Articles | Volume 11, issue 2
https://doi.org/10.5194/os-11-313-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-11-313-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Technical Note: A fully automated purge and trap GC-MS system for quantification of volatile organic compound (VOC) fluxes between the ocean and atmosphere
S. J. Andrews
CORRESPONDING AUTHOR
Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, The University of York, York, YO105DD, UK
S. C. Hackenberg
Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, The University of York, York, YO105DD, UK
L. J. Carpenter
Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, The University of York, York, YO105DD, UK
Related authors
Liang Feng, Paul I. Palmer, Robyn Butler, Stephen J. Andrews, Elliot L. Atlas, Lucy J. Carpenter, Valeria Donets, Neil R. P. Harris, Ross J. Salawitch, Laura L. Pan, and Sue M. Schauffler
Atmos. Chem. Phys., 18, 14787–14798, https://doi.org/10.5194/acp-18-14787-2018, https://doi.org/10.5194/acp-18-14787-2018, 2018
Short summary
Short summary
We infer surface fluxes of bromoform (CHBr3) and dibromoform (CH2Br2) from CAST and CONTRAST aircraft observations over the western Pacific, using a tagged version of the GEOS-Chem global 3-D atmospheric chemistry model and a Maximum A Posteriori inverse model. Using the aircraft data, we estimate the regional fluxes about 20–40 % smaller than the prior inventories by Ordóñez et al. (2012). We find no evidence to support a robust linear relationship between CHBr3 and CH2Br2 oceanic emissions.
Robyn Butler, Paul I. Palmer, Liang Feng, Stephen J. Andrews, Elliot L. Atlas, Lucy J. Carpenter, Valeria Donets, Neil R. P. Harris, Stephen A. Montzka, Laura L. Pan, Ross J. Salawitch, and Sue M. Schauffler
Atmos. Chem. Phys., 18, 13135–13153, https://doi.org/10.5194/acp-18-13135-2018, https://doi.org/10.5194/acp-18-13135-2018, 2018
Short summary
Short summary
Natural sources of short-lived bromoform and dibromomethane are important for determining the inorganic bromine budget in the stratosphere that drives ozone loss. Two new modelling techniques describe how different geographical source regions influence their atmospheric variability over the western Pacific. We find that it is driven primarily by open ocean sources, and we use atmospheric observations to help estimate their contributions to the upper tropospheric inorganic bromine budget.
Richard Newton, Geraint Vaughan, Eric Hintsa, Michal T. Filus, Laura L. Pan, Shawn Honomichl, Elliot Atlas, Stephen J. Andrews, and Lucy J. Carpenter
Atmos. Chem. Phys., 18, 5157–5171, https://doi.org/10.5194/acp-18-5157-2018, https://doi.org/10.5194/acp-18-5157-2018, 2018
Short summary
Short summary
We consider the ozone measurements from aircraft during the CAST/CONTRAST/ATTREX campaigns of 2014. Low concentrations of ozone were found in the layer of 10–15 km altitude, which is indicative of uplift of ozone-poor air from near the sea surface to 10–15 km altitude. Chemicals that have origins in the sea were found in greater abundance when ozone concentrations were low compared to when ozone concentrations were high. The lowest ozone concentrations were found in the Southern Hemisphere.
Eleonora Aruffo, Fabio Biancofiore, Piero Di Carlo, Marcella Busilacchio, Marco Verdecchia, Barbara Tomassetti, Cesare Dari-Salisburgo, Franco Giammaria, Stephane Bauguitte, James Lee, Sarah Moller, James Hopkins, Shalini Punjabi, Stephen J. Andrews, Alistair C. Lewis, Paul I. Palmer, Edward Hyer, Michael Le Breton, and Carl Percival
Atmos. Meas. Tech., 9, 5591–5606, https://doi.org/10.5194/amt-9-5591-2016, https://doi.org/10.5194/amt-9-5591-2016, 2016
Short summary
Short summary
During the BORTAS aircraft campaign, we measured NO2 and their oxidtation products (as peroxy nitrates) with a custom laser-induced fluorescence instrument. Because of the high correlation between known pyrogenic tracers (i.e., carbon monoxide) and peroxy nitrates, we provide two methods to use these species for the identification of biomass burning (BB) plumes. Using an artifical neural network, we improved the BB identification taking into account of a meteorological parameter (pressure).
R. Hossaini, P. K. Patra, A. A. Leeson, G. Krysztofiak, N. L. Abraham, S. J. Andrews, A. T. Archibald, J. Aschmann, E. L. Atlas, D. A. Belikov, H. Bönisch, L. J. Carpenter, S. Dhomse, M. Dorf, A. Engel, W. Feng, S. Fuhlbrügge, P. T. Griffiths, N. R. P. Harris, R. Hommel, T. Keber, K. Krüger, S. T. Lennartz, S. Maksyutov, H. Mantle, G. P. Mills, B. Miller, S. A. Montzka, F. Moore, M. A. Navarro, D. E. Oram, K. Pfeilsticker, J. A. Pyle, B. Quack, A. D. Robinson, E. Saikawa, A. Saiz-Lopez, S. Sala, B.-M. Sinnhuber, S. Taguchi, S. Tegtmeier, R. T. Lidster, C. Wilson, and F. Ziska
Atmos. Chem. Phys., 16, 9163–9187, https://doi.org/10.5194/acp-16-9163-2016, https://doi.org/10.5194/acp-16-9163-2016, 2016
Marcella Busilacchio, Piero Di Carlo, Eleonora Aruffo, Fabio Biancofiore, Cesare Dari Salisburgo, Franco Giammaria, Stephane Bauguitte, James Lee, Sarah Moller, James Hopkins, Shalini Punjabi, Stephen Andrews, Alistair C. Lewis, Mark Parrington, Paul I. Palmer, Edward Hyer, and Glenn M. Wolfe
Atmos. Chem. Phys., 16, 3485–3497, https://doi.org/10.5194/acp-16-3485-2016, https://doi.org/10.5194/acp-16-3485-2016, 2016
Short summary
Short summary
Boreal fire emissions have little effect on ozone concentrations but evident impact on some NOx reservoirs as peroxy nitrates that we quantified. This should be taken into account since NOx reservoirs can be efficiently transported and may influence the ozone budget far away from the fire emission.
The study is based on observations carried out on board the BAe 146 aircraft during BORTAS in Canada. We used a custom laser-induced fluorescence system to measure NO2 and NOx reservoirs.
T. Sherwen, M. J. Evans, L. J. Carpenter, S. J. Andrews, R. T. Lidster, B. Dix, T. K. Koenig, R. Sinreich, I. Ortega, R. Volkamer, A. Saiz-Lopez, C. Prados-Roman, A. S. Mahajan, and C. Ordóñez
Atmos. Chem. Phys., 16, 1161–1186, https://doi.org/10.5194/acp-16-1161-2016, https://doi.org/10.5194/acp-16-1161-2016, 2016
Short summary
Short summary
Using a global chemical transport model (GEOS-Chem) with additional iodine emissions, chemistry, and deposition we show that iodine is responsible for ~ 9 % of global ozone loss but has negligible impacts on global OH. Uncertainties are large in the chemistry and emissions and future research is needed in both. Measurements of iodine species (especially HOI) would be useful. We believe iodine chemistry should be considered in future chemistry-climate and in air quality modelling.
J. D. Allan, P. I. Williams, J. Najera, J. D. Whitehead, M. J. Flynn, J. W. Taylor, D. Liu, E. Darbyshire, L. J. Carpenter, R. Chance, S. J. Andrews, S. C. Hackenberg, and G. McFiggans
Atmos. Chem. Phys., 15, 5599–5609, https://doi.org/10.5194/acp-15-5599-2015, https://doi.org/10.5194/acp-15-5599-2015, 2015
Short summary
Short summary
New particle formation (NPF) is an important contributor to aerosol number concentrations in the Arctic and thus has a major role in dictating cloud properties and climate in this region. Here we present direct evidence that the oxidation of iodine in the atmosphere causes NPF in the Greenland Sea. This is important because this is a NPF mechanism that has not previously been considered in modelling studies at these latitudes.
Liang Feng, Paul I. Palmer, Robyn Butler, Stephen J. Andrews, Elliot L. Atlas, Lucy J. Carpenter, Valeria Donets, Neil R. P. Harris, Ross J. Salawitch, Laura L. Pan, and Sue M. Schauffler
Atmos. Chem. Phys., 18, 14787–14798, https://doi.org/10.5194/acp-18-14787-2018, https://doi.org/10.5194/acp-18-14787-2018, 2018
Short summary
Short summary
We infer surface fluxes of bromoform (CHBr3) and dibromoform (CH2Br2) from CAST and CONTRAST aircraft observations over the western Pacific, using a tagged version of the GEOS-Chem global 3-D atmospheric chemistry model and a Maximum A Posteriori inverse model. Using the aircraft data, we estimate the regional fluxes about 20–40 % smaller than the prior inventories by Ordóñez et al. (2012). We find no evidence to support a robust linear relationship between CHBr3 and CH2Br2 oceanic emissions.
Robyn Butler, Paul I. Palmer, Liang Feng, Stephen J. Andrews, Elliot L. Atlas, Lucy J. Carpenter, Valeria Donets, Neil R. P. Harris, Stephen A. Montzka, Laura L. Pan, Ross J. Salawitch, and Sue M. Schauffler
Atmos. Chem. Phys., 18, 13135–13153, https://doi.org/10.5194/acp-18-13135-2018, https://doi.org/10.5194/acp-18-13135-2018, 2018
Short summary
Short summary
Natural sources of short-lived bromoform and dibromomethane are important for determining the inorganic bromine budget in the stratosphere that drives ozone loss. Two new modelling techniques describe how different geographical source regions influence their atmospheric variability over the western Pacific. We find that it is driven primarily by open ocean sources, and we use atmospheric observations to help estimate their contributions to the upper tropospheric inorganic bromine budget.
Richard Newton, Geraint Vaughan, Eric Hintsa, Michal T. Filus, Laura L. Pan, Shawn Honomichl, Elliot Atlas, Stephen J. Andrews, and Lucy J. Carpenter
Atmos. Chem. Phys., 18, 5157–5171, https://doi.org/10.5194/acp-18-5157-2018, https://doi.org/10.5194/acp-18-5157-2018, 2018
Short summary
Short summary
We consider the ozone measurements from aircraft during the CAST/CONTRAST/ATTREX campaigns of 2014. Low concentrations of ozone were found in the layer of 10–15 km altitude, which is indicative of uplift of ozone-poor air from near the sea surface to 10–15 km altitude. Chemicals that have origins in the sea were found in greater abundance when ozone concentrations were low compared to when ozone concentrations were high. The lowest ozone concentrations were found in the Southern Hemisphere.
Eleonora Aruffo, Fabio Biancofiore, Piero Di Carlo, Marcella Busilacchio, Marco Verdecchia, Barbara Tomassetti, Cesare Dari-Salisburgo, Franco Giammaria, Stephane Bauguitte, James Lee, Sarah Moller, James Hopkins, Shalini Punjabi, Stephen J. Andrews, Alistair C. Lewis, Paul I. Palmer, Edward Hyer, Michael Le Breton, and Carl Percival
Atmos. Meas. Tech., 9, 5591–5606, https://doi.org/10.5194/amt-9-5591-2016, https://doi.org/10.5194/amt-9-5591-2016, 2016
Short summary
Short summary
During the BORTAS aircraft campaign, we measured NO2 and their oxidtation products (as peroxy nitrates) with a custom laser-induced fluorescence instrument. Because of the high correlation between known pyrogenic tracers (i.e., carbon monoxide) and peroxy nitrates, we provide two methods to use these species for the identification of biomass burning (BB) plumes. Using an artifical neural network, we improved the BB identification taking into account of a meteorological parameter (pressure).
Stephen J. Andrews, Lucy J. Carpenter, Eric C. Apel, Elliot Atlas, Valeria Donets, James R. Hopkins, Rebecca S. Hornbrook, Alastair C. Lewis, Richard T. Lidster, Richard Lueb, Jamie Minaeian, Maria Navarro, Shalini Punjabi, Daniel Riemer, and Sue Schauffler
Atmos. Meas. Tech., 9, 5213–5225, https://doi.org/10.5194/amt-9-5213-2016, https://doi.org/10.5194/amt-9-5213-2016, 2016
Short summary
Short summary
We present a comparison of aircraft measurements of important trace gases from a co-ordinated campaign in Jan–Feb 2014 in the tropical west Pacific involving the NASA Global Hawk, NCAR GV and FAAM BAe-146 aircraft.
The paper studies the comparability of separate measurements across platforms and demonstrates that aircraft measurements are relevant for characterising the vertical uplift of important gases, such as those with ozone-depleting potential, to the upper troposphere–lower stratosphere.
Tomás Sherwen, Johan A. Schmidt, Mat J. Evans, Lucy J. Carpenter, Katja Großmann, Sebastian D. Eastham, Daniel J. Jacob, Barbara Dix, Theodore K. Koenig, Roman Sinreich, Ivan Ortega, Rainer Volkamer, Alfonso Saiz-Lopez, Cristina Prados-Roman, Anoop S. Mahajan, and Carlos Ordóñez
Atmos. Chem. Phys., 16, 12239–12271, https://doi.org/10.5194/acp-16-12239-2016, https://doi.org/10.5194/acp-16-12239-2016, 2016
Short summary
Short summary
We present a simulation of tropospheric Cl, Br, I chemistry within the GEOS-Chem CTM. We find a decrease in tropospheric ozone burden of 18.6 % and a 8.2 % decrease in global mean OH concentrations. Cl oxidation of some VOCs range from 15 to 27 % of the total loss. Bromine plays a small role in oxidising oVOCs. Surface ozone, ozone sondes, and methane lifetime are in general improved by the inclusion of halogens. We argue that simulated bromine and chlorine represent a lower limit.
R. Hossaini, P. K. Patra, A. A. Leeson, G. Krysztofiak, N. L. Abraham, S. J. Andrews, A. T. Archibald, J. Aschmann, E. L. Atlas, D. A. Belikov, H. Bönisch, L. J. Carpenter, S. Dhomse, M. Dorf, A. Engel, W. Feng, S. Fuhlbrügge, P. T. Griffiths, N. R. P. Harris, R. Hommel, T. Keber, K. Krüger, S. T. Lennartz, S. Maksyutov, H. Mantle, G. P. Mills, B. Miller, S. A. Montzka, F. Moore, M. A. Navarro, D. E. Oram, K. Pfeilsticker, J. A. Pyle, B. Quack, A. D. Robinson, E. Saikawa, A. Saiz-Lopez, S. Sala, B.-M. Sinnhuber, S. Taguchi, S. Tegtmeier, R. T. Lidster, C. Wilson, and F. Ziska
Atmos. Chem. Phys., 16, 9163–9187, https://doi.org/10.5194/acp-16-9163-2016, https://doi.org/10.5194/acp-16-9163-2016, 2016
Chris Reed, Charlotte A. Brumby, Leigh R. Crilley, Louisa J. Kramer, William J. Bloss, Paul W. Seakins, James D. Lee, and Lucy J. Carpenter
Atmos. Meas. Tech., 9, 2483–2495, https://doi.org/10.5194/amt-9-2483-2016, https://doi.org/10.5194/amt-9-2483-2016, 2016
Short summary
Short summary
A new method of measuring nitrous acid (HONO), a potent mediator of air quality in the atmosphere as well as an important indoor pollutant, is presented. The new method relies on simple, proven techniques already widely applied to other atmospheric compounds. The technique can be retrofitted to existing analysers at minimal cost, or developed into instruments capable of very fast measurement which allow for more complex analysis of the behaviour of HONO.
Chris Reed, Mathew J. Evans, Piero Di Carlo, James D. Lee, and Lucy J. Carpenter
Atmos. Chem. Phys., 16, 4707–4724, https://doi.org/10.5194/acp-16-4707-2016, https://doi.org/10.5194/acp-16-4707-2016, 2016
Short summary
Short summary
The self-cleaning capacity of the atmosphere in places like Antarctica can be measured by quantifying very low amounts of combustion products that exist in a well-known ratio. When this ratio deviates from 1 it points to the existence of unknown compounds. Several unknown compounds have been theorized to exist but never measured. We have found the method for measuring the ratio of combustion products suffers a bias in remote places, which when taken into account disproves any unknown compounds.
Marcella Busilacchio, Piero Di Carlo, Eleonora Aruffo, Fabio Biancofiore, Cesare Dari Salisburgo, Franco Giammaria, Stephane Bauguitte, James Lee, Sarah Moller, James Hopkins, Shalini Punjabi, Stephen Andrews, Alistair C. Lewis, Mark Parrington, Paul I. Palmer, Edward Hyer, and Glenn M. Wolfe
Atmos. Chem. Phys., 16, 3485–3497, https://doi.org/10.5194/acp-16-3485-2016, https://doi.org/10.5194/acp-16-3485-2016, 2016
Short summary
Short summary
Boreal fire emissions have little effect on ozone concentrations but evident impact on some NOx reservoirs as peroxy nitrates that we quantified. This should be taken into account since NOx reservoirs can be efficiently transported and may influence the ozone budget far away from the fire emission.
The study is based on observations carried out on board the BAe 146 aircraft during BORTAS in Canada. We used a custom laser-induced fluorescence system to measure NO2 and NOx reservoirs.
T. Sherwen, M. J. Evans, L. J. Carpenter, S. J. Andrews, R. T. Lidster, B. Dix, T. K. Koenig, R. Sinreich, I. Ortega, R. Volkamer, A. Saiz-Lopez, C. Prados-Roman, A. S. Mahajan, and C. Ordóñez
Atmos. Chem. Phys., 16, 1161–1186, https://doi.org/10.5194/acp-16-1161-2016, https://doi.org/10.5194/acp-16-1161-2016, 2016
Short summary
Short summary
Using a global chemical transport model (GEOS-Chem) with additional iodine emissions, chemistry, and deposition we show that iodine is responsible for ~ 9 % of global ozone loss but has negligible impacts on global OH. Uncertainties are large in the chemistry and emissions and future research is needed in both. Measurements of iodine species (especially HOI) would be useful. We believe iodine chemistry should be considered in future chemistry-climate and in air quality modelling.
A. Saiz-Lopez, C. S. Blaszczak-Boxe, and L. J. Carpenter
Atmos. Chem. Phys., 15, 9731–9746, https://doi.org/10.5194/acp-15-9731-2015, https://doi.org/10.5194/acp-15-9731-2015, 2015
J. D. Allan, P. I. Williams, J. Najera, J. D. Whitehead, M. J. Flynn, J. W. Taylor, D. Liu, E. Darbyshire, L. J. Carpenter, R. Chance, S. J. Andrews, S. C. Hackenberg, and G. McFiggans
Atmos. Chem. Phys., 15, 5599–5609, https://doi.org/10.5194/acp-15-5599-2015, https://doi.org/10.5194/acp-15-5599-2015, 2015
Short summary
Short summary
New particle formation (NPF) is an important contributor to aerosol number concentrations in the Arctic and thus has a major role in dictating cloud properties and climate in this region. Here we present direct evidence that the oxidation of iodine in the atmosphere causes NPF in the Greenland Sea. This is important because this is a NPF mechanism that has not previously been considered in modelling studies at these latitudes.
U. R. Thorenz, L. J. Carpenter, R.-J. Huang, M. Kundel, J. Bosle, and T. Hoffmann
Atmos. Chem. Phys., 14, 13327–13335, https://doi.org/10.5194/acp-14-13327-2014, https://doi.org/10.5194/acp-14-13327-2014, 2014
Short summary
Short summary
Phytoplankton suspensions were treated with high and low ozone levels, and volatile iodine (I2)-containing compounds were measured. Iodocarbon emissions were independent of the ozone level. I2 emission showed a strong dependency on the ozone level in the air as well as on the iodide concentration in the sample suspension. The experiments show that microalgae suspensions are capable of emitting I2 by the reaction of ozone with dissolved iodide at the air-water interface under natural conditions.
S. M. MacDonald, J. C. Gómez Martín, R. Chance, S. Warriner, A. Saiz-Lopez, L. J. Carpenter, and J. M. C. Plane
Atmos. Chem. Phys., 14, 5841–5852, https://doi.org/10.5194/acp-14-5841-2014, https://doi.org/10.5194/acp-14-5841-2014, 2014
D. Stone, M. J. Evans, H. Walker, T. Ingham, S. Vaughan, B. Ouyang, O. J. Kennedy, M. W. McLeod, R. L. Jones, J. Hopkins, S. Punjabi, R. Lidster, J. F. Hamilton, J. D. Lee, A. C. Lewis, L. J. Carpenter, G. Forster, D. E. Oram, C. E. Reeves, S. Bauguitte, W. Morgan, H. Coe, E. Aruffo, C. Dari-Salisburgo, F. Giammaria, P. Di Carlo, and D. E. Heard
Atmos. Chem. Phys., 14, 1299–1321, https://doi.org/10.5194/acp-14-1299-2014, https://doi.org/10.5194/acp-14-1299-2014, 2014
F. Ziska, B. Quack, K. Abrahamsson, S. D. Archer, E. Atlas, T. Bell, J. H. Butler, L. J. Carpenter, C. E. Jones, N. R. P. Harris, H. Hepach, K. G. Heumann, C. Hughes, J. Kuss, K. Krüger, P. Liss, R. M. Moore, A. Orlikowska, S. Raimund, C. E. Reeves, W. Reifenhäuser, A. D. Robinson, C. Schall, T. Tanhua, S. Tegtmeier, S. Turner, L. Wang, D. Wallace, J. Williams, H. Yamamoto, S. Yvon-Lewis, and Y. Yokouchi
Atmos. Chem. Phys., 13, 8915–8934, https://doi.org/10.5194/acp-13-8915-2013, https://doi.org/10.5194/acp-13-8915-2013, 2013
A. C. Lewis, M. J. Evans, J. R. Hopkins, S. Punjabi, K. A. Read, R. M. Purvis, S. J. Andrews, S. J. Moller, L. J. Carpenter, J. D. Lee, A. R. Rickard, P. I. Palmer, and M. Parrington
Atmos. Chem. Phys., 13, 851–867, https://doi.org/10.5194/acp-13-851-2013, https://doi.org/10.5194/acp-13-851-2013, 2013
Related subject area
Approach: Instrument Development and Techniques | Depth range: Surface | Geographical range: All Geographic Regions | Phenomena: Air-Sea Fluxes
Equilibrator-based measurements of dissolved nitrous oxide in the surface ocean using an integrated cavity output laser absorption spectrometer
I. Grefe and J. Kaiser
Ocean Sci., 10, 501–512, https://doi.org/10.5194/os-10-501-2014, https://doi.org/10.5194/os-10-501-2014, 2014
Cited articles
Asare, N. K., Turley, C. M., Nightingale, P. D., and Nimmo, M.: Microbially-mediated methyl iodide production in water samples from an estuarine system, J. Environ., 1, 75–83, 2012.
Beale, R., Liss, P. S., Dixon, J. L., and Nightingale, P. D.: Quantification of oxygenated volatile organic compounds in seawater by membrane inlet-proton transfer reaction/mass spectrometry, Anal. Chim. Acta, 706, 128–134, https://doi.org/10.1016/j.aca.2011.08.023, 2011.
Bouteiller, A. L., Blanchot, J., and Rodier, M.: Size distribution patterns of phytoplankton in the western Pacific: towards a generalization for the tropical open ocean, Deep-Sea Res. Pt. A, 39, 805–823, https://doi.org/10.1016/0198-0149(92)90123-B, 1992.
Butler, J. H., King, D. B., Lobert, J. M., Montzka, S. A., Yvon-Lewis, S. A., Hall, B. D., Warwick, N. J., Mondeel, D. J., Aydin, M., and Elkins, J. W.: Oceanic distributions and emissions of short-lived halocarbons, Global Biogeochem. Cy., 21, GB1023, https://doi.org/10.1029/2006GB002732, 2007.
Carpenter, L., Malin, G., Liss, P., and Kupper, F.: Novel biogenic iodine-containing trihalomethanes and other short-lived halocarbons in the coastal East Atlantic, Global Biogeochem. Cy., 14, 1191–1204, 2000.
Carpenter, L. J. and Liss, P. S.: On temperate sources of bromoform and other reactive organic bromine gases, J. Geophys. Res.-Atmos., 105, 20539–20547, 2000.
Chance, R., Baker, A. R., Küpper, F. C., Hughes, C., Kloareg, B., and Malin, G.: Release and transformations of inorganic iodine by marine macroalgae, Estuar. Coast. Shelf S., 82, 406–414, 2009.
Davis, D., Chen, G., Kasibhatla, P., Jefferson, A., Tanner, D., Eisele, F., Lenschow, D., Neff, W., and Berresheim, H.: DMS oxidation in the Antarctic marine boundary layer: Comparison of model simulations and held observations of DMS, DMSO, DMSO2, H2SO4(g), MSA(g), and MSA(p), J. Geophys. Res.Atmos., 103, 1657–1678, 1998.
DEFRA: The Water Supply (Water Quality) Regulations 2000, available at: http://dwi.defra.gov.uk/stakeholders/guidance-and-codes-of-practice/WS(WQ)-regs-england2010.pdf (last access: 11 December 2014), 2000.
Goodwin, K., North, W., and Lidstrom, M.: Production of bromoform and dibromomethane by giant kelp: factors affecting release and comparison to anthropogenic bromine sources, Limnol. Oceanogr., 42, 1725–1734, 1997.
Groszko, W. and Moore, R.: A semipermeable membrane equilibrator for halomethanes in seawater, Chemosphere, 36, 3083–3092, https://doi.org/10.1016/S0045-6535(98)00019-8, 1998.
Happell, J. and Wallace, D.: Methyl iodide in the Greenland/Norwegian Seas and the tropical Atlantic Ocean: evidence for photochemical production, Geophys. Res. Lett., 23, 2105–2108, 1996.
Hughes, C., Malin, G., Turley, C., Keely, B., Nightingale, P., and Liss, P.: The production of volatile iodocarbons by biogenic marine aggregates, Limnol. Oceanogr., 53, 867–872, 2008.
Johnson, J. E.: Evaluation of a seawater equilibrator for shipboard analysis of dissolved oceanic trace gases, Anal. Chim. Acta, 395, 119–132, https://doi.org/10.1016/S0003-2670(99)00361-X, 1999.
Jones, C. and Carpenter, L.: Solar photolysis of \chemCH_2I_2, CH2ICl, and CH2IBr in water, saltwater, and seawater, Environ. Sci. Technol., 39, 6130–6137, 2005.
Jones, C., Hornsby, K., Sommariva, R., Dunk, R., Von Glasow, R., McFiggans, G., and Carpenter, L.: Quantifying the contribution of marine organic gases to atmospheric iodine, Geophys. Res. Lett., 37, L18804, https://doi.org/10.1029/2010GL043990, 2010.
Jones, C. E., Hornsby, K. E., Dunk, R. M., Leigh, R. J., and Carpenter, L. J.: Coastal measurements of short-lived reactive iodocarbons and bromocarbons at Roscoff, Brittany during the RHaMBLe campaign, Atmos. Chem. Phys., 9, 8757–8769, https://doi.org/10.5194/acp-9-8757-2009, 2009.
Jones, C. E., Andrews, S. J., Carpenter, L. J., Hogan, C., Hopkins, F. E., Laube, J. C., Robinson, A. D., Spain, T. G., Archer, S. D., Harris, N. R. P., Nightingale, P. D., O'Doherty, S. J., Oram, D. E., Pyle, J. A., Butler, J. H., and Hall, B. D.: Results from the first national UK inter-laboratory calibration for very short-lived halocarbons, Atmos. Meas. Tech., 4, 865–874, https://doi.org/10.5194/amt-4-865-2011, 2011.
Kameyama, S., Tanimoto, H., Inomata, S., Tsunogai, U., Ooki, A., Takeda, S., Obata, H., Tsuda, A., and Uematsu, M.: High-resolution measurement of multiple volatile organic compounds dissolved in seawater using equilibrator inlet-proton transfer reaction-mass spectrometry (EI-PTR-MS), Mar. Chem., 122, 59–73, https://doi.org/10.1016/j.marchem.2010.08.003, 2010.
Kameyama, S., Yoshida, S., Tanimoto, H., Inomata, S., Suzuki, K., and Yoshikawa-Inoue, H.: High-resolution observations of dissolved isoprene in surface seawater in the Southern Ocean during austral summer 2010–2011, J. Oceanogr., 70, 225–239, 2014.
Kiene, R. P. and Slezak, D.: Low dissolved DMSP concentrations in seawater revealed by small-volume gravity filtration and dialysis sampling, Limnol. Oceanogr.-Meth., 4, 80–95, 2006.
Ledyard, K. M. and Dacey, J. W.: Dimethylsulfide production from dimethylsulfoniopropionate by a marine bacterium, Mar. Ecol.-Prog. Ser., 110, 95–103, 1994.
Leedham, E. C., Hughes, C., Keng, F. S. L., Phang, S.-M., Malin, G., and Sturges, W. T.: Emission of atmospherically significant halocarbons by naturally occurring and farmed tropical macroalgae, Biogeosciences, 10, 3615–3633, https://doi.org/10.5194/bg-10-3615-2013, 2013.
Leifer, I., Patro, R. K., and Bowyer, P.: A study on the temperature variation of rise velocity for large clean bubbles, J. Atmos. Ocean. Tech., 17, 1392–1402, 2000.
Lidster, R. T., Hamilton, J. F., Lee, J. D., Lewis, A. C., Hopkins, J. R., Punjabi, S., Rickard, A. R., and Young, J. C.: The impact of monoaromatic hydrocarbons on OH reactivity in the coastal UK boundary layer and free troposphere, Atmos. Chem. Phys., 14, 6677–6693, https://doi.org/10.5194/acp-14-6677-2014, 2014.
Loose, B., Stute, M., Alexander, P., and Smethie, W. M.: Design and deployment of a portable membrane equilibrator for sampling aqueous dissolved gases, Water Resour. Res., 45, W00D34, https://doi.org/10.1029/2008WR006969, 2009.
McFiggans, G., Bale, C. S. E., Ball, S. M., Beames, J. M., Bloss, W. J., Carpenter, L. J., Dorsey, J., Dunk, R., Flynn, M. J., Furneaux, K. L., Gallagher, M. W., Heard, D. E., Hollingsworth, A. M., Hornsby, K., Ingham, T., Jones, C. E., Jones, R. L., Kramer, L. J., Langridge, J. M., Leblanc, C., LeCrane, J.-P., Lee, J. D., Leigh, R. J., Longley, I., Mahajan, A. S., Monks, P. S., Oetjen, H., Orr-Ewing, A. J., Plane, J. M. C., Potin, P., Shillings, A. J. L., Thomas, F., von Glasow, R., Wada, R., Whalley, L. K., and Whitehead, J. D.: Iodine-mediated coastal particle formation: an overview of the Reactive Halogens in the Marine Boundary Layer (RHaMBLe) Roscoff coastal study, Atmos. Chem. Phys., 10, 2975–2999, https://doi.org/10.5194/acp-10-2975-2010, 2010.
Montzka, S., Reimann, S., O'Doherty, S., Engel, A., Krüger, K., and Sturges, W.: Ozone-depleting substances (ODSs) and related chemicals, World Meteorological Organization, Geneva, Switzerland, 1–112, 2011.
Ordóñez, C., Lamarque, J.-F., Tilmes, S., Kinnison, D. E., Atlas, E. L., Blake, D. R., Sousa Santos, G., Brasseur, G., and Saiz-Lopez, A.: Bromine and iodine chemistry in a global chemistry-climate model: description and evaluation of very short-lived oceanic sources, Atmos. Chem. Phys., 12, 1423–1447, https://doi.org/10.5194/acp-12-1423-2012, 2012.
Quack, B., Atlas, E., Petrick, G., Stroud, V., Schauffler, S., and Wallace, D.: Oceanic bromoform sources for the tropical atmosphere, Geophys. Res. Lett, 31, L23S05, https://doi.org/10.1029/2004GL020597, 2004.
Quack, B., Peeken, I., Petrick, G., and Nachtigall, K.: Oceanic distribution and sources of bromoform and dibromomethane in the Mauritanian upwelling, J. Geophys. Res.-Oceans, 112, C10006, https://doi.org/10.1029/2006JC003803, 2007.
Raimund, S., Quack, B., Bozec, Y., Vernet, M., Rossi, V., Garçon, V., Morel, Y., and Morin, P.: Sources of short-lived bromocarbons in the Iberian upwelling system, Biogeosciences, 8, 1551–1564, https://doi.org/10.5194/bg-8-1551-2011, 2011.
Read, K. A., Mahajan, A. S., Carpenter, L. J., Evans, M. J., Faria, B. V. E., Heard, D. E., Hopkins, J. R., Lee, J. D., Moller, S. J., Lewis, A. C., Mendes, L., McQuaid, J. B., Oetjen, H., Saiz-Lopez, A., Pilling, M. J., and Plane, J. M. C.: Extensive halogen-mediated ozone destruction over the tropical Atlantic Ocean, Nature, 453, 1232–1235, 2008.
Richter, U. and Wallace, D.: Production of methyl iodide in the tropical Atlantic Ocean, Geophys. Res. Lett., 31, L23S03, https://doi.org/10.1029/2004GL020779, 2004.
Saiz-Lopez, A., Lamarque, J.-F., Kinnison, D. E., Tilmes, S., Ordóñez, C., Orlando, J. J., Conley, A. J., Plane, J. M. C., Mahajan, A. S., Sousa Santos, G., Atlas, E. L., Blake, D. R., Sander, S. P., Schauffler, S., Thompson, A. M., and Brasseur, G.: Estimating the climate significance of halogen-driven ozone loss in the tropical marine troposphere, Atmos. Chem. Phys., 12, 3939–3949, https://doi.org/10.5194/acp-12-3939-2012, 2012.
Saltzman, E. S., De Bruyn, W. J., Lawler, M. J., Marandino, C. A., and McCormick, C. A.: A chemical ionization mass spectrometer for continuous underway shipboard analysis of dimethylsulfide in near-surface seawater, Ocean Sci., 5, 537–546, https://doi.org/10.5194/os-5-537-2009, 2009.
Sander, R.: Compilation of Henry's law constants for inorganic and organic species of potential importance in environmental chemistry, Max-Planck Institute of Chemistry, 1999.
Santos, G. S. and Rast, S.: A global model study of natural bromine sources and the effects on tropospheric chemistry using MOZART4, J. Atmos. Chem., 70, 69–89, https://doi.org/10.1007/s10874-013-9252-y, 2013.
Schall, C., Laturnus, F., and Heumann, K.: Biogenic volatile organoiodine and organobromine compounds released from polar macroalgae, Chemosphere, 28, 1315–1324, 1994.
Sturges, W., Sullivan, C., Schnell, R., Heidt, L., and Pollock, W.: Bromoalkane production by Antarctic ice algae, Tellus B, 45, 120–126, 1993.
Thompson, T., Fawell, J., Kunikane, S., Jackson, D., Appleyard, S., Callan, P., Bartram, J., and Kingston, P.: Chemical Safety of Drinking-Water, World Health Organization, 2007.
Tokarczyk, R. and Moore, R.: Production of volatile organohalogens by phytoplankton cultures, Geophys. Res. Lett., 21, 285–288, 1994.
US EPA: Title 40 – Protection of Environment, Code of Federal Regulations (annual edition), 2010.
von Glasow, R., von Kuhlmann, R., Lawrence, M. G., Platt, U., and Crutzen, P. J.: Impact of reactive bromine chemistry in the troposphere, Atmos. Chem. Phys., 4, 2481–2497, https://doi.org/10.5194/acp-4-2481-2004, 2004.
Yang, M., Beale, R., Liss, P., Johnson, M., Blomquist, B., and Nightingale, P.: Air-sea fluxes of oxygenated volatile organic compounds across the Atlantic Ocean, Atmos. Chem. Phys., 14, 7499–7517, https://doi.org/10.5194/acp-14-7499-2014, 2014.
Yang, X., Cox, R., Warwick, N., Pyle, J., Carver, G., O'Connor, F., and Savage, N.: Tropospheric bromine chemistry and its impacts on ozone: a model study, J. Geophys. Res., 110, D23311, https://doi.org/10.1029/2005JD006244, 2005.
Zuend, A., Marcolli, C., Luo, B. P., and Peter, T.: A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients, Atmos. Chem. Phys., 8, 4559–4593, https://doi.org/10.5194/acp-8-4559-2008, 2008.
Zuend, A., Marcolli, C., Booth, A. M., Lienhard, D. M., Soonsin, V., Krieger, U. K., Topping, D. O., McFiggans, G., Peter, T., and Seinfeld, J. H.: New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups, Atmos. Chem. Phys., 11, 9155–9206, https://doi.org/10.5194/acp-11-9155-2011, 2011.
Short summary
The oceans are a key source of a number of atmospherically
important volatile gases. The accurate and robust
determination of trace gases in seawater is a significant
analytical challenge. Here we describe a gas chromatograph mass spectrometer based purge and trap system that was developed for the fully automated analysis of dissolved very short-lived species (VSLS) in seawater sampled from a research ship.
The oceans are a key source of a number of atmospherically
important volatile gases. The...