Articles | Volume 11, issue 5
https://doi.org/10.5194/os-11-759-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-11-759-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Spatio-temporal variability of micro-, nano- and pico-phytoplankton in the Mediterranean Sea from satellite ocean colour data of SeaWiFS
M. Sammartino
CORRESPONDING AUTHOR
CNR – Istituto di Scienze dell'Atmosfera e del Clima, Rome, Italy
A. Di Cicco
CNR – Istituto di Scienze dell'Atmosfera e del Clima, Rome, Italy
S. Marullo
ENEA, Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile, Centro Ricerche Frascati, Frascati, Italy
R. Santoleri
CNR – Istituto di Scienze dell'Atmosfera e del Clima, Rome, Italy
Related authors
Gianluca Volpe, Simone Colella, Vittorio E. Brando, Vega Forneris, Flavio La Padula, Annalisa Di Cicco, Michela Sammartino, Marco Bracaglia, Florinda Artuso, and Rosalia Santoleri
Ocean Sci., 15, 127–146, https://doi.org/10.5194/os-15-127-2019, https://doi.org/10.5194/os-15-127-2019, 2019
Short summary
Short summary
This work fully describes all the technical steps that are currently put in place in the context of the European Copernicus Marine Environment and Monitoring Service to make ocean colour data freely available to the general public. These data are useful for mapping phytoplankton dynamics on a daily and basin scale. The multi-sensor output compares well to data collected during dedicated field cruises, proving that the operational product can be successfully used for environmental monitoring.
Andrea Pisano, Daniele Ciani, Salvatore Marullo, Rosalia Santoleri, and Bruno Buongiorno Nardelli
Earth Syst. Sci. Data, 14, 4111–4128, https://doi.org/10.5194/essd-14-4111-2022, https://doi.org/10.5194/essd-14-4111-2022, 2022
Short summary
Short summary
A new operational diurnal sea surface temperature (SST) product has been developed within the Copernicus Marine Service, providing gap-free hourly mean SST fields from January 2019 to the present. This product is able to accurately reproduce the diurnal cycle, the typical day–night SST oscillation mainly driven by solar heating, including extreme diurnal warming events. This product can thus represent a valuable dataset to improve the study of those processes that require a subdaily frequency.
Jaime Pitarch, Marco Bellacicco, Salvatore Marullo, and Hendrik J. van der Woerd
Earth Syst. Sci. Data, 13, 481–490, https://doi.org/10.5194/essd-13-481-2021, https://doi.org/10.5194/essd-13-481-2021, 2021
Short summary
Short summary
Ocean monitoring is crucial to understand the regular seasonality and the drift induced by climate change. Satellites offer a possibility to monitor the complete surface of the Earth within a few days with a harmonized methodology, reaching resolutions of few kilometres. We revisit traditional ship survey optical parameters such as the
Secchi disk depthand the
Forel–Ule indexand derive them from satellite observations. Our time series is 21 years long and has global coverage.
Gianluca Volpe, Simone Colella, Vittorio E. Brando, Vega Forneris, Flavio La Padula, Annalisa Di Cicco, Michela Sammartino, Marco Bracaglia, Florinda Artuso, and Rosalia Santoleri
Ocean Sci., 15, 127–146, https://doi.org/10.5194/os-15-127-2019, https://doi.org/10.5194/os-15-127-2019, 2019
Short summary
Short summary
This work fully describes all the technical steps that are currently put in place in the context of the European Copernicus Marine Environment and Monitoring Service to make ocean colour data freely available to the general public. These data are useful for mapping phytoplankton dynamics on a daily and basin scale. The multi-sensor output compares well to data collected during dedicated field cruises, proving that the operational product can be successfully used for environmental monitoring.
Jaime Pitarch, Gianluca Volpe, Simone Colella, Hajo Krasemann, and Rosalia Santoleri
Ocean Sci., 12, 379–389, https://doi.org/10.5194/os-12-379-2016, https://doi.org/10.5194/os-12-379-2016, 2016
Short summary
Short summary
Several operational satellite chlorophyll a (CHL) in the Baltic Sea were tested at a regional scale. Comparison to an extensive in situ CHL dataset showed low linearity. Bias-corrected CHL annual cycles were computed. The Gulf of Bothnia displays a single CHL peak during spring. In Skagerrak and Kattegat, there is a small bloom in spring and a minimum in summer. In the central Baltic, CHL follows a dynamic of a mild spring bloom followed by a much stronger bloom in summer.
A. S. Lanotte, R. Corrado, L. Palatella, C. Pizzigalli, I. Schipa, and R. Santoleri
Ocean Sci., 12, 207–216, https://doi.org/10.5194/os-12-207-2016, https://doi.org/10.5194/os-12-207-2016, 2016
Short summary
Short summary
The paper investigates the role of vertical shear on the
horizontal ocean dispersion of tracer particles or concentration
fields. We compare in situ measurements to GCM numerical data of the magnitude and the typical timescale of the vertical shear. We discuss how an appropriate sub-grid-scale parameterization can account for an anomalous numerical shear dispersion due to the model poor time resolution. The analysis focuses on the mixing layer, and on the region of the south Mediterranean Sea.
M. Torri, R. Corrado, F. Falcini, A. Cuttitta, L. Palatella, G. Lacorata, B. Patti, M. Arculeo, S. Mazzola, and R. Santoleri
Ocean Sci. Discuss., https://doi.org/10.5194/osd-12-2097-2015, https://doi.org/10.5194/osd-12-2097-2015, 2015
Revised manuscript not accepted
P. Malanotte-Rizzoli, V. Artale, G. L. Borzelli-Eusebi, S. Brenner, A. Crise, M. Gacic, N. Kress, S. Marullo, M. Ribera d'Alcalà, S. Sofianos, T. Tanhua, A. Theocharis, M. Alvarez, Y. Ashkenazy, A. Bergamasco, V. Cardin, S. Carniel, G. Civitarese, F. D'Ortenzio, J. Font, E. Garcia-Ladona, J. M. Garcia-Lafuente, A. Gogou, M. Gregoire, D. Hainbucher, H. Kontoyannis, V. Kovacevic, E. Kraskapoulou, G. Kroskos, A. Incarbona, M. G. Mazzocchi, M. Orlic, E. Ozsoy, A. Pascual, P.-M. Poulain, W. Roether, A. Rubino, K. Schroeder, J. Siokou-Frangou, E. Souvermezoglou, M. Sprovieri, J. Tintoré, and G. Triantafyllou
Ocean Sci., 10, 281–322, https://doi.org/10.5194/os-10-281-2014, https://doi.org/10.5194/os-10-281-2014, 2014
Related subject area
Approach: Remote Sensing | Depth range: Surface | Geographical range: Mediterranean Sea | Phenomena: Biological Processes
Mediterranean ocean colour Level 3 operational multi-sensor processing
The Mediterranean Ocean Colour Observing System – system development and product validation
Comparison of SeaWiFS and MODIS time series of inherent optical properties for the Adriatic Sea
Gianluca Volpe, Simone Colella, Vittorio E. Brando, Vega Forneris, Flavio La Padula, Annalisa Di Cicco, Michela Sammartino, Marco Bracaglia, Florinda Artuso, and Rosalia Santoleri
Ocean Sci., 15, 127–146, https://doi.org/10.5194/os-15-127-2019, https://doi.org/10.5194/os-15-127-2019, 2019
Short summary
Short summary
This work fully describes all the technical steps that are currently put in place in the context of the European Copernicus Marine Environment and Monitoring Service to make ocean colour data freely available to the general public. These data are useful for mapping phytoplankton dynamics on a daily and basin scale. The multi-sensor output compares well to data collected during dedicated field cruises, proving that the operational product can be successfully used for environmental monitoring.
G. Volpe, S. Colella, V. Forneris, C. Tronconi, and R. Santoleri
Ocean Sci., 8, 869–883, https://doi.org/10.5194/os-8-869-2012, https://doi.org/10.5194/os-8-869-2012, 2012
F. Mélin
Ocean Sci., 7, 351–361, https://doi.org/10.5194/os-7-351-2011, https://doi.org/10.5194/os-7-351-2011, 2011
Cited articles
Aiken, J., Pradhan, Y., Barlow, R., Lavender, S., Poulton, A., Holligan, P., and Hardman-Mountford, N. J.: Phytoplankton pigments and functional types in the Atlantic Ocean: a decadal assessment, 1995–2005, Deep Sea Res. Pt. II, 56, 899–917, 2009.
Agawin, N. S. R., Duarte, C. M., and Agusti, S.: Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production, Limnol. Oceanogr., 45, 591–600, 2000.
Alvain, S., Moulin, C., Dandonneau, Y., and Bréon, F. M.: Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery, Deep-Sea Res. Pt. I, 52, 1989–2004, 2005.
Alvain, S., Moulin, C., Dandonneau, Y., and Loisel, H.: Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: a satellite view, Global Biogeochem. Cy., 22, GB3001, https://doi.org/10.1029/2007GB003154, 2008.
Antoine, D. and Morel, A.: Oceanic primary production: I. Adaptation of a spectral light-photosynthesis model in view of application to satellite chlorophyll observations, Global Biogeochem. Cy., 10, 43–55, 1996.
Antoine, D., André, J. M., and Morel, A.: Oceanic primary production: II. Estimation at global scale from satellite (Coastal Zone Color Scanner) chlorophyll, Global Biogeochem. Cy., 10, 57–69, 1996.
Basset, A., Sangiorgio, F., and Sabetta, L.: Nuovi approcci metodologici per la classificazione dello stato di qualità degli ecosistemi acquatici di transizione, Metodologie ISPRA, 109 pp., 2009.
Bosc, E., Bricaud, A., and Antoine, D.: Seasonal and interannual variability in algal biomass and primary production in the Mediterranean Sea, as derived from 4 years of SeaWiFS observations, Global Biogeochem. Cy., 18, 1–16, 2004.
Brewin, R. J. W., Sathyendranath, S., Hirata, T., Lavender, S. J., Barciela, R., and Hardman Mountford, N. J.: A three-component model of phytoplankton size class from satellite remote sensing, Ecol. Model., 221, 1472–1483, 2010.
Brewin, R. J. W., Hardman-Mountford, N. J., and Hirata, T.: Detecting phytoplankton community structure from ocean colour, in: Handbook of Satellite Remote Sensing Image Interpretation: Applications for Marine Living Resources Conservation and Management, edited by: Morales, J., Stuart, V., Platt, T., and Sathyendranath, S., EU PRESPO and IOCCG, Dartmouth, Canada, 125–138, 2011a.
Brewin, R. J. W., Devred, E., Sathyendranath, S., Lavender, S. J., and Hardman-Mountford, N. J.: Model of phytoplankton absorption based on three size classes, Appl. Optics, 50, 4353–4364, 2011b.
Bricaud, A., Claustre, H., Ras, J., and Oubelkheir, K.: Natural variability of phytoplanktonic absorption in oceanic waters: Influence of the size structure of algal populations, J. Geophys. Res., 109, C11010, https://doi.org/10.1029/2004JC002419, 2004.
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., and West, G. B.: Toward a metabolic theory of ecology, Ecology, 85, 1771–1789, https://doi.org/10.1890/03-9000, 2004.
Cataletto, B., Cabrini, M., Del Negro, P., Giani, M., Monti, M., and Tirelli, V.: La rete italiana per la ricerca ecologica a lungo termine (LTER–Italia) situazione e prospettive dopo un quinquennio di attività (2006–2011), Bertoni R., Golfo di Trieste, 180–181, 2012.
Chisholm, S. W.: Phytoplankton size, in: Primary Productivity and Biogeochemical Cycles in the Sea, edited by: Falkowski, P. G. and Woodhead, A. D., Plenum Press, New York, USA, 213–237, 1992.
Claustre, H. and Maritorena, S.: The many shades of ocean blue, Science, 302, 1514–1515, 2003.
Claustre, H., Morel, A., Hooker, S. B., Babin, M., Antoine, D., Oubelkheir, K., Bricaud, A., Leblanc, K., Quéguiner, B., and Maritorena, S.: Is desert dust making oligotrophic waters greener?, Geophys. Res. Lett., 29, 1–7, https://doi.org/10.1029/2001GL014506, 2002.
D'Alimonte, D. and Zibordi, G.: Phytoplankton Determination in an Optically Complex Coastal Region Using a Multilayer Perceptron Neural Network, IEEE Geosci. Remote S., 41, 2861–2868, 2003.
D'Alimonte, D., Mélin, F., Zibordi, G., and Berthon, J.-F.: Use of the novelty detection technique to identify the range of applicability of the empirical ocean color algorithms, IEEE T. Geosci. Remote, 41, 2833–2843, 2003.
D'Ortenzio, F. and Ribera d'Alcalà, M.: On the trophic regimes of the Mediterranean Sea: a satellite analysis, Biogeosciences, 6, 139–148, https://doi.org/10.5194/bg-6-139-2009, 2009.
D'Ortenzio, F., Marullo, S., Ragni, M., d'Alcala, M. R., and Santoleri, R.: Validation of empirical SeaWiFS algorithms for chlorophyll-alpha retrieval in the Mediterranean Sea – a case study for oligotrophic seas, Remote Sens. Environ., 82, 79–94, 2002.
Devred, E., Sathyendranath, S., Stuart, V., Maass, H., Ulloa, O., and Platt, T.: A two-component model of phytoplankton absorption in the open ocean: Theory and applications, J. Geophys. Res., 111, C03011, https://doi.org/10.1029/2005JC002880, 2006.
Di Cicco, A.: Spatial and temporal variability of dominant Phytoplankton Size Classes in the Mediterranean Sea from Remote Sensing, PhD thesis in Ecology and Management of Biological Resources, Tuscia University, 1–110, 2014.
Falkowski, P. G., Barber, R. T., and Smetacek, V.: Biogeochemical Controls and Feedbacks on Ocean Primary Production, Science, 281, 200–206, 1998.
Finkel, Z. V., Beardall, J., Flynn, K. J., Quigg, A., Rees, T. A. V., and Raven J. A.: Phytoplankton in a changing world: cell size and elemental stoichiometry, J. Plankton Res., 32, 119–137, 2010.
Fonda Umani, S., Milani, L., Borme, D., de Olazabal, A., Parlato, S., Precali, Kraus, R., Lučić, D., Njire, J., Totti, C., Romagnoli, T., Pompei, M., and Cangini, M.: Inter-annual variations of planktonic food webs in the northern Adriatic Sea, Sci. Total Environ., 353, 218–231, 2005.
Font, J., Puig, P., Salat, J., Palanques, A., and Emelianov, M.: Sequence of hydrographic changes in NW Mediterranean deep water due to the exceptional winter of 2005, Sci. Mar., 71, 339–346, 2007.
Fujiwara, A., Hirawake, T., Suzuki, K., and Saitoh, S.-I.: Remote sensing of size structure of phytoplankton communities using optical properties of the Chukchi and Bering Sea shelf region, Biogeosciences, 8, 3567–3580, https://doi.org/10.5194/bg-8-3567-2011, 2011.
Gieskes, W. W. C., Kraay, G. W., Nontji, A., and Setiapermana, D.: Monsoonal alternation of a mixed and a layered structure in the phytoplankton of the euphotic zone of the Banda Sea (Indonesia): A mathematical analysis of algal pigment fingerprints, Neth. J. Sea Res., 22, 123–137, 1988.
Gitelson, A., Karnieli, A., Goldman, N., Yacobi, Y., and Mayo, M.: Chlorophyll estimation in the Southeastern Mediterranean using CZCS images – adaptation of an algorithm and its validation, J. Marine Syst., 9, 283–290, 1996.
Hirata, T., Aiken, J., Hardman-Mountford, N., Smyth, T. J., and Barlow, R. G.: An absorption model to determine phytoplankton size classes from satellite ocean colour, Remote Sens. Environ., 112, 3153–3159, 2008.
Hirata, T., Hardman-Mountford, N. J., Brewin, R. J. W., Aiken, J., Barlow, R., Suzuki, K., Isada, T., Howell, E., Hashioka, T., Noguchi-Aita, M., and Yamanaka, Y.: Synoptic relationships between surface Chlorophyll-a and diagnostic pigments specific to phytoplankton functional types, Biogeosciences, 8, 311–327, https://doi.org/10.5194/bg-8-311-2011, 2011.
Hooker, S., Heukelem, L., Thomas, C., Claustre, H., Ras, J., Barlow, R., Sessions, H., Schlüter, L., Perl, J., Trees, C., Suart, V., Head, E., Clemenston, L., Fishwick, J., Llewellyn, C., and Aiken, J.: The Second SeaWIFS HPLC Analysis Round-Robin Experiment (SeaHARRE-2) NASA/TM-2005-212785, 1–112, 2005.
Irwin, A. J., Finkel, Z. V., Schofield, O. M. E., and Falkowski, P. G.: Scaling-up from nutrient physiology to the size-structure of phytoplankton communities, J. Plankton Res., 28, 459–471, https://doi.org/10.1093/plankt/fbi148, 2006.
Klauschies, T., Bauer, B., Aberle-Malzahn, N., Sommer, U., and Gaedke, U.: Climate change effects on phytoplankton depend on cell size and food web structure, Mar. Biol., 159, 2455–2478, https://doi.org/10.1007/s00227-012-1904-y, 2012.
Kostadinov, T. S., Siegel, D. A., and Maritorena, S.: Retrieval of the particle size distribution from satellite ocean color observations, J. Geophys. Res., 114, C09015, https://doi.org/10.1029/2009JC005303, 2009.
Krom, M. D., Herut, B., and Mantoura, R. F. C.: Nutrient budget for the eastern Mediterranean: implications for phosphorus limitation, Limnol. Oceanogr., 49, 1582–1592, 2004.
Lacombe, H., Gascard, J. C., Gonella, J., and Bethoux, J. P.: Response of the Mediterranean to the water and energy fluxes across its surface, on seasonal and interannual scales, Oceanol. Acta, 4, 247–255, 1981.
Le Quéré, C., Harrison, S. P., Colin Prentice, I., Buitenhuis, E. T., Aumont, O., Bopp, L., Claustre, H., Cotrim Da Cunha, L., Geider, R., Giraud, X., Klaas, C., Kohfeld, K. E., Legendre, L., Manizza, M., Platt, T., Rivkin, R. B., Sathyendranath, S., Uitz, J., Watson, A. J., and Wolf-Gladrow, D.: Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models, Glob. Change Biol., 11, 2016–2040, 2005.
Lévy, M., Memery, L., and André, J. M.: Simulation of primary production and export fluxes in the Northwestern Mediterranean Sea, J. Mar. Res., 56, 197–238, 1998a.
Lévy, M., Memery, L., and Madec, G.: The onset of a bloom after deep winter convection in the northwestern Mediterranean Sea: mesoscale process study with a primitive equation model, J. Marine Syst., 16, 7–21, 1998b.
Malej, A., Mozetic, P., Malacic, V., Terzic, S., and Ahel, M.: Phytoplankton responses to freshwater inputs in a small semi-enclosed gulf (Gulf of Trieste, Adriatic Sea), Mar. Ecol.-Prog. Ser., 120, 111–121, 1995.
Marañón, E., Cermeño, P., Latasa, M., Tadonléké Rémy, D.: Temperature, resources, and phytoplankton size structure in the ocean, Limnol. Oceanogr., 57, 1266–1278, https://doi.org/10.4319/lo.2012.57.5.1266, 2012.
Marty, J. C. and Chiaverini, J.: Seasonal and interannual variations in phytoplankton production at DYFAMED time-series station, northwestern Mediterranean Sea, Deep-Sea Res. Pt. II, 49, 2017–2030, 2002.
Marinov, I., Doney, S. C., and Lima, I. D.: Response of ocean phytoplankton community structure to climate change over the 21st century: partitioning the effects of nutrients, temperature and light, Biogeosciences, 7, 3941–3959, https://doi.org/10.5194/bg-7-3941-2010, 2010.
Mercado, J. M., Ramìrez, T., Cortès, D., Sebastiàn, M., and Vargas-Yàñez, M.: Seasonal and inter-annual variability of the phytoplankton communities in an upwelling area of the Alborán Sea (SW Mediterranean Sea), Sci. Mar., 69, 451–465, 2005.
Moisan, T. A. H., Sathyendranath, S., and Bouman, H. A.: Ocean color remote sensing of the phytoplankton functional types, in: Remote Sensing of Biomass – Principles and Applications, edited by: Temilola Fatoyinbo, chapter 5, 101–122, 2012.
Morel, A. and Bricaud, A.: Theoretical results concerning light-absorption in a discrete medium, and application to specific absorption of phytoplankton, Deep-Sea Res., Part A, 28, 1375–1393, 1981.
Morel, A. and Gentili, B.: The dissolved yellow substance and the shades of blue in the Mediterranean Sea, Biogeosciences, 6, 2625–2636, https://doi.org/10.5194/bg-6-2625-2009, 2009.
Mouw, C. B. and Yoder, J. A.: Optical determination of phytoplankton size composition from global SeaWiFS imagery, J. Geophys. Res., 115, C12018, https://doi.org/10.1029/2010JC006337, 2010.
Nair, A., Sathyendranath, S., Platt, T., Morales, J., Stuart, V., Forget, M. H., Devred, E., and Bouman, H.: Remote sensing of phytoplankton functional types, Remote Sens. Environ., 112, 3366–3375, 2008.
Navarro, G., Alvain, S., Vantrepotte, V., and Huertas, I. E.: Identification of dominant Phytoplankton Functional Types in the Mediterranean Sea based on a regionalized remote sensing approach, Remote Sens. Environ., 152, 557–575, 2014.
O'Reilly, J. E., Maritorena, S., Mitchell, B. G., Siegel, D. A., Carder, K. L., Garver, S. A., Kahru, M., and McClain, C.: Ocean chlorophyll algorithms for SeaWiFS, J. Geophys. Res., 103, 24937–24953, 1998.
Organelli, E., Nuccio, N., and Massi, L.: Individuazione dei principali gruppi fitoplanctonici in base al loro contributo di assorbimento e retrodiffusione nella riflettanza, Ecologia Limnologia e Oceanografia: quale futuro per l'ambiente, Ancona, 17–20 September 2007, S. It. E., 181–187, 2007.
Park, J.-Y., Kung, J.-S., Bader, J., Rolph, R., and Kwon, M.: Amplified Arctic warming by phytoplanknton under greenhouse warming, P. Natl. Acad. Sci. USA, 112, 1–6, https://doi.org/10.1073/pnas.1416884112, 2015.
Raven, J. A.: The twelfth Tansley Lecture. Small is beautiful: the picophytoplankton, Func. Ecol., 12, 503–513, https://doi.org/10.1046/j.1365-2435.1998.00233.x, 1998.
Reynolds, C. S.: Physical Determinants of Phytoplankton Succession, in: Plankton Ecology, edited by: Sommer, U., Brock/Springer Series in Contemporary Bioscience, Springer Berlin Heidelberg, 9–56, 1989.
Ribera d'Alcalà, M., Civitarese, G., Conversano, F., and Lavezza, R.: Nutrient fluxes and ratios hint at overlooked processes in the Mediterranean Sea, J. Geophys. Res., 108, 8106, https://doi.org/10.1029/2002JC001650, 2003.
Robinson, A. R. and Golnaraghi, M.: The physical and dynamical oceanography of the Mediterranean Sea, in: Ocean Processes in Climate Dynamics: Global and Mediterranean Examples, edited by: Malanotte-Rizzoli, P. and Robinson, A. R., NATO-ASI, Kluwer Academic Publishers, Dordrecht, the Netherlands, 255–306, 1994.
Russo, A., Maccaferri, S., Djakovac, T., Precali, R., Degobbis, D., Deserti, M., Paschini, E., and Lyons, D. M.: Meteorological and oceanographic conditions in the northern Adriatic Sea during the period June 1999–July 2002: Influence on the mucilage phenomenon, Sci. Total Environ., 353, 24–38, 2005.
Sarhan, T., García-Lafuente, J., Vargas, M., Vargas, J. M., and Plaza, F.: Upwelling mechanisms in the northwestern Alboran Sea, J. Marine Syst., 23, 317–331, 2000.
Santoleri, R., Banzon, V., Marullo, S., Napolitano, E., D'Ortenzio, F., and Evans, R.: Year-to-year variability of the phytoplankton bloom in the southern Adriatic Sea (1998–2000): sea-viewing Wide Field-of-view Sensor observations and modeling study, J. Geophys. Res., 108, 1–23, 2003.
Santoleri, R., Volpe, G., Marullo, S., and Nardelli, B. B.: Open waters optical remote sensing of the Mediterranean Sea, Remote Sensing of the European Seas, Springer, 103–116, 2008.
Santinelli, C., Sempéré, R., Van Wambeke, F., Charriere, B., and Seritti, A.: Organic carbon dynamics in the Mediterranean Sea: an integrated study, Global Biogeochem. Cy., 26, GB4004, https://doi.org/10.1029/2011GB004151, 2012.
Sathyendranath, S. (Ed.): Phytoplankton Functional Types from Space. Reports of the International Ocean-Colour Coordinating Group, IOCCG. No. 15, IOCCG, Dartmouth, Canada, 1–135, 2014.
Sathyendranath, S., Stuart, V., Cota, G., Maas, H., and Platt, T.: Remote sensing of phytoplankton pigments: a comparison of empirical and theoretical approaches, Int. J. Remote Sens., 22, 249–273, 2001.
Sieburth, J. M., Smetacek, V., and Lenz, J.: Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions, Limnol. Oceanogr., 23, 1256–1263, 1978.
Siokou-Frangou, I., Christaki, U., Mazzocchi, M. G., Montresor, M., Ribera d'Alcalá, M., Vaqué, D., and Zingone, A.: Plankton in the open Mediterranean Sea: a review, Biogeosciences, 7, 1543–1586, https://doi.org/10.5194/bg-7-1543-2010, 2010.
Smith, R. O., Bryden, H. L., and Stansfield, K.: Observations of new western Mediterranean deep water formation using Argo floats 2004–2006, Ocean Sci., 4, 133–149, https://doi.org/10.5194/os-4-133-2008, 2008.
Stravisi, F.: Le precipitazioni a Trieste (1787–2003), in: La variabilità del clima locale relazionata ai fenomeni di cambiamento globale, edited by: Cortemiglia, G. C., Pàtron, Bologna, 289–325, 2006.
Struglia, M. V., Mariotti, A., and Filograsso, A.: River discharge into the Medtierranean Sea: climatology and aspects of the observed variability, J. Climate, 17, 4740–4751, 2004.
Thingstad, F. T. and Rassoulzadegan, F.: Conceptual models for the biogeochemical role of the photic zone microbial food web, with particular reference to the Mediterranean Sea, Prog. Oceanogr., 44, 271–286, 1999.
Timmermans, K. R., Van derWagt, B., Veldhuis, M. J. W., Maatman, A., and De Baar, H. J. W.: Physiological responses of three species of marine pico-phytoplankton to ammonium, phosphate, iron and light limitation, J. Sea Res., 53, 109–120, 2005.
Uitz, J., Claustre, H., Morel, A., and Hooker, S. B.: Vertical distribution of phytoplankton communities in open ocean, An assessment based on surface chlorophyll, J. Geophys. Res., 111, C08005, https://doi.org/10.1029/2005JC003207, 2006.
Uitz, J., Claustre, H., Gentili, B., and Stramski, D.: Phytoplankton class-specific primary production in the world's oceans: seasonal and interannual variability from satellite observations, Global Biogeochem. Cy., 24, GB3016, https://doi.org/10.1029/2009GB003680, 2010.
Uitz, J., Stramski, D., Gentili, B., D'Ortenzio, F., and Claustre, H.: Estimates of phytoplankton class-specific and total primary production in the Mediterranean Sea from satellite ocean color observations, Global Biogeochem. Cy., 26, GB2024, https://doi.org/10.1029/2011gb004055, 2012.
Vidussi, F., Claustre, H., Manca, B. B., Luchetta, A., and Marty, J.: Phytoplankton pigment distribution in relation to upper thermocline circulation in the eastern Mediterranean Sea during winter, J. Geophys. Res., 106, 19939–19956, 2001.
Volpe, G., Santoleri, R., Vellucci, V., Ribera d'Alcalà, M., Marullo, S., and D'Ortenzio, F.: The colour of the Mediterranean Sea: global versus regional biooptical algorithms evaluation and implication for satellite chlorophyll estimates, Remote Sens. Environ., 107, 625–638, 2007.
Volpe, G., Colella, S., Forneris, V., Tronconi, C., and Santoleri, R.: The Mediterranean Ocean Colour Observing System – system development and product validation, Ocean Sci., 8, 869–883, https://doi.org/10.5194/os-8-869-2012, 2012a.
Volpe, G., Buongiorno Nardelli, B., Cipollini, P., Santoleri, R. S., and Robinson, I.: Seasonal to interannual phytoplankton response to physical processes in the Mediterranean Sea from satellite observations, Remote Sens. Environ., 117, 223–235, 2012b.
Werdell, P. J. and Bailey, S. W.: An improved bio-optical data set for ocean color algorithm development and satellite data product validation, Remote Sens. Environ., 98, 122–140, 2005.
Zohary, T. and Robarts, R. D.: Experimental study of microbial P limitation in the eastern Mediterranean, Limnol. Oceanogr., 43, 387–395, 1998.
Short summary
We describe the seasonal and year-to-year variability of the spatial distribution of the phytoplankton size classes (PSCs) in the Mediterranean Sea using the time series of Sea-viewing Wide Field-of-view Sensor (SeaWiFS) observations (1998 to 2010). We used a chlorophyll-a-based model to estimate the phytoplankton composition. Our results, based on ocean colour data, confirm the seasonal and inter-annual pattern of the phytoplankton community observed from in situ data and in previous studies.
We describe the seasonal and year-to-year variability of the spatial distribution of the...