Articles | Volume 11, issue 3
https://doi.org/10.5194/os-11-361-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-11-361-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Eddy characteristics in the South Indian Ocean as inferred from surface drifters
S. Zheng
State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
now at: State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
J. Li
Naval Institute of Hydrographic Surveying and Charting, Tianjin 300061, China
X. Cheng
State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
Related authors
No articles found.
Yang Feng, Dimitris Menemenlis, Huijie Xue, Hong Zhang, Dustin Carroll, Yan Du, and Hui Wu
Geosci. Model Dev., 14, 1801–1819, https://doi.org/10.5194/gmd-14-1801-2021, https://doi.org/10.5194/gmd-14-1801-2021, 2021
Short summary
Short summary
Simulation of coastal plume regions was improved in global ECCOv4 with a series of sensitivity tests. We find modeled SSS is closer to SMAP when using daily point-source runoff as well as increasing the resolution from coarse to intermediate. The plume characteristics, freshwater transport, and critical water properties are modified greatly. But this may not happen with a further increase to high resolution. The study will advance the seamless modeling of land–ocean–atmosphere feedback in ESMs.
A. Wang, Y. Du, W. Zhuang, and Y. Qi
Ocean Sci., 11, 305–312, https://doi.org/10.5194/os-11-305-2015, https://doi.org/10.5194/os-11-305-2015, 2015
Short summary
Short summary
Here, we investigated the seasonal variability of subsurface high-salinity water (SHSW) in the northern South China Sea (SCS) and its relationship with the North Equatorial Current-Kuroshio circulation system. Results give new insight into water exchange through the Luzon Strait (LS). The changes in western Pacific large-scale circulation modulate the water exchange in the LS, and thus influence the SHSW in the interior SCS basin.
Cited articles
Abraham, E. R.: The generation of plankton patchiness by turbulent stirring, Nature, 391, 577–580, https://doi.org/10.1038/35361, 1998.
Abraham, E. R., Law, C. S., Boyd, P. W., Lavender, S. J., Maldonado, M. T., and Bowie, A. R.: Importance of stirring in the development of an iron-fertilized phytoplankton bloom, Nature, 407, 727–730, https://doi.org/10.1038/35037555, 2000.
Aristegui, J., Tett, P., HernandezGuerra, A., Basterretxea, G., Montero, M. F., Wild, K., Sangra, P., HernandezLeon, S., Canton, M., GarciaBraun, J. A., Pacheco, M., and Barton, E. D.: The influence of island-generated eddies on chlorophyll distribution: A study of mesoscale variation around Gran Canaria, Deep-Sea Res. Pt. I, 44, 71–96, https://doi.org/10.1016/S0967-0637(96)00093-3, 1997.
Backeberg, B. C., Johonnessen, J. A., Bertino, L., and Reason, C. J.: The greater Agulhas Current system: An integrated study of its mesoscale variability, Journal of Operational Oceanography, 1, 29–44, 2008.
Beal, L. M., de Ruijter, W. P. M., Biastoch, A., Zahn, R., and SCOR/WCRP/IAPSO Working Group 136: On the role of the Agulhas system in ocean circulation and climate, Nature, 472, 429–436, https://doi.org/10.1038/Nature09983, 2011.
Berti, S., Dos Santos, F. A., Lacorata, G., and Vulpiani, A.: Lagrangian Drifter Dispersion in the Southwestern Atlantic Ocean, J. Phys. Oceanogr., 41, 1659–1672, https://doi.org/10.1175/2011jpo4541.1, 2011.
Chaigneau, A. and Pizarro, O.: Eddy characteristics in the eastern South Pacific, J. Geophys. Res.-Oceans, 110, C06005, https://doi.org/10.1029/2004jc002815, 2005.
Chelton, D. B., DeSzoeke, R. A., Schlax, M. G., El Naggar, K., and Siwertz, N.: Geographical variability of the first baroclinic Rossby radius of deformation, J. Phys. Oceanogr., 28, 433–460, https://doi.org/10.1175/1520-0485(1998)028<0433:Gvotfb>2.0.Co;2, 1998.
Chelton, D. B., Schlax, M. G., and Samelson, R. M.: Global observations of nonlinear mesoscale eddies, Prog. Oceanogr., 91, 167–216, https://doi.org/10.1016/j.pocean.2011.01.002, 2011.
Crawford, W. R., Brickley, P. J., Peterson, T. D., and Thomas, A. C.: Impact of Haida Eddies on chlorophyll distribution in the Eastern Gulf of Alaska, Deep-Sea Res. Pt. II, 52, 975–989, https://doi.org/10.1016/j.dsr2.2005.02.011, 2005.
Cresswell, G. R.: The Leeuwin Current – observations and recent models, Journal of the Royal Society of Western Australia, 74, 1–14, 1991.
Cresswell, G. R. and Golding, T. J.: Observations of a south-flowing current in the southeastern Indian Ocean, Deep-Sea Res. Pt. I, 27A, 449–466, 1980.
de Ruijter, W. P. M., Ridderinkhof, H., Lutjeharms, J. R. E., Schouten, M. W., and Veth, C.: Observations of the flow in the Mozambique Channel, Geophys. Res. Lett., 29, 1502, https://doi.org/10.1029/2001gl013714, 2002.
de Ruijter, W. P. M., van Aken, H. M., Beier, E. J., Lutjeharms, J. R. E., Matano, R. P., and Schouten, M. W.: Eddies and dipoles around South Madagascar: formation, pathways and large-scale impact, Deep-Sea Res. Pt. I, 51, 383–400, https://doi.org/10.1016/j.dsr.2003.10.011, 2004.
Deverdiere, A. C.: Lagrangian Eddy Statistics from Surface Drifters in the Eastern North-Atlantic, J. Mar. Res., 41, 375–398, 1983.
Dong, C., McWilliams, J. C., Liu, Y., and Chen, D.: Global heat and salt transports by eddy movement, Nature Communications, 5, 1–6, https://doi.org/10.1038/ncomms4294, 2014.
Donners, J. and Drijfhout, S. S.: The Lagrangian view of South Atlantic Interocean exchange in a global ocean model compared with inverse model results, J. Phys. Oceanogr., 34, 1019–1035, https://doi.org/10.1175/1520-0485(2004)034<1019:Tlvosa>2.0.Co;2, 2004.
Dong, C., Lin, X., Liu, Y., Nencioli, F., Chao, Y., Guan, Y., Chen, D., Dickey, T., and McWilliams, J. C.: Three-dimensional oceanic eddy analysis in the Southern California Bight from a numerical product, J. Geophys. Res.-Oceans, 117, C00H14, 2012.
Dong, C. M., Liu, Y., Lumpkin, R., Lankhorst, M., Chen, D., McWilliams, J. C., and Guan, Y. P.: A Scheme to Identify Loops from Trajectories of Oceanic Surface Drifters: An Application in the Kuroshio Extension Region, J. Atmos. Ocean. Tech., 28, 1167–1176, https://doi.org/10.1175/Jtech-D-10-05028.1, 2011.
Falkowski, P. G., Ziemann, D., Kolber, Z., and Bienfang, P. K.: Role of Eddy Pumping in Enhancing Primary Production in the Ocean, Nature, 352, 55–58, https://doi.org/10.1038/352055a0, 1991.
Feng, M., Wijffels, S., Godfrey, J. S., and Meyers, G.: Do eddies play a role in the momentum balance of the Leeuwin Current? J. Phys. Oceanogr., 35, 964–975, 2005.
Feng, M., Majewski, L. J., Fandry, C. B., and Waite, A. M.: Characteristics of two counter-rotating eddies in the Leeuwin Current system off the Western Australian coast, Deep-Sea Res. Pt. I, 54, 961–980, https://doi.org/10.1016/j.dsr2.2006.11.022, 2007.
Fieux, M., Molcard, R., and Morrow, R.: Water properties and transport of the Leeuwin Current and eddies off Western Australia, Deep-Sea Res. Pt. I, 52, 1617–1635, 2005.
Godfrey, J. S. and Ridgway, K. R.: The large-scale environment of the poleward-flowing Leeuwin Current, Western Australia: longshore steric height gradients, wind stresses, and geostrophic flow. J. Phys. Oceanogr. 15, 481–495, 1985.
Gordon, A. L., Weiss, R. F., Smethie, W. M., and Warner, M. J.: Thermocline and Intermediate Water Communication between the South-Atlantic and Indian Oceans, J. Geophys. Res.-Oceans, 97, 7223–7240, https://doi.org/10.1029/92jc00485, 1992.
Hamilton, P.: Eddy statistics from Lagrangian drifters and hydrography for the northern Gulf of Mexico slope, J. Geophys. Res.-Oceans, 112, C09002, https://doi.org/10.1029/2006jc003988, 2007.
Hansen, D. and Herman A.: Temporal sampling requirements for surface drifting buoys in the tropical Pacific. J. Atmos. Ocean. Tech., 6, 599–607, 1989.
Hansen, D. V. and Poulain, P. M.: Quality control and interpolations of WOCE-TOGA drifter data, J. Atmos. Ocean. Tech., 13, 900–909, https://doi.org/10.1175/1520-0426(1996)013<0900:qcaiow>2.0.co;2, 1996.
Jia, F., Wu, L., and Qiu, B.: Seasonal Modulation off Eddy Kinetic Energy and Its Formation Mechanism in the Southeast Indian Ocean, J. Phys. Oceanogr., 41, 657–665, https://doi.org/10.1175/2010jpo4436.1, 2011.
Lankhorst, M.: A self-contained identification scheme for eddies in drifter and float trajectories, J. Atmos. Ocean. Tech., 23, 1583–1592, https://doi.org/10.1175/Jtech1931.1, 2006.
Lankhorst, M. and Zenk, W.: Lagrangian observations of the middepth and deep velocity fields of the northeastern Atlantic Ocean, J. Phys. Oceanogr., 36, 43–63, https://doi.org/10.1175/jpo2869.1, 2006.
Ledwell, J. R., Watson, A. J., and Law, C. S.: Evidence for Slow Mixing across the Pycnocline from an Open-Ocean Tracer-Release Experiment, Nature, 364, 701–703, https://doi.org/10.1038/364701a0, 1993.
Lévy, M. and Klein, P.: Does the low frequency variability of mesoscale dynamics explain a part of the phytoplankton and zooplankton spectral variability?, P. R. Soc. London, 460, 1673–1683, 2004.
Lévy, M., Klein, P., and Tréguier, A. M.: Impacts of submesoscale physics on phytoplankton production and subduction, J. Mar. Res., 59, 535–565, 2001.
Li, J., Zhang, R., and Jin, B.: Eddy characteristics in the northern South China Sea as inferred from Lagrangian drifter data, Ocean Sci., 7, 661–669, https://doi.org/10.5194/os-7-661-2011, 2011.
Lumpkin, R. and Johnson, G. C.: Global ocean surface velocities from drifters: Mean, variance, El Niño-Southern Oscillation response, and seasonal cycle, J. Geophys. Res.-Oceans, 118, 2992–3006, https://doi.org/10.1002/Jgrc.20210, 2013.
Lumpkin, R. and Pazos, M.: Measuring surface currents with Surface Velocity Program drifters: the instrument, its data, and some recent results, Lagrangian analysis and prediction of coastal and ocean dynamics, 39–67, 2007.
Maximenko, N., Hafner, J., and Niiler, P.: Pathways of marine debris derived from trajectories of Lagrangian drifters, Mar. Pollut. Bull., 65, 51–62, https://doi.org/10.1016/j.marpolbul.2011.04.016, 2012.
McWilliams, J. C.: Submesoscale, coherent vortices in the ocean, Rev. Geophys., 23, 165–182, 1985.
McWilliams, J. C.: The Nature and Consequences of Oceanic Eddies, in: Ocean Modeling in an Eddying Regime, edited by: Hecht, M. W. and Hasumi, H., American Geophysical Union, Washington, D. C., USA, 5–15, https://doi.org/10.1029/177GM03, 2013.
Morrow, R., Birol, F., Griffin, D., and Sudre, J.: Divergent pathways of cyclonic and anti-cyclonic ocean eddies, Geophys. Res. Lett., 31, L24311, https://doi.org/10.1029/2004gl020974, 2004.
Nencioli, F., d'Ovidio, F., Doglioli, A. M., and Petrenko, A. A.: In situ estimates of submesoscale horizontal eddy diffusivity across an ocean front, J. Geophys. Res.-Oceans, 118, 7066–7080, https://doi.org/10.1002/2013jc009252, 2013.
Nakamura, T., Matthews, J. P., Awaji, T., and Mitsudera, H.: Submesoscale eddies near the Kuril Straits: Asymmetric generation of clockwise and counterclockwise eddies by barotropic tidal flow, J. Geophys. Res.-Oceans, 117, C12014, 2012.
Palastanga, V., van Leeuwen, P. J., and de Ruijter, W. P. M.: A link between low-frequency mesoscale eddy variability around Madagascar and the large-scale Indian Ocean variability, J. Geophys. Res.-Oceans, 111, C09029, https://doi.org/10.1029/2005jc003081, 2006.
Pearce, A. F.: Eastern boundary currents of the Southern Hemisphere. Proceedings of the Royal Society of Western Australia, 74, 35–46, 1991.
Potemra, J. T.: Contribution of equatorial Pacific winds to southern tropical Indian Ocean Rossby waves, J. Geophys. Res., 106, 2407–2422, 2001.
Pujol, M. I. and Larnicol, G.: Mediterranean sea eddy kinetic energy variability from 11 years of altimetric data, J. Marine Syst., 58, 121–142, https://doi.org/10.1016/j.jmarsys.2005.07.005, 2005.
Qiu, B. and Chen, S. M.: Eddy-induced heat transport in the subtropical North Pacific from Argo, TMI, and altimetry measurements, J. Phys. Oceanogr., 35, 458–473, https://doi.org/10.1175/jpo2696.1, 2005.
Quartly, G. D. and Srokosz, M. A.: Eddies in the southern Mozambique Channel, Deep-Sea Res. Pt. I, 51, 69–83, https://doi.org/10.1016/j.dsr2.2003.03.001, 2004.
Quartly, G. D., Buck, J. J. H., Srokosz, M. A., and Coward, A. C.: Eddies around Madagascar – The retroflection re-considered, J. Marine Syst., 63, 115–129, https://doi.org/10.1016/j.jmarsys.2006.06.001, 2006.
Rennie, S. J., Pattiaratchi, C. P., and McCauley, R. D.: Eddy formation through the interaction between the Leeuwin Current, Leeuwin Undercurrent and topography, Deep-Sea Res. Pt. I, 54, 818–836, https://doi.org/10.1016/j.dsr2.2007.02.005, 2007.
Ridderinkhof, H., van der Werf, P. M., Ullgren, J. E., van Aken, H. M., van Leeuwen, P. J., and de Ruijter, W. P. M.: Seasonal and interannual variability in the Mozambique Channel from moored current observations, J. Geophys. Res.-Oceans, 115, C06010, https://doi.org/10.1029/2009jc005619, 2010.
Schott, F. A. and McCreary, J. P.: The monsoon circulation of the Indian Ocean, Prog. Oceanogr., 51, 1–123, https://doi.org/10.1016/S0079-6611(01)00083-0, 2001.
Schott, F. A., Xie, S. P., and McCreary, J. P.: Indian Ocean Circulation and Climate Variability, Rev Geophys, 47, Rg1002, https://doi.org/10.1029/2007rg000245, 2009.
Schouten, M. W., de Ruijter, W. P. M., van Leeuwen, P. J., and Ridderinkhof, H.: Eddies and variability in the Mozambique Channel, Deep-Sea Res. Pt. II, 50, 1987–2003, 10.1016/s0967-0645(03)00042-0, 2003.
Schroeder, K., Chiggiato, J., Haza, A. C., Griffa, A., Ozgokmen, T. M., Zanasca, P., Molcard, A., Borghini, M., Poulain, P. M., Gerin, R., Zambianchi, E., Falco, P., and Trees, C.: Targeted Lagrangian sampling of submesoscale dispersion at a coastal frontal zone, Geophys. Res. Lett., 39, L11608, https://doi.org/10.1029/2012gl051879, 2012.
Swart, N. C., Lutjeharms, J. R. E., Ridderinkhof, H., and de Ruijter, W. P. M.: Observed characteristics of Mozambique Channel eddies, J. Geophys. Res.-Oceans, 115, C09006, 2010.
Thomas, L. N., Tandon, A., and Mahadevan, A.: Submesoscale processes and dynamics, Eddy Resolving Ocean Modeling, edited by: Hecht, M. W. and Hasumi, H., Amer. Geophys. Union, 17–38, 2008.
Thompson, L. and Young, W. R.: An Upper Bound on the Size of Sub-mesoscale Coherent Vortices, J. Phys. Oceanogr., 19, 233–237, https://doi.org/10.1175/1520-0485(1989)019<0233:AUBOTS>2.0.CO;2, 1989.
Van Sebille, E., England, M. H., and Froyland, G.: Origin, dynamics and evolution of ocean garbage patches from observed surface drifters, Environ. Res. Lett., 7, 044040, https://doi.org/10.1088/1748-9326/7/4/044040, 2012.
Volkov, D. L., Lee, T., and Fu, L.-L.: Eddy-induced meridional heat transport in the ocean, Geophys. Res. Lett., 35, L20601, https://doi.org/10.1029/2008gl035490, 2008.
Zhang Z. G., Wang W., and Qiu B.: Oceanic mass transport by mesoscale eddies, Science, 345, 322–324, https://doi.org/10.1126/science.1252418, 2014.
Zu, T. T., Chen, J., and Wang, D. X.: Detection of the Cyclonic Eddy in the Southwest of the South China Sea: From Remote Sensing Data and Drifter Buoys, Adv. Intel. Soft. Compu., 142, 153–159, 2012.
Short summary
Eddies in the South Indian Ocean (SIO) were statistically investigated based on 2082 surface drifters, and 19252 eddies were identified with 60% anticyclonic eddies. Mesoscale and submesoscale eddies show different spatial distributions. Large eddies mainly appear in regions with large eddy kinetic energy. The submesoscale anticyclonic eddies are densely distributed in the subtropical basin in the central SIO. The number of mesoscale eddies shows statistically significant seasonal variability.
Eddies in the South Indian Ocean (SIO) were statistically investigated based on 2082 surface...