Articles | Volume 11, issue 3
https://doi.org/10.5194/os-11-323-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-11-323-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Modelling of the anthropogenic tritium transient and its decay product helium-3 in the Mediterranean Sea using a high-resolution regional model
Laboratoire des Sciences du Climat et de l'Environnement (LSCE), IPSL, CEA/UVSQ/CNRS, Orme des Merisiers, Gif-Sur-Yvette, France
J.-C. Dutay
Laboratoire des Sciences du Climat et de l'Environnement (LSCE), IPSL, CEA/UVSQ/CNRS, Orme des Merisiers, Gif-Sur-Yvette, France
P. Jean-Baptiste
Laboratoire des Sciences du Climat et de l'Environnement (LSCE), IPSL, CEA/UVSQ/CNRS, Orme des Merisiers, Gif-Sur-Yvette, France
K. Beranger
ENSTA ParisTech, Palaiseau, France
T. Arsouze
ENSTA ParisTech, Palaiseau, France
J. Beuvier
Mercator-Océan, Ramonville Saint-Agne, France
CNRM-GAME (Météo-France, CNRS), Toulouse, France
J. Palmieri
Laboratoire des Sciences du Climat et de l'Environnement (LSCE), IPSL, CEA/UVSQ/CNRS, Orme des Merisiers, Gif-Sur-Yvette, France
B. Le-vu
Laboratoire des Sciences du Climat et de l'Environnement (LSCE), IPSL, CEA/UVSQ/CNRS, Orme des Merisiers, Gif-Sur-Yvette, France
W. Roether
Institut fur Umweltphysik, University of Bremen, Bremen, Germany
Related authors
Mohamed Ayache, Jean-Claude Dutay, Anne Mouchet, Kazuyo Tachikawa, Camille Risi, and Gilles Ramstein
Geosci. Model Dev., 17, 6627–6655, https://doi.org/10.5194/gmd-17-6627-2024, https://doi.org/10.5194/gmd-17-6627-2024, 2024
Short summary
Short summary
Water isotopes (δ18O, δD) are one of the most widely used proxies in ocean climate research. Previous studies using water isotope observations and modelling have highlighted the importance of understanding spatial and temporal isotopic variability for a quantitative interpretation of these tracers. Here we present the first results of a high-resolution regional dynamical model (at 1/12° horizontal resolution) developed for the Mediterranean Sea, one of the hotspots of ongoing climate change.
Mohamed Ayache, Jean-Claude Dutay, Kazuyo Tachikawa, Thomas Arsouze, and Catherine Jeandel
Biogeosciences, 20, 205–227, https://doi.org/10.5194/bg-20-205-2023, https://doi.org/10.5194/bg-20-205-2023, 2023
Short summary
Short summary
The neodymium (Nd) is one of the most useful tracers to fingerprint water mass provenance. However, the use of Nd is hampered by the lack of adequate quantification of the external sources. Here, we present the first simulation of dissolved Nd concentration and Nd isotopic composition in the Mediterranean Sea using a high-resolution model. We aim to better understand how the various external sources affect the Nd cycle and particularly assess how it is impacted by atmospheric inputs.
Mohamed Ayache, Alberte Bondeau, Rémi Pagès, Nicolas Barrier, Sebastian Ostberg, and Melika Baklouti
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-342, https://doi.org/10.5194/gmd-2020-342, 2020
Preprint withdrawn
Short summary
Short summary
Land forcing is reported as one of the major sources of uncertainty limiting the capacity of marine biogeochemical models. In this study, we present the first basin-wide simulation at 1/12° of water discharge as well as nitrate (NO3) and phosphate (PO4) release into the Mediterranean from basin-wide agriculture and urbanization, by using the agro-ecosystem model (LPJmL-Med). The model evaluation against observation data, and all implemented processes are described in detail in this manuscript.
Mohamed Ayache, Jean-Claude Dutay, Anne Mouchet, Nadine Tisnérat-Laborde, Paolo Montagna, Toste Tanhua, Giuseppe Siani, and Philippe Jean-Baptiste
Biogeosciences, 14, 1197–1213, https://doi.org/10.5194/bg-14-1197-2017, https://doi.org/10.5194/bg-14-1197-2017, 2017
Short summary
Short summary
A high-resolution dynamical model was used to give the first simulation of the distribution of natural and anthropogenic radiocarbon (14C) across the whole Mediterranean Sea. The model correctly simulates the main features of 14C distribution during and after the bomb perturbation. The results demonstrate the major influence of the flux of Atlantic water through the Strait of Gibraltar, and a significant increase in 14C in the Aegean deep water during the Eastern Mediterranean Transient event.
Mohamed Ayache, Jean-Claude Dutay, Thomas Arsouze, Sidonie Révillon, Jonathan Beuvier, and Catherine Jeandel
Biogeosciences, 13, 5259–5276, https://doi.org/10.5194/bg-13-5259-2016, https://doi.org/10.5194/bg-13-5259-2016, 2016
Short summary
Short summary
An extensive compilation of published neodymium (Nd) concentrations and isotopic compositions (Nd IC) was realized in order to establish a new database and a map (using a high-resolution geological map of the area) of the distribution of these parameters for all the Mediterranean margins. The use of a high-resolution regional oceanic model (1/12° of horizontal resolution) allows us to realistically simulate for the first time the Nd IC distribution in the Mediterranean Sea.
M. Ayache, J.-C. Dutay, P. Jean-Baptiste, and E. Fourré
Ocean Sci., 11, 965–978, https://doi.org/10.5194/os-11-965-2015, https://doi.org/10.5194/os-11-965-2015, 2015
Short summary
Short summary
Helium isotopes are a powerful tool in Earth sciences. We present the first simulation of the terrigenic helium isotope distribution in the whole Mediterranean Sea, using a high-resolution model (NEMO-MED12). In addition to providing constraints on helium isotope degassing fluxes in the Mediterranean, our simulations provide information on the ventilation of the deep Mediterranean waters, which are useful for assessing NEMO-MED12 performance.
Mohamed Ayache, Jean-Claude Dutay, Anne Mouchet, Kazuyo Tachikawa, Camille Risi, and Gilles Ramstein
Geosci. Model Dev., 17, 6627–6655, https://doi.org/10.5194/gmd-17-6627-2024, https://doi.org/10.5194/gmd-17-6627-2024, 2024
Short summary
Short summary
Water isotopes (δ18O, δD) are one of the most widely used proxies in ocean climate research. Previous studies using water isotope observations and modelling have highlighted the importance of understanding spatial and temporal isotopic variability for a quantitative interpretation of these tracers. Here we present the first results of a high-resolution regional dynamical model (at 1/12° horizontal resolution) developed for the Mediterranean Sea, one of the hotspots of ongoing climate change.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Preprint under review for BG
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Jeff Polton, James Harle, Jason Holt, Anna Katavouta, Dale Partridge, Jenny Jardine, Sarah Wakelin, Julia Rulent, Anthony Wise, Katherine Hutchinson, David Byrne, Diego Bruciaferri, Enda O'Dea, Michela De Dominicis, Pierre Mathiot, Andrew Coward, Andrew Yool, Julien Palmiéri, Gennadi Lessin, Claudia Gabriela Mayorga-Adame, Valérie Le Guennec, Alex Arnold, and Clément Rousset
Geosci. Model Dev., 16, 1481–1510, https://doi.org/10.5194/gmd-16-1481-2023, https://doi.org/10.5194/gmd-16-1481-2023, 2023
Short summary
Short summary
The aim is to increase the capacity of the modelling community to respond to societally important questions that require ocean modelling. The concept of reproducibility for regional ocean modelling is developed: advocating methods for reproducible workflows and standardised methods of assessment. Then, targeting the NEMO framework, we give practical advice and worked examples, highlighting key considerations that will the expedite development cycle and upskill the user community.
Mohamed Ayache, Jean-Claude Dutay, Kazuyo Tachikawa, Thomas Arsouze, and Catherine Jeandel
Biogeosciences, 20, 205–227, https://doi.org/10.5194/bg-20-205-2023, https://doi.org/10.5194/bg-20-205-2023, 2023
Short summary
Short summary
The neodymium (Nd) is one of the most useful tracers to fingerprint water mass provenance. However, the use of Nd is hampered by the lack of adequate quantification of the external sources. Here, we present the first simulation of dissolved Nd concentration and Nd isotopic composition in the Mediterranean Sea using a high-resolution model. We aim to better understand how the various external sources affect the Nd cycle and particularly assess how it is impacted by atmospheric inputs.
Joris Pianezze, Jonathan Beuvier, Cindy Lebeaupin Brossier, Guillaume Samson, Ghislain Faure, and Gilles Garric
Nat. Hazards Earth Syst. Sci., 22, 1301–1324, https://doi.org/10.5194/nhess-22-1301-2022, https://doi.org/10.5194/nhess-22-1301-2022, 2022
Short summary
Short summary
Most numerical weather and oceanic prediction systems do not consider ocean–atmosphere feedback during forecast, and this can lead to significant forecast errors, notably in cases of severe situations. A new high-resolution coupled ocean–atmosphere system is presented in this paper. This forecast-oriented system, based on current regional operational systems and evaluated using satellite and in situ observations, shows that the coupling improves both atmospheric and oceanic forecasts.
Andrew Yool, Julien Palmiéri, Colin G. Jones, Lee de Mora, Till Kuhlbrodt, Ekatarina E. Popova, A. J. George Nurser, Joel Hirschi, Adam T. Blaker, Andrew C. Coward, Edward W. Blockley, and Alistair A. Sellar
Geosci. Model Dev., 14, 3437–3472, https://doi.org/10.5194/gmd-14-3437-2021, https://doi.org/10.5194/gmd-14-3437-2021, 2021
Short summary
Short summary
The ocean plays a key role in modulating the Earth’s climate. Understanding this role is critical when using models to project future climate change. Consequently, it is necessary to evaluate their realism against the ocean's observed state. Here we validate UKESM1, a new Earth system model, focusing on the realism of its ocean physics and circulation, as well as its biological cycles and productivity. While we identify biases, generally the model performs well over a wide range of properties.
Mohamed Ayache, Alberte Bondeau, Rémi Pagès, Nicolas Barrier, Sebastian Ostberg, and Melika Baklouti
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-342, https://doi.org/10.5194/gmd-2020-342, 2020
Preprint withdrawn
Short summary
Short summary
Land forcing is reported as one of the major sources of uncertainty limiting the capacity of marine biogeochemical models. In this study, we present the first basin-wide simulation at 1/12° of water discharge as well as nitrate (NO3) and phosphate (PO4) release into the Mediterranean from basin-wide agriculture and urbanization, by using the agro-ecosystem model (LPJmL-Med). The model evaluation against observation data, and all implemented processes are described in detail in this manuscript.
Jane P. Mulcahy, Colin Johnson, Colin G. Jones, Adam C. Povey, Catherine E. Scott, Alistair Sellar, Steven T. Turnock, Matthew T. Woodhouse, Nathan Luke Abraham, Martin B. Andrews, Nicolas Bellouin, Jo Browse, Ken S. Carslaw, Mohit Dalvi, Gerd A. Folberth, Matthew Glover, Daniel P. Grosvenor, Catherine Hardacre, Richard Hill, Ben Johnson, Andy Jones, Zak Kipling, Graham Mann, James Mollard, Fiona M. O'Connor, Julien Palmiéri, Carly Reddington, Steven T. Rumbold, Mark Richardson, Nick A. J. Schutgens, Philip Stier, Marc Stringer, Yongming Tang, Jeremy Walton, Stephanie Woodward, and Andrew Yool
Geosci. Model Dev., 13, 6383–6423, https://doi.org/10.5194/gmd-13-6383-2020, https://doi.org/10.5194/gmd-13-6383-2020, 2020
Short summary
Short summary
Aerosols are an important component of the Earth system. Here, we comprehensively document and evaluate the aerosol schemes as implemented in the physical and Earth system models, HadGEM3-GC3.1 and UKESM1. This study provides a useful characterisation of the aerosol climatology in both models, facilitating the understanding of the numerous aerosol–climate interaction studies that will be conducted for CMIP6 and beyond.
Lee de Mora, Alistair A. Sellar, Andrew Yool, Julien Palmieri, Robin S. Smith, Till Kuhlbrodt, Robert J. Parker, Jeremy Walton, Jeremy C. Blackford, and Colin G. Jones
Geosci. Commun., 3, 263–278, https://doi.org/10.5194/gc-3-263-2020, https://doi.org/10.5194/gc-3-263-2020, 2020
Short summary
Short summary
We use time series data from the first United Kingdom Earth System Model (UKESM1) to create six procedurally generated musical pieces for piano. Each of the six pieces help to explain either a scientific principle or a practical aspect of Earth system modelling. We describe the methods that were used to create these pieces, discuss the limitations of this pilot study and list several approaches to extend and expand upon this work.
Lester Kwiatkowski, Olivier Torres, Laurent Bopp, Olivier Aumont, Matthew Chamberlain, James R. Christian, John P. Dunne, Marion Gehlen, Tatiana Ilyina, Jasmin G. John, Andrew Lenton, Hongmei Li, Nicole S. Lovenduski, James C. Orr, Julien Palmieri, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Charles A. Stock, Alessandro Tagliabue, Yohei Takano, Jerry Tjiputra, Katsuya Toyama, Hiroyuki Tsujino, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, and Tilo Ziehn
Biogeosciences, 17, 3439–3470, https://doi.org/10.5194/bg-17-3439-2020, https://doi.org/10.5194/bg-17-3439-2020, 2020
Short summary
Short summary
We assess 21st century projections of marine biogeochemistry in the CMIP6 Earth system models. These models represent the most up-to-date understanding of climate change. The models generally project greater surface ocean warming, acidification, subsurface deoxygenation, and euphotic nitrate reductions but lesser primary production declines than the previous generation of models. This has major implications for the impact of anthropogenic climate change on marine ecosystems.
Lise Missiaen, Nathaelle Bouttes, Didier M. Roche, Jean-Claude Dutay, Aurélien Quiquet, Claire Waelbroeck, Sylvain Pichat, and Jean-Yves Peterschmitt
Clim. Past, 16, 867–883, https://doi.org/10.5194/cp-16-867-2020, https://doi.org/10.5194/cp-16-867-2020, 2020
Tristan Vadsaria, Laurent Li, Gilles Ramstein, and Jean-Claude Dutay
Geosci. Model Dev., 13, 2337–2354, https://doi.org/10.5194/gmd-13-2337-2020, https://doi.org/10.5194/gmd-13-2337-2020, 2020
Short summary
Short summary
This article aims to reproduce the Early Holocene climate over the Mediterranean basin, characterized with a large reorganization of the Mediterranean thermohaline circulation. In order to reduce the demand of strong computation resources, a comprehensive global-to-regional model architecture is developed and validated against paleo data. Beyond the case study shown here, this platform may be applied to a large number of paleoclimate contexts.
William J. Jenkins, Scott C. Doney, Michaela Fendrock, Rana Fine, Toshitaka Gamo, Philippe Jean-Baptiste, Robert Key, Birgit Klein, John E. Lupton, Robert Newton, Monika Rhein, Wolfgang Roether, Yuji Sano, Reiner Schlitzer, Peter Schlosser, and Jim Swift
Earth Syst. Sci. Data, 11, 441–454, https://doi.org/10.5194/essd-11-441-2019, https://doi.org/10.5194/essd-11-441-2019, 2019
Short summary
Short summary
This paper describes an assembled dataset containing measurements of certain trace substances in the ocean, their distributions, and evolution with time. These substances, called tracers, result from a combination of natural and artificial processes, and their distribution and evolution provide important clues about ocean circulation, mixing, and ventilation. In addition, they give information about the global hydrologic cycle and volcanic and hydrothermal processes.
Camille Richon, Jean-Claude Dutay, Laurent Bopp, Briac Le Vu, James C. Orr, Samuel Somot, and François Dulac
Biogeosciences, 16, 135–165, https://doi.org/10.5194/bg-16-135-2019, https://doi.org/10.5194/bg-16-135-2019, 2019
Short summary
Short summary
We evaluate the effects of climate change and biogeochemical forcing evolution on the nutrient and plankton cycles of the Mediterranean Sea for the first time. We use a high-resolution coupled physical and biogeochemical model and perform 120-year transient simulations. The results indicate that changes in external nutrient fluxes and climate change may have synergistic or antagonistic effects on nutrient concentrations, depending on the region and the scenario.
Julien Palmiéri, Jean-Claude Dutay, Fabrizio D'Ortenzio, Loïc Houpert, Nicolas Mayot, and Laurent Bopp
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-423, https://doi.org/10.5194/bg-2018-423, 2018
Manuscript not accepted for further review
Short summary
Short summary
In this model study, we highlight the importance of the subsurface phytoplankton dynamic in the Mediterranean sea. Comparing surface chlorophyll annual cycle to vertically integrated one, we show how important the subsurface phytoplankton community is, throughout the Mediterranean. It shows that surface chlorophyll is incomplete and cannot alone be considered a good proxy of the total phytoplankton biomass. Then, we decrypt some deep chlorophyll maximum mechanisms in the low production area.
Lee de Mora, Andrew Yool, Julien Palmieri, Alistair Sellar, Till Kuhlbrodt, Ekaterina Popova, Colin Jones, and J. Icarus Allen
Geosci. Model Dev., 11, 4215–4240, https://doi.org/10.5194/gmd-11-4215-2018, https://doi.org/10.5194/gmd-11-4215-2018, 2018
Short summary
Short summary
Climate change is expected to have a significant impact on the Earth's weather, ice caps, land surface, and ocean. Computer models of the Earth system are the only tools available to make predictions about how the climate may change in the future. However, in order to trust the model predictions, we must first demonstrate that the models have a realistic description of the past. The BGC-val toolkit was built to rapidly and simply evaluate the behaviour of models of the Earth's oceans.
Marco van Hulten, Jean-Claude Dutay, and Matthieu Roy-Barman
Geosci. Model Dev., 11, 3537–3556, https://doi.org/10.5194/gmd-11-3537-2018, https://doi.org/10.5194/gmd-11-3537-2018, 2018
Short summary
Short summary
We present an ocean model of the natural radioactive isotopes thorium-230 and protactinium-231. These isotopes are often used to investigate past ocean circulation and particle transport. They are removed by particles produced by plankton and from uplifted desert dust that is deposited into the ocean. We approach observed dissolved and adsorbed Th-230 and Pa-231 activities. The Pa-231 / Th-230 sedimentation ratio is reproduced as well; this quantity can be used as a proxy for ocean circulation.
Camille Richon, Jean-Claude Dutay, François Dulac, Rong Wang, and Yves Balkanski
Biogeosciences, 15, 2499–2524, https://doi.org/10.5194/bg-15-2499-2018, https://doi.org/10.5194/bg-15-2499-2018, 2018
Short summary
Short summary
This work is part of the Mermex and ChArMEx projects of the MISTRALS program. It aims at studying the impacts of phosphorus deposition from contrasted sources on the biogeochemical cycles of the Mediterranean Sea.
The results show that combustion-related phosphorus deposition effects dominate P deposition over the northern Mediterranean, whereas dust-derived phosphorus deposition effects dominate in the southern part.
James C. Orr, Raymond G. Najjar, Olivier Aumont, Laurent Bopp, John L. Bullister, Gokhan Danabasoglu, Scott C. Doney, John P. Dunne, Jean-Claude Dutay, Heather Graven, Stephen M. Griffies, Jasmin G. John, Fortunat Joos, Ingeborg Levin, Keith Lindsay, Richard J. Matear, Galen A. McKinley, Anne Mouchet, Andreas Oschlies, Anastasia Romanou, Reiner Schlitzer, Alessandro Tagliabue, Toste Tanhua, and Andrew Yool
Geosci. Model Dev., 10, 2169–2199, https://doi.org/10.5194/gmd-10-2169-2017, https://doi.org/10.5194/gmd-10-2169-2017, 2017
Short summary
Short summary
The Ocean Model Intercomparison Project (OMIP) is a model comparison effort under Phase 6 of the Coupled Model Intercomparison Project (CMIP6). Its physical component is described elsewhere in this special issue. Here we describe its ocean biogeochemical component (OMIP-BGC), detailing simulation protocols and analysis diagnostics. Simulations focus on ocean carbon, other biogeochemical tracers, air-sea exchange of CO2 and related gases, and chemical tracers used to evaluate modeled circulation.
Olivier Aumont, Marco van Hulten, Matthieu Roy-Barman, Jean-Claude Dutay, Christian Éthé, and Marion Gehlen
Biogeosciences, 14, 2321–2341, https://doi.org/10.5194/bg-14-2321-2017, https://doi.org/10.5194/bg-14-2321-2017, 2017
Short summary
Short summary
The marine biological carbon pump is dominated by the vertical transfer of particulate organic carbon (POC) from the surface ocean to its interior. In this study, we explore the impacts of a variable composition of this organic matter using a global ocean biogeochemical model. We show that accounting for a variable lability of POC increases POC concentrations by up to 2 orders of magnitude in the ocean's interior. Furthermore, the amount of carbon that reaches the sediments is twice as large.
Mohamed Ayache, Jean-Claude Dutay, Anne Mouchet, Nadine Tisnérat-Laborde, Paolo Montagna, Toste Tanhua, Giuseppe Siani, and Philippe Jean-Baptiste
Biogeosciences, 14, 1197–1213, https://doi.org/10.5194/bg-14-1197-2017, https://doi.org/10.5194/bg-14-1197-2017, 2017
Short summary
Short summary
A high-resolution dynamical model was used to give the first simulation of the distribution of natural and anthropogenic radiocarbon (14C) across the whole Mediterranean Sea. The model correctly simulates the main features of 14C distribution during and after the bomb perturbation. The results demonstrate the major influence of the flux of Atlantic water through the Strait of Gibraltar, and a significant increase in 14C in the Aegean deep water during the Eastern Mediterranean Transient event.
Marco van Hulten, Rob Middag, Jean-Claude Dutay, Hein de Baar, Matthieu Roy-Barman, Marion Gehlen, Alessandro Tagliabue, and Andreas Sterl
Biogeosciences, 14, 1123–1152, https://doi.org/10.5194/bg-14-1123-2017, https://doi.org/10.5194/bg-14-1123-2017, 2017
Short summary
Short summary
We ran a global ocean model to understand manganese (Mn), a biologically essential element. Our model shows that (i) in the deep ocean, dissolved [Mn] is mostly homogeneous ~0.10—0.15 nM. The model reproduces this with a threshold on MnO2 of 25 pM, suggesting a minimal particle concentration is needed before aggregation and removal become efficient.
(ii) The observed distinct hydrothermal signals are produced by assuming both a strong source and a strong removal of Mn near hydrothermal vents.
Mohamed Ayache, Jean-Claude Dutay, Thomas Arsouze, Sidonie Révillon, Jonathan Beuvier, and Catherine Jeandel
Biogeosciences, 13, 5259–5276, https://doi.org/10.5194/bg-13-5259-2016, https://doi.org/10.5194/bg-13-5259-2016, 2016
Short summary
Short summary
An extensive compilation of published neodymium (Nd) concentrations and isotopic compositions (Nd IC) was realized in order to establish a new database and a map (using a high-resolution geological map of the area) of the distribution of these parameters for all the Mediterranean margins. The use of a high-resolution regional oceanic model (1/12° of horizontal resolution) allows us to realistically simulate for the first time the Nd IC distribution in the Mediterranean Sea.
Mathieu Hamon, Jonathan Beuvier, Samuel Somot, Jean-Michel Lellouche, Eric Greiner, Gabriel Jordà, Marie-Noëlle Bouin, Thomas Arsouze, Karine Béranger, Florence Sevault, Clotilde Dubois, Marie Drevillon, and Yann Drillet
Ocean Sci., 12, 577–599, https://doi.org/10.5194/os-12-577-2016, https://doi.org/10.5194/os-12-577-2016, 2016
Short summary
Short summary
The paper describes MEDRYS, a MEDiterranean sea ReanalYsiS at high resolution for the period 1992–2013. The NEMOMED12 ocean model is forced at the surface by a new high resolution atmospheric forcing dataset (ALDERA). Altimeter data, satellite SST and temperature and salinity vertical profiles are jointly assimilated. The ability of the reanalysis to represent the sea surface high-frequency variability, water mass characteristics and transports through the Strait of Gibraltar is shown.
M. Ayache, J.-C. Dutay, P. Jean-Baptiste, and E. Fourré
Ocean Sci., 11, 965–978, https://doi.org/10.5194/os-11-965-2015, https://doi.org/10.5194/os-11-965-2015, 2015
Short summary
Short summary
Helium isotopes are a powerful tool in Earth sciences. We present the first simulation of the terrigenic helium isotope distribution in the whole Mediterranean Sea, using a high-resolution model (NEMO-MED12). In addition to providing constraints on helium isotope degassing fluxes in the Mediterranean, our simulations provide information on the ventilation of the deep Mediterranean waters, which are useful for assessing NEMO-MED12 performance.
A. Guyennon, M. Baklouti, F. Diaz, J. Palmieri, J. Beuvier, C. Lebaupin-Brossier, T. Arsouze, K. Béranger, J.-C. Dutay, and T. Moutin
Biogeosciences, 12, 7025–7046, https://doi.org/10.5194/bg-12-7025-2015, https://doi.org/10.5194/bg-12-7025-2015, 2015
Short summary
Short summary
Dissolved organic carbon (DOC) has already been identified as a potentially significant source of carbon export in the Mediterranean Sea, though in situ export estimations are scarce. This work provides a thorough analysis at basin scale of carbon export with the coupled model NEMO-MED12/Eco3M-MED model. The seasonality and the processes of particulate and dissolved carbon production are also investigated. DOC export appears to be dominant in most regions, especially in the eastern basin.
J. Palmiéri, J. C. Orr, J.-C. Dutay, K. Béranger, A. Schneider, J. Beuvier, and S. Somot
Biogeosciences, 12, 781–802, https://doi.org/10.5194/bg-12-781-2015, https://doi.org/10.5194/bg-12-781-2015, 2015
Short summary
Short summary
Different observational-based estimates of CO2 uptake and resulting
acidification of the Mediterranean Sea vary widely. A new study finds
that even the smallest of those are an upper limit because the approach
used assumes air-sea CO2 equilibrium. Then with a lower limit from new
fine-scale numerical model simulations, the authors bracket
Mediterranean Sea CO2 uptake and acidification rates. They conclude that
its rate of surface acidifcation is much like that for typical ocean
waters.
M. M. P. van Hulten, A. Sterl, R. Middag, H. J. W. de Baar, M. Gehlen, J.-C. Dutay, and A. Tagliabue
Biogeosciences, 11, 3757–3779, https://doi.org/10.5194/bg-11-3757-2014, https://doi.org/10.5194/bg-11-3757-2014, 2014
P. Malanotte-Rizzoli, V. Artale, G. L. Borzelli-Eusebi, S. Brenner, A. Crise, M. Gacic, N. Kress, S. Marullo, M. Ribera d'Alcalà, S. Sofianos, T. Tanhua, A. Theocharis, M. Alvarez, Y. Ashkenazy, A. Bergamasco, V. Cardin, S. Carniel, G. Civitarese, F. D'Ortenzio, J. Font, E. Garcia-Ladona, J. M. Garcia-Lafuente, A. Gogou, M. Gregoire, D. Hainbucher, H. Kontoyannis, V. Kovacevic, E. Kraskapoulou, G. Kroskos, A. Incarbona, M. G. Mazzocchi, M. Orlic, E. Ozsoy, A. Pascual, P.-M. Poulain, W. Roether, A. Rubino, K. Schroeder, J. Siokou-Frangou, E. Souvermezoglou, M. Sprovieri, J. Tintoré, and G. Triantafyllou
Ocean Sci., 10, 281–322, https://doi.org/10.5194/os-10-281-2014, https://doi.org/10.5194/os-10-281-2014, 2014
A. Schneider, T. Tanhua, W. Roether, and R. Steinfeldt
Ocean Sci., 10, 1–16, https://doi.org/10.5194/os-10-1-2014, https://doi.org/10.5194/os-10-1-2014, 2014
W. Roether, P. Jean-Baptiste, E. Fourré, and J. Sültenfuß
Ocean Sci., 9, 837–854, https://doi.org/10.5194/os-9-837-2013, https://doi.org/10.5194/os-9-837-2013, 2013
Related subject area
Approach: Numerical Models | Depth range: All Depths | Geographical range: Mediterranean Sea | Phenomena: Chemical Tracers
Simulation of the mantle and crustal helium isotope signature in the Mediterranean Sea using a high-resolution regional circulation model
M. Ayache, J.-C. Dutay, P. Jean-Baptiste, and E. Fourré
Ocean Sci., 11, 965–978, https://doi.org/10.5194/os-11-965-2015, https://doi.org/10.5194/os-11-965-2015, 2015
Short summary
Short summary
Helium isotopes are a powerful tool in Earth sciences. We present the first simulation of the terrigenic helium isotope distribution in the whole Mediterranean Sea, using a high-resolution model (NEMO-MED12). In addition to providing constraints on helium isotope degassing fluxes in the Mediterranean, our simulations provide information on the ventilation of the deep Mediterranean waters, which are useful for assessing NEMO-MED12 performance.
Cited articles
Andrie, C. and Merlivat, L.: Tritium in the western Mediterranean Sea during 1981 Phycemed cruise, Deep-Sea Res. Pt. I, 35, 247–267, https://doi.org/10.1016/0198-0149(88)90039-8, 1988.
Antonov, J. I., Locarnini, R. A., Boyer, T. P., Mishonov, A. V., and Garcia, H. E.: World Ocean Atlas 2005, Vol. 2 Salinity, edited by: Levitus, S., NOAA Atlas NESDIS 62, US Government Printing Office, Washington, DC, 182 pp., 2006.
Attané, I. and Courbage, Y.: Demography in the Mediterranean region: situation and projections, Plan Bleu, Paris, Economica, available at: http://ersilia.net/ET2050_library/docs/med/demo_plan_bleu.pdf, 2004.
Barnier, B., Siefridt, L., and Marchesiello, P.: Thermal forcing for a global ocean circulation model using a three-year climatology of ECMWF analyses, J. Marine Syst., 6, 363–380, https://doi.org/10.1016/0924-7963(94)00034-9, 1995.
Béranger, K., Mortier, L., Gasparini, G.-P., Gervasio, L., Astraldi, M., and Crépon, M.: The dynamics of the Sicily Strait: a comprehensive study from observations and models, Deep-Sea Res. Pt. II, 51, 411–440, https://doi.org/10.1016/j.dsr2.2003.08.004, 2004.
Béranger, K., Mortier, L., and Crépon, M.: Seasonal variability of water transport through the Straits of Gibraltar, Sicily and Corsica, derived from a high-resolution model of the Mediterranean circulation, Prog. Oceanogr., 66, 341–364, https://doi.org/10.1016/j.pocean.2004.07.013, 2005.
Beuvier, J.: Modélisation de la variabilité climatique et des masses d'eau en mer Méditerranée: Impact des échanges océan-atmosphère, PhD thesis, Ecole Polytechnique, Palaiseau, France, 2011.
Beuvier, J., Sevault, F., Herrmann, M., Kontoyiannis, H., Ludwig, W., Rixen, M., Stanev, E., Béranger, K., and Somot, S.: Modeling the Mediterranean Sea interannual variability during 1961–2000: Focus on the Eastern Mediterranean Transient, J. Geophys. Res., 115, C08017, https://doi.org/10.1029/2009JC005950, 2010.
Beuvier, J., Béranger, K., Lebeaupin Brossier, C., Somot, S., Sevault, F., Drillet, Y., Bourdallé-Badie, R., Ferry, N., and Lyard, F.: Spreading of the Western Mediterranean Deep Water after winter 2005: Time scales and deep cyclone transport, J. Geophys. Res., 117, C07022, https://doi.org/10.1029/2011JC007679, 2012a. \bibitem Beuvier, J., Lebeaupin Brossier, C., Béranger, K., Arsouze, T., Bourdallé-Badie, R., Deltel, C., Drillet, Y., Drobinski, P., Lyard, F., Ferry, N., Sevault, F., and Somot, S.: MED12, Oceanic component for the modelling of the regional Mediterranean Earth System, Mercator Ocean Quarterly Newsletter, 46, 60–66, 2012b.
Blanne, B. and Delecluse, P.: Low frequency variability of the tropical Atlantic Ocean simulated by a general circulation model with mixed layer physics, J. Phys. Oceanogr, 23, 1363–1388, 1993.
Broecker, W. and Peng, T.-H.: Tracers in the Sea: Palisades, NY (Lamont-Doherty Geol. Observ.), 1982.
Canals, M., Puig, P., de Madron, X. D., Heussner, S., Palanques, A., and Fabres, J.: Flushing submarine canyons., Nature, 444, 354–357, https://doi.org/10.1038/nature05271, 2006.
CIESM: Workshop CIESM Monograph no. 38 on Dynamics of Mediterranean deep waters, edited by: Briand, F., Monaco, 2001.
Clarke, W., Jenkins, W., and Top, Z.: Determination of tritium by mass spectrometric measurement of 3He, The International Journal of Applied Radiation and Isotopes, 27, 515–522, https://doi.org/10.1016/0020-708X(76)90082-X, 1976.
CLIPPER Project Team: Modélisation à haute résolution de la circulation dans l'océan Atlantique forcée et couplée océan-atmosphére, Sci. Tech. Rep. CLIPPER-R3-99, Ifremer, Brest, France, 1999.
Delhez, E., Deleersnijder, E., Mouchet, A., and Beckers, J.-M.: A note on the age of radioactive tracers, J. Marine Syst., available at: http://www.jpi-oceans.eu/imis?module=ref&refid=62419, 2003.
Diffenbaugh, N. S. and Giorgi, F.: Climate change hotspots in the CMIP5 global climate model ensemble, Climatic change, 114, 813–822, https://doi.org/10.1007/s10584-012-0570-x, 2012.
Doney, S. C., Glover, D. M., and Jenkins, W. J.: A model function of the global bomb tritium distribution in precipitation, 1960–1986, J. Geophys. Res., 97, 5481, https://doi.org/10.1029/92JC00015, 1992.
Dreisigacker, E. and Roether, W.: Tritium and 90-strontium in North Atlantic surface water, Earth Planet. Sci. Lett, 38, 301–312, 1978.
Drobinski, P., Anav, A., Lebeaupin Brossier, C., Samson, G., Stéfanon, M., Bastin, S., Baklouti, M., Béranger, K., Beuvier, J., Bourdallé-Badie, R., Coquart, L., D'Andrea, F., de Noblet-Ducoudré, N., Diaz, F., Dutay, J.-C., Ethe, C., Foujols, M.-A., Khvorostyanov, D., Madec, G., Mancip, M., Masson, S., Menut, L., Palmieri, J., Polcher, J., Turquety, S., Valcke, S., and Viovy, N.: Model of the Regional Coupled Earth system (MORCE): Application to process and climate studies in vulnerable regions, 35, 1–18, https://doi.org/10.1016/j.envsoft.2012.01.017, 2012.
Farley, K. A., Maier-Reimer, E., Schlosser, P., and Broecker, W. S.: Constraints on mantle 3 He fluxes and deep-sea circulation from an oceanic general circulation model, J. Geophys. Res., 100, 3829, https://doi.org/10.1029/94JB02913, 1995.
Ferry, N., Parent, L., Garric, G., Barnier, B., and Jourdain, N. C.: Mercator Global Eddy Permitting Ocean Reanalysis GLORYS1V1: Description and Results, Mercator Ocean Q. Newslett., 36, 15–28, 2010.
Gasparini, G., Ortona, A., Budillon, G., Astraldi, M., and Sansone, E.: The effect of the Eastern Mediterranean Transient on the hydrographic characteristics in the Strait of Sicily and in the Tyrrhenian Sea, Deep-Sea Res. Pt. I, 52, 915–935, https://doi.org/10.1016/j.dsr.2005.01.001, 2005.
Gacčić, M., Schroeder, K., Civitarese, G., Cosoli, S., Vetrano, A., and Eusebi Borzelli, G. L.: Salinity in the Sicily Channel corroborates the role of the Adriatic-Ionian Bimodal Oscillating System (BiOS) in shaping the decadal variability of the Mediterranean overturning circulation, Ocean Sci., 9, 83–90, https://doi.org/10.5194/os-9-83-2013, 2013.
Gertman, I., Pinardi, N., Popov, Y., and Hecht, A.: Aegean Sea Water Masses during the Early Stages of the Eastern Mediterranean Climatic Transient (1988–90), J. Phys. Oceanogr., 36, 1841–1859, https://doi.org/10.1175/JPO2940.1, 2006.
Giorgi, F.: Climate change hot-spots, Geophys. Res. Lett., 33, L08707, https://doi.org/10.1029/2006GL025734, 2006.
Gualdi, S., Somot, S., Li, L., Artale, V., Adani, M., Bellucci, A., Braun, A., Calmanti, S., Carillo, A., Dell'Aquila, A., Déqué, M., Dubois, C., Elizalde, A., Harzallah, A., Jacob, D., L'Hévéder, B., May, W., Oddo, P., Ruti, P., Sanna, A., Sannino, G., Scoccimarro, E., Sevault, F., and Navarra, A.: The circe simulations: Regional climate change projections with realistic representation of the mediterranean sea, B. Am. Meteorol. Soc., 94, 65–81, https://doi.org/10.1175/BAMS-D-11-00136.1, 2013.
Haine, T. W. N. and Hall, T. M.: No TitleA generalized transport theory: water-mass composition and age, J. Phys. Oceanogr., 32, 1932–1946, 2002.
Herrmann, M., Somot, S., Sevault, F., Estournel, C., and Déqué, M.: Modeling the deep convection in the northwestern Mediterranean Sea using an eddy-permitting and an eddy-resolving model: Case study of winter 1986–1987, J. Geophys. Res., 113, C04011, https://doi.org/10.1029/2006JC003991, 2008.
Herrmann, M., Sevault, F., Beuvier, J., and Somot, S.: What induced the exceptional 2005 convection event in the northwestern Mediterranean basin? Answers from a modeling study, J. Geophys. Res., 115, C12051, https://doi.org/10.1029/2010JC006162, 2010.
Herrmann, M. J. and Somot, S.: Relevance of ERA40 dynamical downscaling for modeling deep convection in the Mediterranean Sea, Geophys. Res. Lett., 35, L04607, https://doi.org/10.1029/2007GL032442, 2008.
Jenkins, W. and Clarke, W.: The distribution of 3He in the western Atlantic ocean, Deep-Sea Research and Oceanographic Abstracts, 23, 481–494, https://doi.org/10.1016/0011-7471(76)90860-3, 1976.
Jenkins, W. J.: On the climate of a subtropical ocean gyre: decade timescale variations in water mass renewal in the Sargasso Sea, J. Mar. Res, 40, 265–290, 1982.
Jenkins, W. J.: 3H and 3He in the Beta triangle; observation of gyre ventilation and oxygen utilization rates, J. Phys. Oceanogr, 17, 763–783, 1987.
Jia, Y. and Richards, K. J.: Tritium distributions in an isopycnic model of the North Atlantic, J. Geophys. Res., 101, 11883, https://doi.org/10.1029/95JC03674, 1996.
Josey, S. A.: Changes in the heat and freshwater forcing of the eastern Mediterranean and their influence on deep water formation, J. Geophys. Res., 108, 3237, https://doi.org/10.1029/2003JC001778, 2003.
Klein, B., Roether, W., Manca, B., Bregant, D., Beitzel, V., Kovacevic, V., and Luchetta, A.: The large deep water transient in the Eastern Mediterranean, Deep-Sea Res., 46, 371–414, 1999.
Lascaratos, A., Roether, W., Nittis, K., and Klein, B.: Recent changes in deep water formation and spreading in the eastern Mediterranean Sea: a review, Prog. Oceanogr., 44, 5–36, https://doi.org/10.1016/S0079-6611(99)00019-1, 1999.
Lebeaupin Brossier, C., Béranger, K., Deltel, C., and Drobinski, P.: The Mediterranean response to different space-time resolution atmospheric forcings using perpetual mode sensitivity simulations, Ocean Model., 36, 1–25, https://doi.org/10.1016/j.ocemod.2010.10.008, 2011.
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., and Garcia, H. E.: World Ocean Atlas 2005, Volume 1: Temperature, S. Levitus, Ed, NOAA Atlas NESDIS 61, US Government Printing Office, Washington, DC, 182 pp., 2006.
López-Jurado, J.-L., González-Pola, C., and Vélez-Belchí, P.: Observation of an abrupt disruption of the long-term warming trend at the Balearic Sea, western Mediterranean Sea, in summer 2005, Geophys. Res. Lett., 32, L24606, https://doi.org/10.1029/2005GL024430, 2005.
Lucas, L. L. and Unterweger, M. P.: Comprehensive review and critical evaluation of the half-life of tritium, J. Res. Natl. Inst. Stan., 105, 541–549, https://doi.org/10.1021/ja0048230, 2000.
Ludwig, W., Dumont, E., Meybeck, M., and Heussner, S.: River discharges of water and nutrients to the Mediterranean and Black Sea: Major drivers for ecosystem changes during past and future decades?, Prog. Oceanogr., 80, 199–217, https://doi.org/10.1016/j.pocean.2009.02.001, 2009.
Madec, G. and NEMO-Team.: Note du Pôle de modélisation, Institut Pierre-Simon Laplace (IPSL), France, NEMO ocean engine, 27, ISSN N1288-1619, 2008.
Malanotte-Rizzoli, P. and Robinson, A. R.: POEM: Physical Oceanography of the Eastern Miditerranean, Eos, Transactions American Geophysical Union, 69, 194, https://doi.org/10.1029/88EO00125, 1988.
Malanotte-Rizzoli, P., Manca, B. B., D'Alcala, M. R., Theocharis, A., Brenner, S., Budillon, G., and Ozsoy, E.: The Eastern Mediterranean in the 80s and in the 90s: the big transition in the intermediate and deep circulations, Dynam. Atmos. Oceans, 29, 365–395, https://doi.org/10.1016/S0377-0265(99)00011-1, 1999.
Mann, W., Unterweger, M., and Coursey, B.: Comments on the NBS tritiated-water standards and their use, The International Journal of Applied Radiation and Isotopes, 33, 383–386, https://doi.org/10.1016/0020-708X(82)90153-3, 1982.
MEDAR-MedAtlas-group: Medar-Medatlas Protocol (Version 3) Part I: Exchange Format and Quality Checks for Observed Profiles, P. Rap. Int. IFREMER/TMSI/IDM/SIS002-006, 50, 2002.
MerMex-Groue: Marine ecosystems' responses to climatic and anthropogenic forcings in the Mediterranean, Prog. Oceanogr., 91, 97–166, https://doi.org/10.1016/j.pocean.2011.02.003, 2011.
Miller, A. R.: Physical Oceanography of the Mediterranean Sea: a discourse, 17, 857–871, 1963.
Millot, C.: Levantine Intermediate Water characteristics: an astounding general misunderstanding!, Sci. Mar., 77, 217–232, https://doi.org/10.3989/scimar.03518.13A, 2013.
Millot, C. and Taupier-Letage, I.: Circulation in the Mediterranean Sea, The Handbook of Environmental Chemistry, 5, 29–66, https://doi.org/10.1007/b107143, 2005.
Nielsen, J.: Hydrography of the Mediterranean and adjacent waters. J. Schmidt, editor, in: Report on the Danish Oceanog-raphic expeditions 1908–1910 to the Mediterranean and adjacent seas, edited by: Host, A. F. and son, Copenhagen, 1, 77–191, 1992.
Östlund, H. G.: Expedition Odysseus.: Tritium and Radiocarbon in the Mediterranean and Black Seas. Report ML 69167, Inst. of Marine and Atmosph. Sciences, Univ. of Miami, 1969.
Palmiéri, J., Orr, J. C., Dutay, J.-C., Béranger, K., Schneider, A., Beuvier, J., and Somot, S.: Simulated anthropogenic CO2 storage and acidification of the Mediterranean Sea, Biogeosciences, 12, 781–802, https://doi.org/10.5194/bg-12-781-2015, 2015.
Pinardi, N., Zavatarelli, M., Adani, M., Coppini, G., Fratianni, C., Oddo, P., Simoncelli, S., Tonani, M., Lyubartsev, V., Dobricic, S., and Bonaduce, A.: Mediterranean Sea large-scale low-frequency ocean variability and water mass formation rates from 1987 to 2007: A retrospective analysis, Prog. Oceanogr., 132, 318–332, https://doi.org/10.1016/j.pocean.2013.11.003, 2013.
POEM-group: General circulation of the Eastern Mediterranean, Earth-Sci. Revi., 32, 285–309, https://doi.org/10.1016/0012-8252(92)90002-B, 1992.
Rixen, M., Beckers, J. M., Levitus, S., Antonov, J., Boyer, T., Maillard, C., Fichaut, M., Balopoulos, E., Iona, S., Dooley, H., Garcia, M. J., Manca, B., Giorgetti, A., Manzella, G., Mikhailov, N., Pinardi, N., and Zavatarelli, M.: The Western Mediterranean Deep Water: A proxy for climate change, Geophys. Res. Lett., 32, 1–4, https://doi.org/10.1029/2005GL022702, 2005.
Roether, W. and Well, R.: Oxygen consumption in the Eastern Mediterranean, Deep-Sea Res. Pt. I, 48, 1535–1551, https://doi.org/10.1016/S0967-0637(00)00102-3, 2001. \bibitem Roether, W. and Schlitzer, R.: Eastern Mediterranean deep water renewal on the basis of chlorofluoromethane and tritium data, Dyn. Atmos. Oceans, 15, 333–354, 1991.
Roether, W., Manca, B. B., Klein, B., Bregant, D., Georgopoulos, D., Beitzel, V., Kovacevic, V., and Luchetta, A.: Recent Changes in Eastern Mediterranean Deep Waters, Science, 271, 333–335, https://doi.org/10.1126/science.271.5247.333, 1996.
Roether, W., Well, R., Putzka, A., and Rüth, C.: Component separation of oceanic helium, J. Geophys. Res., 103, 27931, https://doi.org/10.1029/98JC02234, 1998.
Roether, W., Beitzel, V., Sültenfuß, J., and Putzka, A.: The Eastern Mediterranean tritium distribution in 1987, J. Marine Syst., 20, 49–61, https://doi.org/10.1016/S0924-7963(98)00070-0, 1999.
Roether, W., Klein, B., Manca, B. B., Theocharis, A., and Kioroglou, S.: Transient Eastern Mediterranean deep waters in response to the massive dense-water output of the Aegean Sea in the 1990s, Prog. Oceanogr., 74, 540–571, https://doi.org/10.1016/j.pocean.2007.03.001, 2007.
Roether, W., Jean-Baptiste, P., Fourré, E., and Sültenfuß, J.: The transient distributions of nuclear weapon-generated tritium and its decay product 3He in the Mediterranean Sea, 1952–2011, and their oceanographic potential, Ocean Sci., 9, 837–854, https://doi.org/10.5194/os-9-837-2013, 2013.
Samuel, S., Haines, K., Josey, S., and Myers, P. G.: Response of the Mediterranean Sea thermohaline circulation to observed changes in the winter wind stress field in the period 1980–1993, J. Geophys. Res., 104, 7771, https://doi.org/10.1029/1998JC900130, 1999.
Sarmiento, J. L.: A Simulation of Bomb Tritium Entry into the Atlantic Ocean. J. Phys. Oceanogr., 13, 1924–1939. https://doi.org/10.1175/1520-0485(1983)013<1924:ASOBTE>2.0.CO;2, 1983.
Sarmiento, J. L. and Gruber, N.: Ocean Biogeochemical Dynamics, 2006.
Schlitzer, R., Roether, W., Oster, H., Junghans, H.-G., Hausmann, M., Johannsen, H., and Michelato, A.: Chlorofluoromethane and oxygen in the Eastern Mediterranean, Deep-Sea Res. Pt. A, 38, 1531–1551, https://doi.org/10.1016/0198-0149(91)90088-W, 1991.
Schroeder, K., Ribotti, A., Borghini, M., Sorgente, R., Perilli, a., and Gasparini, G. P.: An extensive western Mediterranean deep water renewal between 2004 and 2006, Geophys. Res. Lett., 35, 1–7, https://doi.org/10.1029/2008GL035146, 2008.
Schroeder, K., Garcìa-Lafuente, J., Josey, S., Artale, V., Nardelli, B. B., Gacic, M., Gasparini, G., Herrmann, M., Lionello, P., Ludwig, W., Millot, C., Özsoy, E., Pisacane, G., Sánchez-Garrido, J., Sannino, G., Santoleri, R., Somot, S., Struglia, M., Stanev, E., Taupier-Letage, I., Tsimplis, M., Vargas-Yáñez, M., Zervakis, V., and Zodiatis, G.: Circulation of the Mediterranean Sea and its variability, in: The climate of the Mediterranean region, edited by: Lionello, P., Elsevier, 187–256, 2012.
Somot, S., Sevault, F., and Déqué, M.: Transient climate change scenario simulation of the Mediterranean Sea for the twenty-first century using a high-resolution ocean circulation model, Clim. Dynam., 27, 851–879, https://doi.org/10.1007/s00382-006-0167-z, 2006.
Soto-Navarro, J., Somot, S., Sevault, F., Beuvier, J., Béranger, K., Criado-Aldeanueva, F., and García-Lafuente, J.: Evaluation of regional ocean circulation models for the Mediterranean Sea at the Strait of Gibraltar: volume transport and thermohaline properties of the outflow, Clim. Dynam., 44, 1277–1292, https://doi.org/10.1007/s00382-014-2179-4, 2014.
Stanev, E. V. and Peneva, E. L.: Regional sea level response to global climatic change: Black Sea examples, Europe, 32, 33–47, 2002.
Theocharis, A., and Kontoyiannis, H.: Interannual variability of the circulation and hydrography in the eastern Mediterranean (1986–1995), in The Eastern Mediterranean as a Laboratory Basin for the Assessment of Contrasting Ecosystems, NATO Sci. Ser.: 2. Environ. Security, Vol. 51, edited by: P. Malanotte-Rizzoli, and V. N. Eremeev, 453–464, Kluwer Acad., Dordrecht, Netherlands, 1999.
Theocharis, A., Georgopoulos, D., Karagevrekis, P., Iona, A., Perivoliotis, L., and Charalambidis, N.: Aegean influence in the deep layers of the Eastern Ionian Sea, Rapport de la Commission international pour l'Exploration Scientifique de la Mer Méditerranée, 33, 235, 1992.
Theocharis, A., Nittis, K., Kontoyiannis, H., Papageorgiou, E., and Balopoulos, E.: Climatic changes in the Aegean Sea influence the Eastern Mediterranean thermohaline circulation (1986–1997), Geophys. Res. Lett., 26, 1617–1620, 1999.
Theocharis, A., Klein, B., Nittis, K., and Roether, W.: Evolution and status of the Eastern Mediterranean Transient (1997–1999), J. Marine Syst., 33–34, 91–116, https://doi.org/10.1016/S0924-7963(02)00054-4, 2002.
Thiele, G. and Sarmiento, J. L.: Tracer dating and ocean ventilation, J. Geophys. Res., 95, https://doi.org/10.1029/JC095iC06p09377, 9377–9391, 1990.
Vörösmarty, C. J., Fekete, B. M., and Tucker, B. A.: Global River Discharge Database (RivDIS V1.0), International Hydrological Program, Global Hydrological Archive and Analysis Systems, UNESCO, Paris, 1996.
Weiss, W. and Roether, W.: The rates of tritium input to the world oceans, Earth and Planet. Sci. Lett., 49, 435–446, https://doi.org/10.1016/0012-821X(80)90084-9, 1980.
Weiss, W., Bullacher, J., and Roether, W.: Evidence of pulsed discharges of tritium from nuclear energy installations in central European precipitation, In Behaviour of Tritium in the Environment, 17–30, IAEA-SM-232/18, IAEA, Vienna, 1979.
Zervakis, V., Georgopoulos, D., and Drakopoulos, P. G.: The role of the North Aegean in triggering the recent Eastern Mediterranean climatic changes, J. Geophys. Res., 105, 26103–26116, 2000.
Short summary
The anthropogenic tritium invasion, and its decay product helium-3, was simulated for the first time in the Mediterranean Sea, using a high-resolution regional model (NEMO-MED12). The simulation covers the entire tritium (3H) transient generated by the atmospheric nuclear weapons tests performed in the 1950s and early 1960s and run until 2011. The model correctly simulates the main features of the thermohaline circulation in the Mediterranean Sea, with a realistic time compared to observations.
The anthropogenic tritium invasion, and its decay product helium-3, was simulated for the first...