Articles | Volume 10, issue 5
https://doi.org/10.5194/os-10-745-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-10-745-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Characterisation and quantification of regional diurnal SST cycles from SEVIRI
I. Karagali
DTU Wind Energy, Technical University of Denmark, Risø Campus, Building 125, Roskilde, 4000, Denmark
J. L. Høyer
Centre for Ocean and Ice (COI), Danish Meteorological Institute (DMI), Lyngbyvej 100, 2100, Denmark
Related authors
Guisella Gacitúa, Jacob Lorentsen Høyer, Sten Schmidl Søbjærg, Hoyeon Shi, Sotirios Skarpalezos, Ioanna Karagali, Emy Alerskans, and Craig Donlon
Geosci. Instrum. Method. Data Syst., 13, 373–391, https://doi.org/10.5194/gi-13-373-2024, https://doi.org/10.5194/gi-13-373-2024, 2024
Short summary
Short summary
In spring 2021, a study compared sea surface temperature (SST) measurements from thermal infrared (IR) and passive microwave (PMW) radiometers on a ferry between Denmark and Iceland. The goal was to reduce atmospheric effects and directly compare IR and PMW measurements. A method was developed to convert PMW data to match IR data, with uncertainties analysed in the process. The findings provide insights to improve SST inter-comparisons and enhance the synergy between IR and PMW observations.
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Jonathan Baker, Clément Bricaud, Romain Bourdalle-Badie, Lluis Castrillo, Lijing Cheng, Frederic Chevallier, Daniele Ciani, Alvaro de Pascual-Collar, Vincenzo De Toma, Marie Drevillon, Claudia Fanelli, Gilles Garric, Marion Gehlen, Rianne Giesen, Kevin Hodges, Doroteaciro Iovino, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Thomas Lavergne, Simona Masina, Ronan McAdam, Audrey Minière, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Ad Stoffelen, Sulian Thual, Simon Van Gennip, Pierre Veillard, Chunxue Yang, and Hao Zuo
State Planet, 4-osr8, 1, https://doi.org/10.5194/sp-4-osr8-1-2024, https://doi.org/10.5194/sp-4-osr8-1-2024, 2024
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Ali Aydogdu, Lluis Castrillo, Daniele Ciani, Andrea Cipollone, Emanuela Clementi, Gianpiero Cossarini, Alvaro de Pascual-Collar, Vincenzo De Toma, Marion Gehlen, Rianne Giesen, Marie Drevillon, Claudia Fanelli, Kevin Hodges, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Priidik Lagemaa, Vidar Lien, Leonardo Lima, Vladyslav Lyubartsev, Ilja Maljutenko, Simona Masina, Ronan McAdam, Pietro Miraglio, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Urmas Raudsepp, Roshin Raj, Ad Stoffelen, Simon Van Gennip, Pierre Veillard, and Chunxue Yang
State Planet, 4-osr8, 2, https://doi.org/10.5194/sp-4-osr8-2-2024, https://doi.org/10.5194/sp-4-osr8-2-2024, 2024
Daniel Hatfield, Charlotte Bay Hasager, and Ioanna Karagali
Wind Energ. Sci., 8, 621–637, https://doi.org/10.5194/wes-8-621-2023, https://doi.org/10.5194/wes-8-621-2023, 2023
Short summary
Short summary
Wind observations at heights relevant to the operation of modern offshore wind farms, i.e. 100 m and more, are required to optimize their positioning and layout. Satellite wind retrievals provide observations of the wind field over large spatial areas and extensive time periods, yet their temporal resolution is limited and they are only representative at 10 m height. Machine-learning models are applied to lift these satellite winds to higher heights, directly relevant to wind energy purposes.
Ioanna Karagali, Magnus Barfod Suhr, Ruth Mottram, Pia Nielsen-Englyst, Gorm Dybkjær, Darren Ghent, and Jacob L. Høyer
The Cryosphere, 16, 3703–3721, https://doi.org/10.5194/tc-16-3703-2022, https://doi.org/10.5194/tc-16-3703-2022, 2022
Short summary
Short summary
Ice surface temperature (IST) products were used to develop the first multi-sensor, gap-free Level 4 (L4) IST product of the Greenland Ice Sheet (GIS) for 2012, when a significant melt event occurred. For the melt season, mean IST was −15 to −1 °C, and almost the entire GIS experienced at least 1 to 5 melt days. Inclusion of the L4 IST to a surface mass budget (SMB) model improved simulated surface temperatures during the key onset of the melt season, where biases are typically large.
Haichen Zuo, Charlotte Bay Hasager, Ioanna Karagali, Ad Stoffelen, Gert-Jan Marseille, and Jos de Kloe
Atmos. Meas. Tech., 15, 4107–4124, https://doi.org/10.5194/amt-15-4107-2022, https://doi.org/10.5194/amt-15-4107-2022, 2022
Short summary
Short summary
The Aeolus satellite was launched in 2018 for global wind profile measurement. After successful operation, the error characteristics of Aeolus wind products have not yet been studied over Australia. To complement earlier validation studies, we evaluated the Aeolus Level-2B11 wind product over Australia with ground-based wind profiling radar measurements and numerical weather prediction model equivalents. The results show that the Aeolus can detect winds with sufficient accuracy over Australia.
Charlotte B. Hasager, Andrea N. Hahmann, Tobias Ahsbahs, Ioanna Karagali, Tija Sile, Merete Badger, and Jakob Mann
Wind Energ. Sci., 5, 375–390, https://doi.org/10.5194/wes-5-375-2020, https://doi.org/10.5194/wes-5-375-2020, 2020
Short summary
Short summary
Europe's offshore wind resource mapping is part of the New European Wind Atlas (NEWA) international consortium effort. This study presents the results of analysis of synthetic aperture radar (SAR) ocean wind maps based on Envisat and Sentinel-1 with a brief description of the wind retrieval process and Advanced Scatterometer (ASCAT) ocean wind maps. Furthermore, the Weather Research and Forecasting (WRF) offshore wind atlas of NEWA is presented.
Guisella Gacitúa, Jacob Lorentsen Høyer, Sten Schmidl Søbjærg, Hoyeon Shi, Sotirios Skarpalezos, Ioanna Karagali, Emy Alerskans, and Craig Donlon
Geosci. Instrum. Method. Data Syst., 13, 373–391, https://doi.org/10.5194/gi-13-373-2024, https://doi.org/10.5194/gi-13-373-2024, 2024
Short summary
Short summary
In spring 2021, a study compared sea surface temperature (SST) measurements from thermal infrared (IR) and passive microwave (PMW) radiometers on a ferry between Denmark and Iceland. The goal was to reduce atmospheric effects and directly compare IR and PMW measurements. A method was developed to convert PMW data to match IR data, with uncertainties analysed in the process. The findings provide insights to improve SST inter-comparisons and enhance the synergy between IR and PMW observations.
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Jonathan Baker, Clément Bricaud, Romain Bourdalle-Badie, Lluis Castrillo, Lijing Cheng, Frederic Chevallier, Daniele Ciani, Alvaro de Pascual-Collar, Vincenzo De Toma, Marie Drevillon, Claudia Fanelli, Gilles Garric, Marion Gehlen, Rianne Giesen, Kevin Hodges, Doroteaciro Iovino, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Thomas Lavergne, Simona Masina, Ronan McAdam, Audrey Minière, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Ad Stoffelen, Sulian Thual, Simon Van Gennip, Pierre Veillard, Chunxue Yang, and Hao Zuo
State Planet, 4-osr8, 1, https://doi.org/10.5194/sp-4-osr8-1-2024, https://doi.org/10.5194/sp-4-osr8-1-2024, 2024
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Ali Aydogdu, Lluis Castrillo, Daniele Ciani, Andrea Cipollone, Emanuela Clementi, Gianpiero Cossarini, Alvaro de Pascual-Collar, Vincenzo De Toma, Marion Gehlen, Rianne Giesen, Marie Drevillon, Claudia Fanelli, Kevin Hodges, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Priidik Lagemaa, Vidar Lien, Leonardo Lima, Vladyslav Lyubartsev, Ilja Maljutenko, Simona Masina, Ronan McAdam, Pietro Miraglio, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Urmas Raudsepp, Roshin Raj, Ad Stoffelen, Simon Van Gennip, Pierre Veillard, and Chunxue Yang
State Planet, 4-osr8, 2, https://doi.org/10.5194/sp-4-osr8-2-2024, https://doi.org/10.5194/sp-4-osr8-2-2024, 2024
Daniel Hatfield, Charlotte Bay Hasager, and Ioanna Karagali
Wind Energ. Sci., 8, 621–637, https://doi.org/10.5194/wes-8-621-2023, https://doi.org/10.5194/wes-8-621-2023, 2023
Short summary
Short summary
Wind observations at heights relevant to the operation of modern offshore wind farms, i.e. 100 m and more, are required to optimize their positioning and layout. Satellite wind retrievals provide observations of the wind field over large spatial areas and extensive time periods, yet their temporal resolution is limited and they are only representative at 10 m height. Machine-learning models are applied to lift these satellite winds to higher heights, directly relevant to wind energy purposes.
Ioanna Karagali, Magnus Barfod Suhr, Ruth Mottram, Pia Nielsen-Englyst, Gorm Dybkjær, Darren Ghent, and Jacob L. Høyer
The Cryosphere, 16, 3703–3721, https://doi.org/10.5194/tc-16-3703-2022, https://doi.org/10.5194/tc-16-3703-2022, 2022
Short summary
Short summary
Ice surface temperature (IST) products were used to develop the first multi-sensor, gap-free Level 4 (L4) IST product of the Greenland Ice Sheet (GIS) for 2012, when a significant melt event occurred. For the melt season, mean IST was −15 to −1 °C, and almost the entire GIS experienced at least 1 to 5 melt days. Inclusion of the L4 IST to a surface mass budget (SMB) model improved simulated surface temperatures during the key onset of the melt season, where biases are typically large.
Haichen Zuo, Charlotte Bay Hasager, Ioanna Karagali, Ad Stoffelen, Gert-Jan Marseille, and Jos de Kloe
Atmos. Meas. Tech., 15, 4107–4124, https://doi.org/10.5194/amt-15-4107-2022, https://doi.org/10.5194/amt-15-4107-2022, 2022
Short summary
Short summary
The Aeolus satellite was launched in 2018 for global wind profile measurement. After successful operation, the error characteristics of Aeolus wind products have not yet been studied over Australia. To complement earlier validation studies, we evaluated the Aeolus Level-2B11 wind product over Australia with ground-based wind profiling radar measurements and numerical weather prediction model equivalents. The results show that the Aeolus can detect winds with sufficient accuracy over Australia.
Charlotte B. Hasager, Andrea N. Hahmann, Tobias Ahsbahs, Ioanna Karagali, Tija Sile, Merete Badger, and Jakob Mann
Wind Energ. Sci., 5, 375–390, https://doi.org/10.5194/wes-5-375-2020, https://doi.org/10.5194/wes-5-375-2020, 2020
Short summary
Short summary
Europe's offshore wind resource mapping is part of the New European Wind Atlas (NEWA) international consortium effort. This study presents the results of analysis of synthetic aperture radar (SAR) ocean wind maps based on Envisat and Sentinel-1 with a brief description of the wind retrieval process and Advanced Scatterometer (ASCAT) ocean wind maps. Furthermore, the Weather Research and Forecasting (WRF) offshore wind atlas of NEWA is presented.
Rasmus T. Tonboe, Steinar Eastwood, Thomas Lavergne, Atle M. Sørensen, Nicholas Rathmann, Gorm Dybkjær, Leif Toudal Pedersen, Jacob L. Høyer, and Stefan Kern
The Cryosphere, 10, 2275–2290, https://doi.org/10.5194/tc-10-2275-2016, https://doi.org/10.5194/tc-10-2275-2016, 2016
Short summary
Short summary
The EUMETSAT sea ice climate record (ESICR) is based on the Nimbus 7 SMMR (1978–1987), the SSM/I (1987–2009), and the SSMIS (2003–today) microwave radiometer data. It uses a combination of two sea ice concentration algorithms with dynamical tie points, explicit atmospheric correction using numerical weather prediction data for error reduction and it comes with spatially and temporally varying uncertainty estimates describing the residual uncertainties.
Related subject area
Approach: Remote Sensing | Depth range: Surface | Geographical range: All Geographic Regions | Phenomena: Temperature, Salinity and Density Fields
Core operational Sentinel-3 marine data product services as part of the Copernicus Space Component
Sea surface freshening inferred from SMOS and ARGO salinity: impact of rain
Sea surface temperature anomalies, seasonal cycle and trend regimes in the Eastern Pacific coast
Hans Bonekamp, Francois Montagner, Vincenzo Santacesaria, Carolina Nogueira Loddo, Sally Wannop, Igor Tomazic, Anne O'Carroll, Ewa Kwiatkowska, Remko Scharroo, and Hilary Wilson
Ocean Sci., 12, 787–795, https://doi.org/10.5194/os-12-787-2016, https://doi.org/10.5194/os-12-787-2016, 2016
Short summary
Short summary
This paper describes the marine data available from the Marine Centre, part of the Sentinel-3 Payload Data Ground Segment, located at the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT).
Descriptions include the scientific and operational feedback mechanisms on the performance of the services as well as practical information and user support mechanisms.
J. Boutin, N. Martin, G. Reverdin, X. Yin, and F. Gaillard
Ocean Sci., 9, 183–192, https://doi.org/10.5194/os-9-183-2013, https://doi.org/10.5194/os-9-183-2013, 2013
A. Ramos-Rodríguez, D. B. Lluch-Cota, S. E. Lluch-Cota, and A. Trasviña-Castro
Ocean Sci., 8, 81–90, https://doi.org/10.5194/os-8-81-2012, https://doi.org/10.5194/os-8-81-2012, 2012
Cited articles
Bellenger, H. and Duvel, J. P.: An analysis of ocean diurnal warm layers over tropical oceans, J. Climate, 22, 3629–3646, 2009.
Bellenger, H., Takayabu, Y. N., Ushiyama, T., and Yoneyama, K.: Role of diurnal warm layers in the diurnal cycle of convection over the tropical Indian Ocean during MISMO, Mon. Weather Rev., 138, 2426–2433, 2010.
Castro, S., Wick, G., and Buck, J. J. H.: Comparison of diurnal warming estimates from unpumped ARGO data and SEVIRI satellite observations, Remote Sens. Environ., 140, 789–799, 2014.
Clayson, C. A. and Bogdanoff, A. S.: The effect of diurnal sea surface temperature warming on climatological air–sea fluxes, J. Climate, 26, 2546–2556, 2013.
Donlon, C., Robinson, I., Casey, K. S., Vasquez-Cuervo, J., Armstrong, E., Arino, O., Gentemann, C., May, D., LeBorgne, P., Piollé, J., Barton, I., Beggs, H., Poulter, D. J. S., Merchant, C. J., Bingham, A., Heinz, S., Harris, A., Wick, G., Emery, B., Minnett, P., Evans, R., Llewellyn-Jones, D., Mutlow, C., Reynolds, R. W., Kawamura, H., and Rayner, N.: The global ocean data assimilation experiment high-resolution sea surface temperature pilot project, B. Am. Meteorol. Soc., 88, 1197–1213, 2007.
Eastwood, S., Le Borgne, P., Péré, S., and Poulter, D.: Diurnal variability in sea surface temperature in the Arctic, Remote Sens. Environ., 115, 2594–2602, 2011.
Embury, O., Merchant, C. J., and Corlett, G. K.: A reprocessing for climate of sea surface temperature from the along-track scanning radiometers: initial validation, accounting for skin and diurnal variability effects, Remote Sens. Environ., 116, 62–78, 2012.
Filipiak, M. J., Merchant, C. J., Kettle, H., and Le Borgne, P.: An empirical model for the statistics of sea surface diurnal warming, Ocean Sci., 8, 197–209, https://doi.org/10.5194/os-8-197-2012, 2012.
Karagali, I. and Høyer, J.: Observations and modelling of the diurnal SST cycle in the North and Baltic Seas, J. Geophys. Res.-Oceans 118, 1–16, 2013.
Karagali, I., Hoeyer, J., and Hasager, C. B.: SST diurnal variability in the North Sea and the Baltic Sea, Remote Sens. Environ., 112, 159–170, 2012.
Kennedy, J. J., Brohan, P., and Tett, S. F. B.: A global climatology of the diurnal variations in sea-surface temperature and implications for MSU temperature trends, Geophys. Res. Lett. 34, L05712, https://doi.org/10.1029/2006GL028920, 2007.
Le Borgne, P., Roquet, H., and Merchant, C. J.: Estimation of sea surface temperature from the spinning enhanced visible and infrared imager improved using numerical weather prediction, Remote Sens. Environ., 115, 55–65, 2011.
Le Borgne, P., Marsouin, A., Orain, F., and Roquet, H.: Operational Sea Surface Temperature bias adjustment using AATSR data, Remote Sens. Environ., 116, 93–106, 2012a.
Le Borgne, P., Legendre, G., and Péré, S.: Comparison of MSG/SEVIRI and drifting buoy derived diurnal warming estimates, Remote Sens. Environ., 124, 622–626, 2012b.
Marullo, S., Santoleri, R., Ciani, D., Le Borgne, P., Péré, S., Pinardi, N., Tonani, M., and Nardone, G.: Combining model and geostationary satellite data to reconstruct hourly SST field over the Mediterranean Sea, Remote Sens. Environ., 146, 11–23, 2014.
Merchant, C. J., Filipiak, M. J., Le Borgne, P., Roquet, H., Autret, E., Piollé, J.-F., and Lavender, S.: Diurnal warm-layer events in the western Mediterranean and European shelf seas, Geophys. Res. Lett., 35, L04601, https://doi.org/10.1029/2007GL033071, 2008.
Morel, A., Huot, Y., Gentili, B., Werdell, P. J., Hooker, S. B., and Franz, B. A.: Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach, Remote Sens. Environ., 111, 69–88, 2014.
O'Carroll, A. G., Eyre, J. R., and Saunders, R. W.: Three-way error analysis between AATSR, AMSR-E and in situ Sea Surface Temperature observations, J. Atmos. Ocean. Tech., 25, 1197–1207, 2008.
Ocean & Sea Ice SAF: Atlantic Sea Surface Temperature Product Manual, Version 1.6, October 2006.
Price, J., Weller, R., Bowers, C., and Briscoe, M. G.: Diurnal response of sea surface temperature observed at the long-term upper ocean study (34° N, 70° W) in the Sargasso Sea, J. Geophys. Res., 92, 14480–14490, 1987.
Prytherch, J., Farrar, J. T., and Weller, R. A.: Moored surface buoy observations of the diurnal warm layer, J. Geophys. Res., 118, 4553–4569, 2013.
Richter, I. and Mechoso, C. R.: Orographic influences on the annual cycle of Namibian stratocumulus clouds, Geophys. Res. Lett., 31, 1–4, https://doi.org/10.1029/2004GL020814, 2004.
Ward, B.: Near-surface ocean temperature, J. Geophys. Res. 111, C02004, https://doi.org/10.1029/2004JC002689, 2006.
Webster, P. J., Clayson, C. A., and Curry, J. A.: Clouds, radiation, and the diurnal cycle of sea surface temperature in the Tropical Western Pacific, J. Climate, 9, 1712–1730, 1996.