov
Ocean Sci., 6, 191–209, https://doi.org/10.5194/os-6-191-2010, https://doi.org/10.5194/os-6-191-2010, 2010
H. L. Bryden, A. Mujahid, S. A. Cunningham, and T. Kanzow
Ocean Sci., 5, 421–433, https://doi.org/10.5194/os-5-421-2009, https://doi.org/10.5194/os-5-421-2009, 2009
Cited articles
Aiki, H. and Yamagata, T.: A numerical study on the successive formation of Meddy-like lenses, J. Geophys. Res., 109, C06020, https://doi.org/10.1029/2003JC001952, 2004.
Alvaréz, M., Péres, F. F., Bryden, H., and Ríos, A. F.: Physical and biogeochemical transports structure in the North Atlantic subpolar gyre, J. Geophys. Res., 109, C03027, https://doi.org/10.1029/2003JC002015, 2004.
Ambar, I. and Howe, M. R.: Observations of the Mediterranean outflow, I. Mixing in the Mediterranean outflow, Deep-Sea Res., 26, 535–554, 1979.
Ambar, I., Serra, N., Neves, F., and Ferreira, T.: Observations of the Mediterranean Undercurrent and eddies in the Gulf of Cadiz during 2001, J. Mar. Sys., 71, 195-220, 2008.
Anderson, L. A. and Sarmiento, J. L.: Redfield ratios of remineralization determined by nutrient data analysis, Global Biogeochem. Cy., 8, 65–80, 1994.
Arhan, M.: The North Atlantic Current and Subarctic Intermediate Water. J. Mar. Res., 48, 109–144, 1990.
Arhan, M., de Verdière, A. C., and Mémery, L.: The eastern boundary of the subtropical North Atlantic, J. Phys. Oceanogr., 24, 1295–1316, 1994.
Barbero, L., González-Dávila, M., Santana-Casiano, J. M., and Álvarez, M.: Variability of the water mass transports and fluxes in the eastern North Atlantic during 2001, J. Geophys. Res., 115, C03023, https://doi.org/10.1029/2008JC005212, 2010.
Barbosa Aguiar, A. C., Peliz, A., Neves, F., Bashmachnikov, I., and Carton, X.: Mediterranean outflow transports and entrainment estimates from observations and high resolution modeling, Prog. Oceanogr., 131, 33–45, 2015.
Baringer, M. O. and Price, J. F.: Mixing and spreading of the Mediterranean Outflow, J. Phys. Oceanogr., 27, 1654–1677, 1997.
Barnes, S. L.: A Technique for Maximizing Details in Numerical Weather Map Analysis, J. Appl. Meteorol., 3, 396–409, 1964.
Bashmachnikov, I., Mohn, C., Pelegrí, J. L., Martins A., Machín, F., Jose, F., and White, M.: Interaction of Mediterranean water eddies with Sedlo and Seine seamounts, subtropical Northeast Atlantic, Deep-Sea Res. Pt. II, 56, 2593–2605, 2009.
Bashmachnikov, I., Neves, F., Nascimento, A., Medeiros, J., Dias, J., Ambar, I., and Carton, X.: Temperature-salinity distribution in the Northeast Atlantic from ship and Argo vertical casts, Ocean Sci., 11, 215–236, https://doi.org/10.5194/os-11-215-2015, 2015a.
Bashmachnikov, I., Neves, F., Calheiros, T., and Carton, X.: Properties and pathways of Mediterranean water eddies in the Atlantic, Prog. Oceanogr., 137A, 149–172, 2015b.
Bower, A. S., Le Cann, H., Rossby, T., Zenk, W., Gould, J., Speer, K., Richardson, P. L., Prater, M. D., and Zhang, H.-M.: Directly measured mid-depth circulation in the North Atlantic Ocean, Nature, 419, 603–607, 2002a.
Bower, A. S., Lozier, M. S., Gary, S. F., and Böning, C. W.: Interior pathways of the North Atlantic meridional overturning circulation, Nature, 459, 243–247, 2009.
Bower, A., Serra, N., and Ambar, I.: Structure of the Mediterranean undercurrent and Mediterranean water spreading around the southwestern Iberian Peninsula, J. Geophys. Res., 107, 3161, https://doi.org/10.1029/2001JC001007, 2002b.
Brix, H. and Gerdes, R.: North Atlantic Deep Water and Antarctic Bottom Water: Their interaction and influence on the variability of the global ocean circulation, J. Geophys. Res., 108, 3022, https://doi.org/10.1029/2002JC001335, 2003.
Cabeçadas, G., Brogueira, M. J., and Gonçalves, C.: The chemistry of Mediterranean outflow and its interactions with surrounding waters, Deep-Sea Res. Pt. II, 49, 4263–4270, 2002.
Carracedo, L. I., Gilcoto, M., Mercier, H., and Pérez, F. F.: Seasonal dynamics in the Azores–Gibraltar Strait region: A climatologically-based study, Prog. Oceanogr., 122, 116–130, 2014.
Cianca, A., Santana, R., Marrero, J. P., Rueda, M. J., and Llinás, O.: Modal composition of the central water in the North Atlantic subtropical gyre, Ocean Sci. Discuss., 6, 2487–2506, https://doi.org/10.5194/osd-6-2487-2009, 2009.
Dafner, E. V., Boscolo, R., and Bryden, H. L.: The N : Si : P molar ratio in the Strait of Gibraltar, Geophys. Res. Lett., 30, 1506, https://doi.org/10.1029/2002GL016274, 2003.
Daniault, N., Mazé, J. P., and Arhan, M.: Circulation and mixing of Mediterranean Water west of the Iberian Peninsula, Deep-Sea Res. Pt. I, 41, 1685–1714, 1994.
Davis, R. E., Killworth, P. D., and Blundell, J. R.: Comparison of autonomous Lagrangian circulation explorer and fine resolution Antarctic model results in the South Atlantic, J. Geophys. Res., 101, 855–884, 1996.
Gasparin, F., Maes, C., Sudre, J., Garcon, V., and Ganachaud, A.: Water mass analysis of the Coral Sea through an Optimum Multiparameter method, J. Geophys. Res., C119, 7229–7244, 2014.
Garcia, D.: A fast all-in-one method for automated post-processing of PIV data, Experim. Fluid., 50, 1247–1259, 2011.
Hansen, B. and Østerhus, S.: North Atlantic–Nordic Seas exchanges, Prog. Oceanogr., 45, 109–208, 2000.
Harvey, J. and Arhan, M.: The water masses in central North Atlantic in 1983-84, J. Phys. Oceanogr., 18, 1855–1875, 1988.
Hinrichsen, H.-H. and Tomczak, M.: Optimum multiparameter analysis of the water mass structure in the Western North Atlantic Ocean, J. Geophys. Res., 98, 10155–10169, 1993.
Iorga, M. C. and Lozier, M. S.: Signatures of the Mediterranean outflow from a North Atlantic climatology, 1. Salinity and density fields, J. Geophys. Res., 104, 25985–26009, 1999a.
Iorga, M. C. and Lozier, M. S.: Signatures of the Mediterranean outflow from a North Atlantic climatology, 2. Diagnostic velocity fields, J. Geophys. Res., 104, 26011–26029, 1999b.
Jackett, D. R. and McDougall, T. J.: A Neutral Density Variable for the World's Oceans, J. Phys. Oceanogr., 27, 237–263, 1997.
Karstensen, J. and Tomczak, M.: Ventilation processes and water mass ages in the thermocline of the southeast Indian Ocean, Geophys. Res. Lett., 24, 2777–2780, 1997.
Klein, B. and Tomczak, M.: Identification of diapycnal mixing through optimum multiparameter analysis: 2. Evidence for unidirectional diapycnal mixing in the front between North and South Atlantic Central Water, J. Geophys. Res., 99, 25275–25280, 1994.
Krémeur, A.-S., Lévy, M., Aumont, O., and Reverdin, G.: Impact of the subtropical mode water biogeochemical properties on primary production in the North Atlantic: New insights from an idealized model study, J. Geophys. Res., 114, C07019, https://doi.org/10.1029/2008JC005161, 2009.
Lavender, K. L., Owens, W. B., and Davis, R. E.: The mid-depth circulation of the subpolar North Atlantic Ocean as measured by subsurface floats, Deep-Sea Res. Pt. I, 52), 767–785, 2005.
Llinás, O., Rueda, M. J., Pérez Marrero, J., Pérez-Martell, E., Santana, R., Villagarcía, M. G., Cianca, A., Godoy, J., and Maroto, L.: Variability of the Antarctic intermediate waters in the northern Canary box, Deep-Sea Res. Pt. II, 49, 3441–3453, 2002.
Louarn, E. and Morin, P.: Antarctic Intermediate Water influence on Mediterranean Sea Water outflow, Deep-Sea Res. Pt. I, 58, 932–942, 2011.
Machín, F., Hernández-Guerra, A., and Pelegrí, J. L.: Mass fluxes in the Canary Basin, Prog. Oceanogr., 70, 416–447, 2006.
Machín, F. and Pelegrí, J.L.: Northward Penetration of Antarctic Intermediate Water off Northwest Africa, J. Phys. Oceanogr., 39, 512–535, 2009.
Mackas, D. L., Denman, K. L., and Bennett, A. F.: Least squares multiple tracer analysis of water mass composition, J. Geophys. Res., 92, 2907–2918, 1987.
Maximenko N. A. and Orlov, O. I.: Integral characteristics of the core of quasi-stationary "Gauss" vortex in homogeneous and shear flows, Oceanol. 31, 34–41, 1991 (in Russian).
Mazé, J. P., Arhan, M., and Mercier, H.: Volume budget of the eastern boundary layer off the Iberian Peninsula, Deep-Sea Res. Pt. I, 44, 1543–1574, 1997.
Mazé, G. and Marshall, J.: Diagnosing the observed seasonal cycle of Atlantic subtropical mode water using potential vorticity and its attendant theorems, J. Phys. Oceanogr., 41, 1986–1999, 2011.
McCartney, M. S. and Talley, L. D.: The Subpolar Mode Water of the North Atlantic Ocean, J. Phys. Oceanogr., 12, 1169–1188, 1982.
McCartney, M. S.: The subtropical recirculation of Mode Waters, J. Mar. Res., 40, Supplement, 427–464, 1982.
McDougall, T. J.: Neutral density surfaces, J. Phys. Oceanogr., 17, 1950–1964, 1987.
MODE Group: The Mid-Ocean Dynamics Experiment, Deep-Sea Res., 25, 859–910, 1978.
Morel, Y.: The Influence of an Upper Thermocline Current on Intrathermocline Eddies, J. Phys. Oceanogr., 25, 3247–3252, 1995.
New, A. L., Jia, Y., Coulibaly, M., and Dengg, J.: On the role of the Azores current in the ventilation of the North Atlantic Ocean, Prog. Oceanogr., 48, 163–194, 2001.
Ollitrault, M. and Colin de Verdière, A.: The Ocean General Circulation near 1000-m Depth, J. Phys. Oceanogr., 44, 384–409, 2014.
Orsi, A. H., Jacobs, S. S., Gordon, A. L., and Visbeck, M.: Cooling and ventilating the Abyssal Ocean, Geophys. Res. Lett., 28, 2923–2926, 2001.
Paillet, J. and Arhan, M.: Shallow picnocline and Mode water subduction in the Eastern North Atlantic, J. Phys. Oceanogr., 26, 96–114, 1996a.
Paillet, J. and Arhan, M.: Oceanic ventilation in the Eastern North Atlantic, J. Phys. Oceanogr., 26, 2036–2052, 1996b.
Pastor, M. V., Peña-Izquierdo, J., Pelegrí, J. L., and Marrero-Díaz, A.: Meridional changes in water mass distributions off NW Africa during November 2007/2008, Cienc. Mar., 38, 223–244, 2012.
Paillet, J., Arhan, M., and McCartney, M. S.: Spreading of Labrador sea water in the eastern North Atlantic, J. Geophys. Res., 103, 10223–10239, 1998.
Pedlosky, J.: Ocean Circulation Theory, 2nd Edn., Springer, New York, 453 pp., 1998.
Peña-Izquierdo, J., van Sebille, E., Pelegrí, J. L., Sprintall, J., Mason, E., Llanillo, P. J., and Machín, F.: Water mass pathways to the North Atlantic oxygen minimum zone, J. Geophys. Res., C120, 3350–3372, 2015.
Pérez, F. F., Ríos, A. F., Castro, C. G., and Fraga, F.: Mixing analysis of nutrients, oxygen and dissolved inorganic carbon in the upper and middle North Atlantic Ocean east of the Azores, J. Mar. Sys., 16, 219–233, 1998.
Pérez, F. F., Mintrop, L., Llinás, O., Glez-Dávila, M., Castro, C. G., Alvaréz, M., Körtzinger, A., Santana-Casiano, M., Rueda, M. J., and Ríos, A. F.: Mixing analysis of nutrients, oxygen and dissolved inorganic carbon in Canary Islands region, J. Mar. Sys., 28, 183–201, 2001.
Pérez, F. F., Mouriño, C., Fraga, F., and Rios, A. F.: Displacement of water masses and remineralization rates off the Iberian Peninsula by nutrient anomalies, J. Mar. Res., 51, 869–892, 1993.
Pingree, R. D., Garcia-Soto, C., and Sinha, B.: Position and structure of the subtropical/Azores front region from combined Lagrangian and remote sensing (IR/altimiter/SeaWiFS) measurements, J. Mar. Biol. Assoc. UK, 79, 769–792, 1999.
Pollard, R. T. and Pu, S.: Structure and circulation of the upper Atlantic ocean northeast of the Azores, Prog. Oceanogr., 14, 443–462, 1985.
Pollard, R. T., Griffiths, M. J., Cunningham, S. A., Read, J. F., Pérez, F. F., and Rios, A. F.: Vivaldi 1991- a study of the formation, circulation and ventilation of Eastern North Atlantic Central Water, Prog. Oceanogr., 37, 167–192, 1996.
Poole, R. and Tomczak, M.: Optimum multiparameter analysis of the water mass structure in the Atlantic Ocean thermocline, Deep-Sea Res. Pt. I, 46, 1895–1921, 1999.
Price, J. F., Baringer, M., Lueck, R. G., Johnson, G. C., Ambar, I., Parrilla, G., Cantos, A., Kennelly, M. A., and Sanford, T. B.: Mediterranean outflow mixing and dynamics, Science, 259, 1277–1282, 1993.
Redfield, A. C., Ketchum, B. H., and Richards, F. A.: The influence of organisms on the composition of sea-water, in: The Sea: Ideas and Observations on Progress in the Study of the Seas, edited by: Hill, M. N., Vol. 2, Wiley, London, 26–77, 1963.
Rhein, M. and Hinrichsen, H.-H.: Modification of Mediterranean Water in the Gulf of Cadiz, studied with hydrographic, nutrient and chlorofluoromethane data, Deep-Sea Res. Pt. I, 40, 267–291, 1993.
Richardson, P. L., McCartney, M. S., and Maillard, C.: A search for meddies in historical data, Dynam. Atmos. Oc., 15, 241–265, 1991.
Richardson, P. L., Bower, A. S., and Zenk, W.: A census of Meddies tracked by floats, Prog. Oceanogr., 45, 209–250, 2000.
Rosell-Fieschi, M., Pelegrí, J. L., and Gourrion, J.: Zonal jets in the equatorial Atlantic Ocean, Prog. Oceanogr., 130, 1–18, 2015.
Rossby, H. T., Levine, E. R., and Connors, D. N.: The isopycnal swallow float - a simple device for tracking water parcels in the ocean, in: Essays in Oceanography: a tribute to John Swallow, Prog. Oceanogr., 14, 511–525, 1985.
Schmitz Jr., W. J.: On the World Ocean Circulation, Volume 1. Some Global Features/North Atlantic Circulation (No. WHOI-96-03-VOL-1), Woods Hole Oceanographic Institution MA, 1996.
Siedler, G., Kuhl, A., and Zenk, W.: The Madeira mode water, J. Phys. Oceanogr., 17, 1561–1570, 1987.
Sparrow, M., Boebel, O., Zervakis, V., Zenk, W., Cantós-Figueroa, A., and Gould, W. J.: Two circulation regimes of the Mediterranean Outflow revealed by Lagrangian Measurements, J. Phys. Oceanogr., 32, 1322–1330, 2002.
Stramma, L., Brandt, P., Schafstall, J., Schott, F., Fischer, J., and Körtzinger, A.: Oxygen minimum zone in the North Atlantic south and east of the Cape Verde Islands, J. Geophys. Res., 113, C04014, https://doi.org/10.1029/2007JC004369, 2008.
Straneo, F., Pickart, R. S., and Lavender, K.: Spreading of Labrador sea water: an advective-diffusive study based on Lagrangian data, Deep-Sea Res. Pt. I, 50, 7001–719, 2003.
Talley, L. D., and McCartney, M. S.: Distribution and circulation of Labrador Sea Water, J. Phys. Oceanogr., 12, 1189–1205, 1982.
Tomczak, M.: A multiparameter extension of temperature/salinity diagram techniques for the analysis of non-isopycnal mixing, Prog. Oceanogr., 10, 147–171, 1981.
Tomczak, M. and Godfrey, J. S.: Regional Oceanography: An introduction, available from: http://www.es.flinders.edu.au/ mattom/regoc/pdfversion.html (last accessed: 2 April 2015), 2003.
Tomczak, M. and Large, D. G.: Optimum multiparameter analysis of mixing in the thermocline of the eastern Indian Ocean, J. Geophys. Res., 94, 16141–16149, 1989.
Tsuchiya, M., Talley, L. D., and McCartney, M. S.: An eastern Atlantic section from Iceland southward across the equator, Deep-Sea Res., 39, 1885–1917, 1992.
Tsuchiya, M.: Circulation of the Antarctic Intermediate Water in the North Atlantic Ocean, J. Mar. Res., 47, 747–755, 1989.
van Aken, H. M.: The hydrography of the mid-latitude northeast Atlantic Ocean I: The deep water masses, Deep-Sea Res. Pt. I, 47, 757–788, 2000a.
van Aken, H. M.: The hydrography of the mid-latitude northeast Atlantic Ocean II: The intermediate water masses, Deep-Sea Res. Pt. I, 47, 789–824, 2000b.
van Aken, H. M.: The hydrography of the mid-latitude northeast Atlantic Ocean III: The subducted thermocline water mass, Deep-Sea Res. Pt. I, 48, 237–267, 2001.
Zika, J. D., McDougall, T. J., and Sloyan, B. M.: Weak mixing in the Eastern North Atlantic: an application of the Tracer-Contour Inverse Method, J. Phys. Oceanogr., 40, 1881–1893, 2010.