Articles | Volume 11, issue 2
https://doi.org/10.5194/os-11-215-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-11-215-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Temperature–salinity distribution in the northeastern Atlantic from ship and Argo vertical casts
MARE – Marine and Environmental Sciences Centre/Centro de Oceanografia, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
Departamento de Engenharia Geográfica, Geofísica e Energia (DEGGE), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
MARE – Marine and Environmental Sciences Centre/Centro de Oceanografia, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
Â. Nascimento
MARE – Marine and Environmental Sciences Centre/Centro de Oceanografia, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
J. Medeiros
MARE – Marine and Environmental Sciences Centre/Centro de Oceanografia, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
I. Ambar
MARE – Marine and Environmental Sciences Centre/Centro de Oceanografia, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
Departamento de Engenharia Geográfica, Geofísica e Energia (DEGGE), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
J. Dias
MARE – Marine and Environmental Sciences Centre/Centro de Oceanografia, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
Departamento de Engenharia Geográfica, Geofísica e Energia (DEGGE), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
X. Carton
Laboratoire de Physique des Océans, UMR 6523, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, 29200 Brest, France
Related authors
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Anna V. Vesman, Igor L. Bashmachnikov, Pavel A. Golubkin, and Roshin P. Raj
Ocean Sci. Discuss., https://doi.org/10.5194/os-2020-109, https://doi.org/10.5194/os-2020-109, 2020
Revised manuscript not accepted
Short summary
Short summary
Atlantic Waters carry heat and salt towards Arctic. The goal of this study was to study how the heat flux changes with its journey to the north. It was shown that despite the fact that there is some connection between variability of the heat flux near the shores of Norway and heat fluxes in the northern part of the Fram Strait. There are different processes governing this variability, which results in a different tendencies in the southern and northern regions of the study.
I. Bashmachnikov, Â. Nascimento, F. Neves, T. Menezes, and N. V. Koldunov
Ocean Sci., 11, 803–827, https://doi.org/10.5194/os-11-803-2015, https://doi.org/10.5194/os-11-803-2015, 2015
I. Bashmachnikov, D. Boutov, and J. Dias
Ocean Sci., 9, 249–259, https://doi.org/10.5194/os-9-249-2013, https://doi.org/10.5194/os-9-249-2013, 2013
Yan Barabinot, Sabrina Speich, and Xavier Carton
EGUsphere, https://doi.org/10.22541/essoar.169833426.64842571/v1, https://doi.org/10.22541/essoar.169833426.64842571/v1, 2024
Short summary
Short summary
Mesoscale eddies are ubiquitous rotating currents in the ocean. Some eddies called "Materially Coherent" are able to transport a different water mass from the surrounding water. By analyzing 3D eddies structures sampled during oceanographic cruises, we found that eddies can be nonmaterially coherent accounting only for their surface properties, but materially coherent considering their properties at depth. Future studies cannot rely solely on satellite data to evaluate heat and salt transport.
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Anna V. Vesman, Igor L. Bashmachnikov, Pavel A. Golubkin, and Roshin P. Raj
Ocean Sci. Discuss., https://doi.org/10.5194/os-2020-109, https://doi.org/10.5194/os-2020-109, 2020
Revised manuscript not accepted
Short summary
Short summary
Atlantic Waters carry heat and salt towards Arctic. The goal of this study was to study how the heat flux changes with its journey to the north. It was shown that despite the fact that there is some connection between variability of the heat flux near the shores of Norway and heat fluxes in the northern part of the Fram Strait. There are different processes governing this variability, which results in a different tendencies in the southern and northern regions of the study.
Mathieu Morvan, Pierre L'Hégaret, Xavier Carton, Jonathan Gula, Clément Vic, Charly de Marez, Mikhail Sokolovskiy, and Konstantin Koshel
Ocean Sci., 15, 1531–1543, https://doi.org/10.5194/os-15-1531-2019, https://doi.org/10.5194/os-15-1531-2019, 2019
Short summary
Short summary
The Persian Gulf Water and Red Sea Water are salty and dense waters recirculating in the Gulf of Oman and the Gulf of Aden, in the form of small features. We study the life cycle of intense and small vortices and their impact on the spread of Persian Gulf Water and Red Sea Water by using idealized numerical simulations. Small vortices are generated along the continental slopes, drift away, merge and form larger vortices. They can travel across the domain and participate in the tracer diffusion.
Pierre L'Hégaret, Xavier Carton, Stephanie Louazel, and Guillaume Boutin
Ocean Sci., 12, 687–701, https://doi.org/10.5194/os-12-687-2016, https://doi.org/10.5194/os-12-687-2016, 2016
Short summary
Short summary
The Persian Gulf produces high-salinity water spreading in the Indian Ocean through the Arabian Sea. Using measurements from the Phys-Indien 2011 experiments and satellite observations, the objective of this study is to follow the pathway and evolution of the salty water outflow in the northwestern Indian Ocean. It is shown that the outflow is strongly influenced by energetic eddies, shredding the water vein into filaments or lenses, and advecting them at their peripheries or in their cores.
I. Bashmachnikov, Â. Nascimento, F. Neves, T. Menezes, and N. V. Koldunov
Ocean Sci., 11, 803–827, https://doi.org/10.5194/os-11-803-2015, https://doi.org/10.5194/os-11-803-2015, 2015
G. Dulaquais, M. Boye, M. J. A. Rijkenberg, and X. Carton
Biogeosciences, 11, 1561–1580, https://doi.org/10.5194/bg-11-1561-2014, https://doi.org/10.5194/bg-11-1561-2014, 2014
I. Bashmachnikov, D. Boutov, and J. Dias
Ocean Sci., 9, 249–259, https://doi.org/10.5194/os-9-249-2013, https://doi.org/10.5194/os-9-249-2013, 2013
Related subject area
Approach: In situ Observations | Depth range: All Depths | Geographical range: Deep Seas: North Atlantic | Phenomena: Temperature, Salinity and Density Fields
High-resolution physical–biogeochemical structure of a filament and an eddy of upwelled water off northwest Africa
IEOOS: the Spanish Institute of Oceanography Observing System
Distribution of intermediate water masses in the subtropical northeast Atlantic
Seasonality of intermediate waters hydrography west of the Iberian Peninsula from an 8 yr semiannual time series of an oceanographic section
Surface expression of Mediterranean Water dipoles and their contribution to the shelf/slope – open ocean exchange
Adjustment of the basin-scale circulation at 26° N to variations in Gulf Stream, deep western boundary current and Ekman transports as observed by the Rapid array
Wilken-Jon von Appen, Volker H. Strass, Astrid Bracher, Hongyan Xi, Cora Hörstmann, Morten H. Iversen, and Anya M. Waite
Ocean Sci., 16, 253–270, https://doi.org/10.5194/os-16-253-2020, https://doi.org/10.5194/os-16-253-2020, 2020
Short summary
Short summary
Nutrient-rich water is moved to the surface near continental margins. Then it forms rich but difficult to observe spatial structures of physical and biological/biogeochemical properties. Here we present a high resolution (2.5 km) section through such features obtained in May 2018 with a vehicle towed behind a ship. Considering that such interactions of physics and biology are common in the ocean, they likely strongly influence the productivity of such systems and their role in CO2 uptake.
Elena Tel, Rosa Balbin, Jose-Manuel Cabanas, Maria-Jesus Garcia, M. Carmen Garcia-Martinez, Cesar Gonzalez-Pola, Alicia Lavin, Jose-Luis Lopez-Jurado, Carmen Rodriguez, Manuel Ruiz-Villarreal, Ricardo F. Sánchez-Leal, Manuel Vargas-Yáñez, and Pedro Vélez-Belchí
Ocean Sci., 12, 345–353, https://doi.org/10.5194/os-12-345-2016, https://doi.org/10.5194/os-12-345-2016, 2016
Short summary
Short summary
The Spanish Institute of Oceanography supports different operational programmes in order to observe and measure ocean characteristics. Their combination allows responses to ocean research activities and marine ecosystem management, as well as official agency requirements and industrial and main society demands. All these networks are linked to international initiatives, framed largely in supranational Earth observation sponsored by the United Nations and the European Union.
I. Bashmachnikov, Â. Nascimento, F. Neves, T. Menezes, and N. V. Koldunov
Ocean Sci., 11, 803–827, https://doi.org/10.5194/os-11-803-2015, https://doi.org/10.5194/os-11-803-2015, 2015
E. Prieto, C. González-Pola, A. Lavín, R. F. Sánchez, and M. Ruiz-Villarreal
Ocean Sci., 9, 411–429, https://doi.org/10.5194/os-9-411-2013, https://doi.org/10.5194/os-9-411-2013, 2013
N. Serra, I. Ambar, and D. Boutov
Ocean Sci., 6, 191–209, https://doi.org/10.5194/os-6-191-2010, https://doi.org/10.5194/os-6-191-2010, 2010
H. L. Bryden, A. Mujahid, S. A. Cunningham, and T. Kanzow
Ocean Sci., 5, 421–433, https://doi.org/10.5194/os-5-421-2009, https://doi.org/10.5194/os-5-421-2009, 2009
Cited articles
Alves, M. L. G. R. and de Verdière, A. C.: Instability dynamics of a subtropical jet and applications to the Azores current system: eddy-driven mean flow, J. Phys. Oceanogr., 29, 837–864, 1999.
Alves, M. L. G. R., Gaillard, F., Sparrow, M., Knoll, M., and Giraud, S.: Circulation patterns and transport of the Azores front-current system, Deep-Sea Res. II, 49, 3983–4002, 2002.
Ambar, I.: A shallow core of Mediterranean water off western Portugal, Deep-Sea Res. A, 30, 677–680, 1983.
Ambar, I., Serra, N., Neves, F., and Ferreira, T.: Observations of the Mediterranean Undercurrent and eddies in the Gulf of Cadiz during 2001, J. Marine Syst., 71, 195–220, 2008.
Arhan, M.: The North Atlantic Current and Subarctic Intermediate Water, J. Mar. Res., 48, 109–144, 1990.
Arhan, M. and Colin de Verdiere, A.: Dynamics of eddy motions in the eastern North Atlantic, J. Phys. Oceanogr., 15, 153–170, 1985.
Baringer, M. N. and Price, J. F.: Mixing and Spreading of the Mediterranean Outflow, J. Phys. Oceanogr., 27, 1654–1677, 1997.
Baringer M. N. and Price, J. F.: A review of the physical oceanography of the Mediterranean outflow, Mar. Geol., 155, 63–82, 1999.
Barnes, S. L.: A Technique for Maximizing Details in Numerical Weather Map Analysis, J. Appl. Meteorol., 3, 396–409, 1964.
Bower, A. S., Le Cann, H., Rossby, T., Zenk, W., Gould, J., Speer, K., Richardson, P. L., Prater, M. D., and Zhang, H. M.: Directly measured mid-depth circulation in the North Atlantic Ocean, Nature, 419, 603–607, 2002.
Chelton, D. B., Schlax, M. G., and Samelson, R. M.: Global observations of nonlinear mesoscale eddies, Prog. Oceanogr., 91, 167–216, 2011.
Cipollini, P., Cromwell, D., Jones, M. S., Quartly, G. D., and Challenor, P. G.: Concurrent altimeter and infrared observations of Rossby wave propagation near 34oN in the Northeast Atlantic, Geophys. Res. Lett., 24, 889–892, 1997.
Comas-Rodríguez, I., Hernández-Guerra, A., Fraile-Nuez, E., Martínez-Marrero, A., Benítez-Barrios, V. M., Pérez-Hernández, M. D., and Vélez-Belchí, P.: The Azores Current System from a meridional section at 24.5° W, J. Geophys. Res., 116, C09021, https://doi.org/10.1029/2011JC007129, 2011.
Cuny, J., Rhines, P. B., Niiler, P. P., and Bacon, S.: Labrador Sea boundary currents and the fate of the Irminger Sea Water, J. Phys. Oceanogr., 32, 627–647, 2002.
Cushman-Roisin, B.: Environmental Fluid Mechanics, John Wiley & Sons, NY, 400, 2010.
Daniault, N., Mazé, J. P., and Arhan, M.: Circulation and mixing of Mediterranean Water west of the Iberian Peninsula, Deep-Sea Res. I, 41, 1685–1714, 1994.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. R. Meteorol. Soc., 137, 553–597, 2011.
Emery, W. J., Lee, W. G. and Magaard, L.: Geographic and Seasonal Distributions of Brunt–Väisälä Frequency and Rossby Radii in the North Pacific and North Atlantic, J. Phys. Oceanogr., 14, 294–317, 1984.
Emery, W. J. and Thomson, R. E.: Data analysis methods in physical oceanography, Pergamon, UK, 634 pp., 1997.
Fraile-Nuez, E., Machín, F., Vélez-Belchí, P., López-Laatzen, F., Borges, R., Benítez-Barrios, V., and Hernández-Guerra, A.: Nine years of mass transport data in the eastern boundary of the North Atlantic Subtropical Gyre, J. Geophys. Res., 115, C09009, https://doi.org/10.1029/2010JC006161, 2010.
Gould, W. J.: Physical oceanography of the Azores front, Prog. Oceanogr., 14, 167–190, 1985.
Gouretski, V. V. and Koltermann, K. P.: Berichte des Bundesamtes für Seeschifffahrt und Hydrographie Nr. 35, 2004.
Harvey, J.: θ-S relationships and water masses in the eastern North Atlantic, Deep-Sea Res., 29, 1021–1033, 1982.
Jacobs, G. A., Barron, C. N., and Rhodes, R. C.: Mesoscale characteristics, J. Geophys. Res., 106, 19581–19595, 2001.
Jackett, D. R. and McDougall, T. J.: A Neutral Density Variable for the World's Oceans, J. Phys. Oceanogr., 27, 237–263, 1997.
Jia, Y.: Formation of an Azores Current Due to Mediterranean Overflow in a Modeling Study of the North Atlantic, J. Phys. Oceanogr., 30, 2342–2358, 2000.
Iorga, M. C. and Lozier, M. S.: Signature of the Mediterranean outflow from a North Atlantic climatology: 1. Salinity and density fields, J. Geophys. Res., 104, 25985–26009, 1999.
Kantha, L. H. and Clayson, C. A.: Numerical models of oceans and oceanic processes. International Geophysics series v.66, Acad. Press, San Diego, 887 pp., 2000.
Kase, R. H. and Siedler, G.: Meandering of the subtropical front south-east of the Azores, Nature, 300, 245–246, 1982.
Klein, B. and Siedler, G.: On the origin of the Azores current, J. Geophys. Res., 94, 6159–6168, 1989.
Lázaro, C., Juliano, M. F., and Fernandes, M. J.: Semi-automatic determination of the Azores Current axis using satellite altimetry: Application to the study of the current variability during 1995–2006, Adv. Space Res., 51, 2155–2170, 2013.
Le Traon, P. Y., Rouquet, M. C., and Boissier, C.: Spatial scales of mesoscale variability in the North Atlantic as deduced from Geosat data, J. Geophys. Res., 95, 20267–20285, 1990.
Levitus, S., Antonov, J., and Boyer, T.: Global ocean heat content 1955–2007 in light of recently revealed instrumentation problems, Geophys. Res. Lett., 36, L07608, https://doi.org/10.1029/2008GL037155, 2008.
Losch, M. and Schröter, J.: Estimating the circulation from hydrography and satellite altimetry in the Southern Ocean: limitations imposed by the current geoid models, Deep-Sea Res. Pt. I, 51, 1131–1143, 2004.
Louarn, E. and Morin, P.: Antarctic Intermediate Water influence on Mediterranean Sea Water outflow, Deep-Sea Res. Pt. I, 58, 932–942, 2011.
Lozier, M. S., McCartney, M. S., and Owens, W. B.: Anomalous anomalies in averaged hydrographic data, J. Phys. Oceanogr., 24, 2624–2638, 1994.
Lozier, M. S., Owens, W. B., and Curry, R. G.: The climatology of the North Atlantic, Prog. Oceanogr., 36, 1–44, 1995.
Machín, F. and Pelegrí, J. L.: Northward Penetration of Antarctic Intermediate Water off Northwest Africa, J. Phys. Oceanogr., 39, 512–535, 2009.
Martins, C. S., Hamann, M., and Fuiza A. F. G.: Surface circulation in the eastern North Atlantic from drifters and altimetry, J. Geophys. Res., 107, 3217, https://doi.org/10.1029/2000JC000345, 2002.
Maximenko, N. A., Melnichenko, O. V., Niiler, P. P., and Sasaki, H.: Stationary mesoscale jet-like features in the ocean, Geophys. Res. Lett., 35, L08603, https://doi.org/10.1029/2008GL033267, 2008.
McDougall, T. J.: Neutral density surfaces, J. Phys. Oceanogr., 17, 1950–1964, 1987.
Melet, A., Nikurashin, M., Muller, C., Falahat, S., Nycander, J., Timko, P. G., Arbic, B. K. and Goff., J. A.: Internal tide generation by abyssal hills using analytical theory, J. Geophys. Res., 118, 6303–6318, https://doi.org/10.1002/2013JC009212, 2013.
Mercier, H. and Colin de Verdiere, A.: Space and time scales of mesoscale motions in the eastern North Atlantic, J. Phys. Oceanogr., 15, 171–183, 1985.
Mourino, B., Fernandez, E., Etienne, H., Hernandez, F., and Giraud, S.: Significance of cyclonic SubTropical Oceanic Rings of Magnitude (STORM) eddies for the carbon budget of the euphotic layer in the subtropical northeast Atlantic, J. Geophys. Res., 108, 3383, https://doi.org/10.1029/2003JC001884, 2003.
Navarro-Pérez, E. and Barton, E. D.: Seasonal and interannual variability of the Canary Current, Sci. Mar., 65, 205–213, 2001.
New, A. L., Jia, Y., Coulibaly, M., and Dengg, J.: On the role of the Azores current in the ventelation of the North Atlantic Ocean, Prog. Oceanogr., 48, 163–194, 2001.
Nolasco, R., Cordeiro Pires, A., Cordeiro, N., and Dubert, J.: A high-resolution modeling study of the Western Iberian Margin mean and seasonal upper ocean circulation, Ocean Dynam., 63, 1041–1062, 2013.
Oliveira, P. B., Peliz, A., Dubert, J., Rosa, T. L., and Santos, A. M. P.: Winter geostrophic currents and eddies in the western Iberia coastal transition zone, Deep-Sea Res. Pt. I, 51, 367–381, 2004.
Onken, R.: The Azores Countercurrent, J. Phys. Oceanogr., 23, 1638–1646, 1993.
Owens, W. B. and Hogg, N. G.: Oceanic observations of stratified Taylor columns near a bump, Deep-Sea Res., 27, 1029–1045, 1980.
Paillet, J. and Mercier, H.: An inverse model of the eastern North Atlantic general circulation and thermocline ventilation, Deep-Sea Res. Pt. I, 44, 1293–1328, 1997.
Pedlosky, J.: Geophysical fluid dynamics, 2nd Edn., Springer, New York, 710 pp., 1987.
Pedlosky, J.: Ocean circulation theory, 2nd Edn., Springer, New York, 453 pp., 1998.
Pelegri, J. L., Arístegui, J., Cana, L., González-Dávila, M., Hernández-Guerra, A., Hernández-León, S., Marrero-Díaz, A., Montero, M. F., Sangrà, P., and Santana-Casiano, M.: Coupling between the open ocean and the coastal upwelling region off northwest Africa: water recirculation and offshore pumping of organic matter, J. Marine Syst., 54, 3–37, 2005.
Perez, F. F., Mintrop, L., Llinas, O., Glez-Davila, M., Castro, C. G., Alvarez, M., and Kortzinger, A.: Mixing analysis of nutrients, oxygen and inorganic carbon in the Canary Islands region, J. Marine Syst., 28, 183–201, 2001.
Pingree, R. D.: Ocean structure and climate (Eastern North Atlantic): in situ measurement and remote sensing (altimeter), J. Mar. Biol. Assoc. UK, 82, 681–707, 2002.
Pingree, R. D. and Le Cann, B.: Anticyclonic eddy X91 in the southern Bay of Biscay, May 1991 to February 1992, J. Geophys. Res., 97, 14353–14367, 1992.
Pingree, R. D. and Sinha, B.: Dynamic Topography (ERS-1/2 and sea truth) of subtropical ring (STORM 0 in the STORM Corridor (32–34° N), Eastern Basin, North Atlantic Ocean, J. Mar. Biol. Assoc. UK, 78, 351–376, 1998.
Pingree, R. D., Kou, Y. H., and Garcia-Soto, C.: Can Subtropical North Atlantic permanent thermocline be observed from space?, J. Mar. Biol. Assoc. UK, 82, 709–728, 2002.
Pollard, R. T. and Pu, S.: Structure and Circulation of the upper Atlantic ocean Northeast of the Azores, Prog. Oceanogr., 14, 443–462, 1985.
Pollard, R. T., Griffiths, M. J., Cunningham, S. A., Read, J. F., Perez, F. F., and Rios, A. F.: Vivaldi 1991 – a study of the formation, circulation and ventilation of Eastern North Atlantic Central Water, Prog. Oceanogr., 37, 167–192, 1996.
Read, J. F., Pollard, R. T., Miller, P. I., and Dale, A. C.: Circulation and variability of the North Atlantic Current in the vicinity of the Mid-Atlantic Ridge. Deep-Sea Res. Pt. I, 57, 307–318, 2010.
Reid, J. L.: On the middepth circulation and salinity field in the North Atlantic Ocean, J. Geophys. Res., 83, 5063–5067, 1978.
Richardson, P. L., McCartney, P. L., and Maillard, C.: A search for Meddies in historical data, J. Phys. Oceanogr., 15, 241–265, 1991.
Richardson, P. L., Bower, A. S., and Zenk, W.: A census of meddies tracked by floats, Prog. Oceanogr., 45, 209–250, 2000.
Rio, M. H., Guinehut, S., and Larnicol, G.: New CNES-CLS09 global mean dynamic topography computed from the combination of GRACE data, altimetry, and in situ measurements, J. Geophys. Res., 116, C07018, https://doi.org/10.1029/2010JC006505, 2011.
Roemmich, D. and Gilson, J.: The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program, Prog. Oceanogr., 82, 81–100, 2009.
Schmidtko, S., Johnson, G. C., and Lyman, J. M.: MIMOC: A global monthly isopycnal upper-ocean climatology with mixed layers, J. Geophys. Res., 118, 1658–1672, 2013.
Shoosmith, D. R., Richardson, P. L., Bower, A. S., and Rossby, H. T.: Discrete eddies in the northern North Atlantic as observed by looping RAFOS floats, Deep-Sea Res. Pt. II, 52, 627–650, 2005.
Siedler, G. and Finke, M.: Long-period transport changes in the Eastern North Atlantic and their simulation by propagating waves, J. Geophys. Res., 98, 2393–2406, 1993.
Sparnocchia, S., Manzella, G. M., and La Violette, P. E.: The interannual and seasonal variability of the MAW and LIW core properties in the Western Mediterranean Sea, Coast. Estuar. Stud., 46, 177–194, 1994.
Stammer, D.: Global Characteristics of Ocean Variability Estimated from Regional TOPEX/POSEIDON Altimeter Measurements, J. Phys. Oceanogr., 27, 1743–1769, 1997.
Stramma, L. and Siedler, G.: Seasonal changes in the North Atlantic subtropical gyre. J. Geophys. Res., 93, 8111–8118, 1988.
Troupin, C., Machín, F., Ouberdous, M., Sirjacobs, D., Barth, A., and Beckers, J. M.: High-resolution climatology of the northeast Atlantic using Data-Interpolating Variational Analysis (Diva), J. Geophys. Res., 115, C08005, https://doi.org/10.1029/2009JC005512, 2010.
Volkov, D. L. and Fu, L. L.: On the Reasons for the Formation and Variability of the Azores Current, J. Phys. Oceanogr., 40, 2197–2220, 2010.
WOA13: World Ocean Atlas, available at: http://www.nodc.noaa.gov/OC5/ (last accessed: 1 December 2014), edited by: Levitus, S. and Mishonov, A., temperature compiled by: Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H. E., Baranova, O. K., Zweng, M. M., Paver, C. R., Reagan, J. R., Johnson D. R., Hamilton, M., and Seidov, D. (NOAA Atlas NESDIS 73, 2013) and salinity compiled by: Zweng, M. M, Reagan, J. R., Antonov, J. I., Locarnini, R. A., Mishonov, A. V., Boyer, T. P., Garcia, H. E., Baranova, O. K., Johnson, D. R., Seidov, D., and Biddle, M. M., (NOAA Atlas NESDIS 74, 2013).
WOA09: World Ocean Atlas 2009, available at http://www.nodc.noaa.gov/OC5/WOA09/pubwoa09.html, temperature compiled by Locarnini, R.A., A.V. Mishonov, J.I. Antonov, T.P. Boyer, H.E. Garcia, O.K. Baranova, M.M. Zweng, and D.R. Johnson, 2010. \it World Ocean Atlas 2009, Volume 1: Temperature. S. Levitus, Ed. NOAA Atlas NESDIS 68, U.S. Government Printing Office, Washington, D.C., 184 pp., and salinity compiled by Antonov, J.I., D. Seidov, T.P. Boyer, R.A. Locarnini, A.V. Mishonov, H.E. Garcia, O.K. Baranova, M.M. Zweng, and D.R. Johnson, 2010. \it World Ocean Atlas 2009, Volume 2: Salinity. S. Levitus, Ed. NOAA Atlas NESDIS 69, US Government Printing Office, Washington, D.C., 184 pp., 2009.
Short summary
The present study defines new interpolation functions for hydrological data. These functions are applied to generate climatological maps of temperature-salinity distribution with a 25m depth interval and a 30km space interval (MEDTRANS data set). The MEDTRANS climatology gives more details of the distribution of water characteristics in the subtropical northeastern Atlantic than other alternative climatologies and is able to reproduce a number of dynamic features described in the literature.
The present study defines new interpolation functions for hydrological data. These functions are...