Articles | Volume 11, issue 1
https://doi.org/10.5194/os-11-187-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-11-187-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Roles of initial ocean surface and subsurface states on successfully predicting 2006–2007 El Niño with an intermediate coupled model
International Center for Climate and Environment Science (ICCES), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
J. Zhu
International Center for Climate and Environment Science (ICCES), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Related authors
Bin Cheng, Yubing Cheng, Timo Vihma, Anna Kontu, Fei Zheng, Juha Lemmetyinen, Yubao Qiu, and Jouni Pulliainen
Earth Syst. Sci. Data, 13, 3967–3978, https://doi.org/10.5194/essd-13-3967-2021, https://doi.org/10.5194/essd-13-3967-2021, 2021
Short summary
Short summary
Climate change strongly impacts the Arctic, with clear signs of higher air temperature and more precipitation. A sustainable observation programme has been carried out in Lake Orajärvi in Sodankylä, Finland. The high-quality air–snow–ice–water temperature profiles have been measured every winter since 2009. The data can be used to investigate the lake ice surface heat balance and the role of snow in lake ice mass balance and parameterization of snow-to-ice transformation in snow/ice models.
Bin Cheng, Yubing Cheng, Timo Vihma, Anna Kontu, Fei Zheng, Juha Lemmetyinen, Yubao Qiu, and Jouni Pulliainen
Earth Syst. Sci. Data, 13, 3967–3978, https://doi.org/10.5194/essd-13-3967-2021, https://doi.org/10.5194/essd-13-3967-2021, 2021
Short summary
Short summary
Climate change strongly impacts the Arctic, with clear signs of higher air temperature and more precipitation. A sustainable observation programme has been carried out in Lake Orajärvi in Sodankylä, Finland. The high-quality air–snow–ice–water temperature profiles have been measured every winter since 2009. The data can be used to investigate the lake ice surface heat balance and the role of snow in lake ice mass balance and parameterization of snow-to-ice transformation in snow/ice models.
Lijing Cheng, Kevin E. Trenberth, Matthew D. Palmer, Jiang Zhu, and John P. Abraham
Ocean Sci., 12, 925–935, https://doi.org/10.5194/os-12-925-2016, https://doi.org/10.5194/os-12-925-2016, 2016
Short summary
Short summary
A new method of observing ocean heat content throughout the entire ocean depth is provided. The new method is compared with simulated ocean heat content changes from climate models. The comparisons are carried out in various depth layers of the ocean waters. It is found that there is excellent agreement between the models and the observations. Furthermore, we propose that changes to ocean heat content be used as a fundamental metric to evaluate climate models.
Xiao Tang, Jiang Zhu, ZiFa Wang, Alex Gbaguidi, CaiYan Lin, JinYuan Xin, Tao Song, and Bo Hu
Atmos. Chem. Phys., 16, 6395–6405, https://doi.org/10.5194/acp-16-6395-2016, https://doi.org/10.5194/acp-16-6395-2016, 2016
Short summary
Short summary
Chemical data assimilation through adjusting precursor emissions has brought out notable impacts on improving ozone forecasts in previous studies. This paper, from another point of view, investigated in detail the impacts of adjusting nitrogen oxide emissions on the forecasts of nitrogen dioxide through assimilating ozone observations. Limitations of the existing chemical data assimilation methods in a highly nonlinear system were identified and highlighted.
J. Zheng, J. Zhu, Z. Wang, F. Fang, C. C. Pain, and J. Xiang
Geosci. Model Dev., 8, 3421–3440, https://doi.org/10.5194/gmd-8-3421-2015, https://doi.org/10.5194/gmd-8-3421-2015, 2015
Short summary
Short summary
A new anisotropic hr-adaptive mesh technique has been applied to modelling of multiscale transport phenomena. Over existing air quality models typically based on static-structured grids using a locally nesting technique, the advantage of the anisotropic hr-adaptive model has the ability to adapt the mesh according to the evolving pollutant distribution and flow features. To illustrate its capability, comparisons have been made between the results obtained using adaptive and uniform meshes.
C. Yan, J. Zhu, and C. A. S. Tanajura
Ocean Sci., 11, 829–837, https://doi.org/10.5194/os-11-829-2015, https://doi.org/10.5194/os-11-829-2015, 2015
Short summary
Short summary
The altimetry data assimilation requires the addition of the mean dynamic topography to the altimetric sea level anomaly to match the model sea surface height. The mean dynamic topography is usually computed from the model long-term mean sea surface height. In this study, the impact of different mean dynamic topographies on the sea level anomaly assimilation is examined. Results show that impacts of the mean dynamic topography cannot be neglected.
L. Cheng, J. Zhu, and R. L. Sriver
Ocean Sci., 11, 719–741, https://doi.org/10.5194/os-11-719-2015, https://doi.org/10.5194/os-11-719-2015, 2015
Short summary
Short summary
1. Argo floats were used to examine tropical cyclone (TC) induced ocean thermal changes on the global scale by comparing temperature profiles before and after TC passage.
2. Global average of the vertical structure of the average ocean thermal response for two different categories: tropical storms/depressions (TS/TD) and hurricanes were presented.
3. Significant differences between weak storm (TS/TD) and strong storm (hurricane) were found.
L. Cheng, J. Zhu, and R. L. Sriver
Ocean Sci. Discuss., https://doi.org/10.5194/osd-11-2907-2014, https://doi.org/10.5194/osd-11-2907-2014, 2014
Preprint withdrawn
Short summary
Short summary
1. TCs are responsible for 1.87 PW (11.05 W/m2) of heat transfer annually from the global ocean to the atmosphere during storm passage (0-3 days) on a global scale. Of this total, 1.05±0.20 PW (4.80±0.85 W/m2) is caused by TS/TD and 0.82±0.21 PW (6.25±1.5 W/m2) is caused by hurricanes.
2.The net ocean heat uptake caused by all storms is 0.34 PW (4-20 days mean). Hurricanes induce 0.75±0.25 PW (5.98±2.1 W/m2) net heat gain, and TS/TD leads to 0.41±0.21 PW (1.90±0.96 W/m2) net heat loss.
Cited articles
Alves, O., Balmaseda, M., Anderson, D., and Stockdale, T.: Sensitivity of dynamical seasonal forecasts to ocean initial conditions, Q. J. Roy. Meteor. Soc., 130, 647–668, 2004.
Ashok, K. and Yamagata, T.: Climate change: The El Niño with a difference, Nature, 461, 481–484, 2009.
Balmaseda, M. A. and Anderson, D.: Impact on initialization strategies and observations on seasonal forecast skill, Geophys. Res. Lett., 36, L01701, https://doi.org/10.1029/2008GL035561, 2009.
Barnston, A. G., Tippett, M. K., L'Heureux, M. L., Li, S., and DeWitt, D. G.: Skill of real-time seasonal ENSO model predictions during 2002–2011: is our capability increasing?, B. Am. Meteorol. Soc., 93, 631–651, 2012.
Behringer, D. W. and Xue, Y.: Evaluation of the global ocean data assimilation system at NCEP: The Pacific ocean. Preprints, Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Seattle, WA, Amer. Meteor. Soc., 2.3, 2004.
Cazes-Boezio, G., Menemenlis, D., and Mechoso, C. R.: Impact of ECCO ocean-state estimates on the initialization of seasonal climate forecasts, J.Climate, 21, 1929–1947, 2010.
Counillon, F. and Bertino, L.: Ensemble optimal interpolation: Multivariate properties in the Gulf of Mexico, Tellus A, 61, 296–308, 2009.
Evensen, G.: Sampling strategies and square root analysis schemes for the EnKF, Ocean Dynam., 54, 539–560, 2004.
Evensen, G.: Data Assimilation: The Ensemble Kalman Filter, 2nd Edn., Springer, Berlin, 2009.
Fischer, M., Flugel, M., Ji, M., and Latif, M.: The impact of data assimilation on ENSO simulations and predictions, Mon. Weather Rev., 125, 819–829, 1997.
Fu, W.-W. and Zhu, J.: Effects of sea level data assimilation by ensemble optimal interpolation and 3D variational data assimilation on the simulation of variability in a tropical Pacific model, J. Atmos. Ocean. Tech., 28, 1624–1640, 2011.
Hackert, E., Ballabrera-Poy, J., Busalacchi, A. J., Zhang, R.-H., and Murtugudde, R.: Role of the initial ocean state for the 2006 El Niño, Geophys. Res. Lett., 34, L09605, https://doi.org/10.1029/2007GL029452, 2007.
Ji, M. and Leetmaa, A.: Impact of data assimilation on ocean initialization and El Niño prediction, Mon. Weather Rev., 125, 742–753, 1997.
Ji, M., Reynolds, R. W., and Behringer, D. W.: Use of TOPEX/Poseidon sea level data for ocean analyses and ENSO prediction: Some early results, J. Climate, 13, 216–231, 2000.
Jin, E. K., Kinter III, J. L., Wang, B., Park, C.-K., Kang, I.-S., Kirtman, B. P., Kug, J.-S., Kumar, A., Luo, J.-J., Schemm, J., Shukla, J., and Yamagata, T.: Current status of ENSO prediction skill in coupled ocean–atmosphere models, Clim. Dynam., 31, 647–664, 2008.
Keenlyside, N. and Kleeman, R.: Annual cycle of equatorial zonal currents in the Pacific, J. Geophys. Res., 107, 3093, https://doi.org/10.1029/2000JC000711, 2002.
Keenlyside, N., Latif, M., Botzet, M., Jungclaus, J., and Schulzweida, U.: A coupled method for initialising ENSO forecasts using SST, Tellus A, 57, 340–356, 2005.
Kirtman, B. P., Shukla, J., Balmaseda, M., Graham, N., Penland, C., Xue, Y., and Zebiak, S. E.: Current status of ENSO forecast skill: A report to the Climate Variability and Predictability (CLIVAR) Working Group on Seasonal to Interannual Prediction, WCRP Informal Report No. 23/01, 31 pp., 2002.
Latif, M., Anderson, D., Barnett, T., Cane, M., Kleeman, R., Leetmaa, A., O'Brien, J., Rosati, A., and Schneider, E.: A review of the predictability and prediction of ENSO, J. Geophys. Res., 103, 14375–14393, 1998.
Latif, M., Sperber, K., Arblaster, J., Braconnot, P., Chen, D., Colman, A., Cubasch, U., Cooper, C., Delecluse, P., Dewitt, D., Fairhead, L., Flato, G., Hogan, T., Ji, M., Kimoto, M., Kitoh, A., Knutson, T., Le Treut, H., L., T., Manabe, S., Marti, O., Mechoso, C., Meehl, G., Power, S., Roeckner, E., Sirven, J., Terray, L., Vintzileos, A., Voß, R., Wang, B., Washington, W., Yoshikawa, I., Yu, J., and Zebiak, S.: ENSIP: The El Niño simulation intercomparison project, Clim. Dynam., 18, 255–276, 2001.
Levitus, S.: Climatological Atlas of the World Ocean, NOAA Prof. Paper 13, 173 pp. and 17 microfiche, 1982.
Masina, S., Pinardi, N., and Navarra, A.: A global ocean temperature and altimeter data assimilation system for studies of climate variability, Clim. Dynam., 17, 687–700, 2001.
McCreary, J. P.: A linear stratified ocean model of the equatorial undercurrent, Philos. T. R. Soc. Lond., 298, 603–635, 1981.
McPhaden, M. J.: Evolution of the 2006–07 El Niño: The role of intraseasonal to interannual time scale dynamics, Adv. Geosci., 14, 219–230, 2008.
McPhaden, M. J., Zebiak, S. E., and Glantz, M. H.: ENSO as an integrating concept in earth science, Science, 314, 1739–1745, 2006.
Monterey, G., and Levitus, S.: Seasonal variability of mixed layer depth for the world ocean, NOAA Atlas NESDIS 14, 96 pp., 1997.
Neelin, J. D., Battisti, D. S., Hirst, A. C., Jin, F.-F., Wakata, Y., Yamagata, T., and Zebiak, S. E.: ENSO theory, J. Geophys. Res., 103, 14262–14290, 1998.
Oke, P. R., Brassington, G. B., Griffin, D. A., and Schiller, A.: The Bluelink ocean data assimilation system (BODAS), Ocean Model., 21, 46–70, 2008.
Palmer, T. N.: A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parametrization in weather and climate prediction models, Q. J. Roy. Meteor. Soc., 127, 279–304, 2001.
Picaut, J., Hackert, E., Busalacchi, A. J., Murtugudde, R., and Lagerloef, G. S. E.: Mechanisms of the 1997–1998 El Niño–La Niña, as inferred from space-based observations, J. Geophys. Res., 107, 3037, https://doi.org/10.1029/2001JC000850, 2002.
Sakov, P. and Oke, P. R.: Implications of the form of the ensemble transformations in the ensemble square root filters, Mon. Weather Rev., 136, 1042–1053, 2008.
Segschneider, J., Anderson, D. L. T., Vialard, J., Balmaseda, M., Stockdale, T. N., Troccoli, A., and Haines, K.: Initialization of Seasonal Forecasts Assimilating Sea Level and Temperature Observations, J. Climate, 14, 4292–4307, 2001.
Smith, T. M., Reynolds, R. W., Peterson, T. C., and Lawrimore, J.: Improvements to NOAA's Historical Merged Land-Ocean Surface Temperature Analysis (1880-2006), J. Climate, 21, 2283–2296, 2008.
Vidard, A., Balmaseda, M., and Anderson, D.: Assimilation of altimeter data in the ECMWF ocean analysis system 3, Mon. Weather Rev., 137, 1393–1408, 2010.
Wang, W. and McPhaden, M. J.: The surface-layer heat balance in the equatorial Pacific Ocean. Part II: Interannual variability, J. Phys. Oceanogr., 30, 2989–3008, 2000.
Wyrtki, K.: El Niño–-The dynamic response of the equatorial Pacific Ocean to atmospheric forcing, J. Phys. Oceanogr., 5, 527–584, 1975.
Yang, S.-C., Rienecker, M., ad Keppenne, C.: The Impact of Ocean Data Assimilation on Seasonal-to-Interannual Forecasts: A Case Study of the 2006 El Niño Event, J. Climate, 23, 4080–4095, 2010.
Zebiak, S. E. and Cane, M. A.: A model El NinoSouthern Oscillation, Mon. Weather Rev., 115, 2262–2278, 1987.
Zhang, R.-H., Zebiak, S. E., Kleeman, R., and Keenlyside, N.: Retrospective El Niño forecast using an improved intermediate coupled model, Mon. Weather Rev., 133, 2777–2802, 2005.
Zheng, F. and Zhu, J.: Balanced multivariate model errors of an intermediate coupled model for ensemble Kalman filter data assimilation, J. Geophys. Res., 113, C07002, https://doi.org/10.1029/2007JC004621, 2008.
Zheng, F. and Zhu, J.: Coupled assimilation for an intermediated coupled ENSO prediction model, Ocean Dynam., 60, 1061–1073, https://doi.org/10.1007/s10236-010-0307-1, 2010.
Zheng, F., Zhu, J., Zhang, R.-H., and Zhou, G.-Q.: Ensemble hindcasts of SST anomalies in the tropical Pacific using an intermediate coupled model, Geophys. Res. Lett., 33, L19604, https://doi.org/10.1029/2006GL026994, 2006.
Zheng, F., Zhu, J., and Zhang, R.-H.: The impact of altimetry data on ENSO ensemble initializations and predictions, Geophys. Res. Lett., 34, L13611, https://doi.org/10.1029/2007GL030451, 2007.
Zhu, J., Huang, B., Marx, L., Kinter III, J. L., Balmaseda, M. A., Zhang, R.-H., and Hu, Z.-Z.: Ensemble ENSO hindcasts initialized from multiple ocean analyses, Geophys. Res. Lett., 39, L09602, https://doi.org/10.1029/2012GL051503, 2012.