Articles | Volume 10, issue 4
https://doi.org/10.5194/os-10-701-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-10-701-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Weighing the ocean with bottom-pressure sensors: robustness of the ocean mass annual cycle estimate
Joanne Williams
National Oceanography Centre, Joseph Proudman Building, 6 Brownlow St, Liverpool L3 5DA, UK
C. W. Hughes
National Oceanography Centre, Joseph Proudman Building, 6 Brownlow St, Liverpool L3 5DA, UK
School of Environmental Sciences, University of Liverpool, Liverpool L69 3GP, UK
M. E. Tamisiea
National Oceanography Centre, Joseph Proudman Building, 6 Brownlow St, Liverpool L3 5DA, UK
S. D. P. Williams
National Oceanography Centre, Joseph Proudman Building, 6 Brownlow St, Liverpool L3 5DA, UK
Related authors
David Byrne, Jeff Polton, Enda O'Dea, and Joanne Williams
Geosci. Model Dev., 16, 3749–3764, https://doi.org/10.5194/gmd-16-3749-2023, https://doi.org/10.5194/gmd-16-3749-2023, 2023
Short summary
Short summary
Validation is a crucial step during the development of models for ocean simulation. The purpose of validation is to assess how accurate a model is. It is most commonly done by comparing output from a model to actual observations. In this paper, we introduce and demonstrate usage of the COAsT Python package to standardise the validation process for physical ocean models. We also discuss our five guiding principles for standardised validation.
Ed Hawkins, Philip Brohan, Samantha N. Burgess, Stephen Burt, Gilbert P. Compo, Suzanne L. Gray, Ivan D. Haigh, Hans Hersbach, Kiki Kuijjer, Oscar Martínez-Alvarado, Chesley McColl, Andrew P. Schurer, Laura Slivinski, and Joanne Williams
Nat. Hazards Earth Syst. Sci., 23, 1465–1482, https://doi.org/10.5194/nhess-23-1465-2023, https://doi.org/10.5194/nhess-23-1465-2023, 2023
Short summary
Short summary
We examine a severe windstorm that occurred in February 1903 and caused significant damage in the UK and Ireland. Using newly digitized weather observations from the time of the storm, combined with a modern weather forecast model, allows us to determine why this storm caused so much damage. We demonstrate that the event is one of the most severe windstorms to affect this region since detailed records began. The approach establishes a new tool to improve assessments of risk from extreme weather.
Joanne Williams, Maialen Irazoqui Apecechea, Andrew Saulter, and Kevin J. Horsburgh
Ocean Sci., 14, 1057–1068, https://doi.org/10.5194/os-14-1057-2018, https://doi.org/10.5194/os-14-1057-2018, 2018
Short summary
Short summary
Tide predictions based on tide-gauge observations are not just astronomical tides; they also contain periodic sea level changes due to the weather. Forecasts of total water level during storm surges add the immediate effects of the weather to the astronomical tide prediction and thus risk double-counting these effects. We use a global model to see how much double-counting may affect these forecasts and also how much of the Highest Astronomical Tide may be due to recurrent weather patterns.
C. W. Hughes, Joanne Williams, A. C. Coward, and B. A. de Cuevas
Ocean Sci., 10, 215–225, https://doi.org/10.5194/os-10-215-2014, https://doi.org/10.5194/os-10-215-2014, 2014
Joanne Williams and Chris W. Hughes
Ocean Sci., 9, 111–119, https://doi.org/10.5194/os-9-111-2013, https://doi.org/10.5194/os-9-111-2013, 2013
Alexander T. Archibald, Bablu Sinha, Maria Russo, Emily Matthews, Freya Squires, N. Luke Abraham, Stephane Bauguitte, Thomas Bannan, Thomas Bell, David Berry, Lucy Carpenter, Hugh Coe, Andrew Coward, Peter Edwards, Daniel Feltham, Dwayne Heard, Jim Hopkins, James Keeble, Elizabeth C. Kent, Brian King, Isobel R. Lawrence, James Lee, Claire R. Macintosh, Alex Megann, Ben I. Moat, Katie Read, Chris Reed, Malcolm Roberts, Reinhard Schiemann, David Schroeder, Tim Smyth, Loren Temple, Navaneeth Thamban, Lisa Whalley, Simon Williams, Huihui Wu, and Ming-Xi Yang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-405, https://doi.org/10.5194/essd-2023-405, 2024
Preprint under review for ESSD
Short summary
Short summary
Here we present an overview of the data generated as part of the North Atlantic Climate System Integrated Studies (ACSIS) programme which are available through dedicated repositories at the Centre for Environmental Data Analysis (CEDA, www.ceda.ac.uk) and the British Oceanographic Data Centre (BODC, bodc.ac.uk). ACSIS data cover the full North Atlantic System comprising: the North Atlantic Ocean, the atmosphere above it including its composition, Arctic Sea Ice and the Greenland Ice Sheet.
David Byrne, Jeff Polton, Enda O'Dea, and Joanne Williams
Geosci. Model Dev., 16, 3749–3764, https://doi.org/10.5194/gmd-16-3749-2023, https://doi.org/10.5194/gmd-16-3749-2023, 2023
Short summary
Short summary
Validation is a crucial step during the development of models for ocean simulation. The purpose of validation is to assess how accurate a model is. It is most commonly done by comparing output from a model to actual observations. In this paper, we introduce and demonstrate usage of the COAsT Python package to standardise the validation process for physical ocean models. We also discuss our five guiding principles for standardised validation.
Ed Hawkins, Philip Brohan, Samantha N. Burgess, Stephen Burt, Gilbert P. Compo, Suzanne L. Gray, Ivan D. Haigh, Hans Hersbach, Kiki Kuijjer, Oscar Martínez-Alvarado, Chesley McColl, Andrew P. Schurer, Laura Slivinski, and Joanne Williams
Nat. Hazards Earth Syst. Sci., 23, 1465–1482, https://doi.org/10.5194/nhess-23-1465-2023, https://doi.org/10.5194/nhess-23-1465-2023, 2023
Short summary
Short summary
We examine a severe windstorm that occurred in February 1903 and caused significant damage in the UK and Ireland. Using newly digitized weather observations from the time of the storm, combined with a modern weather forecast model, allows us to determine why this storm caused so much damage. We demonstrate that the event is one of the most severe windstorms to affect this region since detailed records began. The approach establishes a new tool to improve assessments of risk from extreme weather.
Tom Howard and Simon David Paul Williams
Nat. Hazards Earth Syst. Sci., 21, 3693–3712, https://doi.org/10.5194/nhess-21-3693-2021, https://doi.org/10.5194/nhess-21-3693-2021, 2021
Short summary
Short summary
We use a computer model to simulate storm surges around the coast of the United Kingdom. The model is based on the physics of the atmosphere and oceans. We hope that this will help us to better quantify extreme events: even bigger than those that have been seen in the tide gauge record. Our model simulates events which are comparable to the catastrophic 1953 storm surge. Model simulations have the potential to reduce the uncertainty in inferences of the most extreme surge return levels.
Joanne Williams, Maialen Irazoqui Apecechea, Andrew Saulter, and Kevin J. Horsburgh
Ocean Sci., 14, 1057–1068, https://doi.org/10.5194/os-14-1057-2018, https://doi.org/10.5194/os-14-1057-2018, 2018
Short summary
Short summary
Tide predictions based on tide-gauge observations are not just astronomical tides; they also contain periodic sea level changes due to the weather. Forecasts of total water level during storm surges add the immediate effects of the weather to the astronomical tide prediction and thus risk double-counting these effects. We use a global model to see how much double-counting may affect these forecasts and also how much of the Highest Astronomical Tide may be due to recurrent weather patterns.
C. W. Hughes, Joanne Williams, A. C. Coward, and B. A. de Cuevas
Ocean Sci., 10, 215–225, https://doi.org/10.5194/os-10-215-2014, https://doi.org/10.5194/os-10-215-2014, 2014
Joanne Williams and Chris W. Hughes
Ocean Sci., 9, 111–119, https://doi.org/10.5194/os-9-111-2013, https://doi.org/10.5194/os-9-111-2013, 2013
Cited articles
Agnew, D. C. and Farrell, W. E.: Self-consistent equilibrium ocean tides, Geophys. J. Roy. Astr. S., 55, 171–181, https://doi.org/10.1111/j.1365-246X.1978.tb04755.x, 1978.
Blaker, A. T., Hirschi, J. J.-M., McCarthy, G., Sinha, B., Taws, S., Marsh, R., de Cuevas, B. A., Alderson, S. G., and Coward, A. C.: Historical analogues of the recent extreme minima observed in the Atlantic meridional overturning circulation at 26° N, Clim. Dynam., in press, 2014.
Botev, Z. I., Grotowski, J. F., and Kroese, D. P.: Kernel density estimation via diffusion, Ann. Stat., 38, 2916–2957, 2010.
Cartwright, D. E. and Edden, A. C.: Corrected Tables of Tidal Harmonics, Geophys. J. Roy. Astr. Soc., 33, 253–264, https://doi.org/10.1111/j.1365-246X.1973.tb03420.x, 1973.
Cartwright, D. E. and Tayler, R. J.: New Computations of the Tide-generating Potential, Geophys. J. Roy. Astr. Soc., 23, 45–73, https://doi.org/10.1111/j.1365-246X.1971.tb01803.x, 1971.
Chambers, D. P., Wahr, J., and Nerem, R. S.: Preliminary observations of global ocean mass variations with GRACE, Geophys. Res. Lett., 31, L13310, https://doi.org/10.1029/2004GL020461, 2004.
Clarke, P. J., Lavallée, D. A., Blewitt, G., van Dam, T. M., and Wahr, J. M.: Effect of gravitational consistency and mass conservation on seasonal surface mass loading models, Geophys. Res. Lett., 32, L08306, https://doi.org/10.1029/2005GL022441, 2005.
Desai, S. D.: Observing the pole tide with satellite altimetry, J. Geophys. Res., 107, 3186, https://doi.org/10.1029/2001JC001224, 2002.
Francis, O. and Mazzega, P.: Global charts of ocean tide loading effects, J. Geophys. Res.-Oceans, 95, 11411–11424, https://doi.org/10.1029/JC095iC07p11411, 1990.
González, F., Bernard, E., Meinig, C., Eble, M., Mofjeld, H., and Stalin, S.: The NTHMP tsunameter network, Natural Hazards, 35, 25–39, https://doi.org/10.1007/s11069-004-2402-4, 2005.
Hughes, C. W., Tamisiea, M. E., Bingham, R. J., and Williams, J.: Weighing the ocean: Using a single mooring to measure changes in the mass of the ocean, Geophys. Res. Lett., 39, L17602, https://doi.org/10.1029/2012GL052935, 2012.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP}/{NCAR 40-year reanalysis project, B. Am. Meteorol. Soc., 77, 437–471, 1996.
Kasdin, N. J.: Discrete simulation of colored noise and stochastic processes and 1/f(alpha) power-law noise generation, Proceedings of the IEEE, 83, 802–827, https://doi.org/10.1109/5.381848, 1995.
Leuliette, E. W. and Miller, L.: Closing the sea level rise budget with altimetry, Argo, and GRACE, Geophys. Res. Lett., 36, L04608, https://doi.org/10.1029/2008GL036010, 2009.
Lomb, N.: Least-squares frequency analysis of unequally spaced data, Astrophys. Space Sci., 39, 447–462, https://doi.org/10.1007/BF00648343, 1976.
Marsh, R., de Cuevas, B. A., Coward, A. C., Jacquin, J., Hirschi, J. J. M., Aksenov, Y., Nurser, A. J. G., and Josey, S. A.: Recent changes in the North Atlantic circulation simulated with eddy-permitting and eddy-resolving ocean models, Ocean Model., 28, 226–239, https://doi.org/10.1016/j.ocemod.2009.02.007, 2009.
Menemenlis, D., Fukumori, I., and Lee, T.: Using Green's functions to calibrate an ocean general circulation model, Mon. Weather Rev., 133, 1224–1240, https://doi.org/10.1175/MWR2912.1, 2005.
Polster, A., Fabian, M., and Villinger, H.: Effective resolution and drift of Paroscientific pressure sensors derived from long-term seafloor measurements, Geochem. Geophy. Geosyst., 10, Q08008, https://doi.org/10.1029/2009GC002532, 2009.
Rietbroek, R., Brunnabend, S.-E., Dahle, C., Kusche, J., Flechtner, F., Schröter, J., and Timmermann, R.: Changes in total ocean mass derived from GRACE, GPS, and ocean modeling with weekly resolution, J. Geophys. Res., 114, C11004, https://doi.org/10.1029/2009JC005449, 2009.
Rodell, M., Houser, P., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J., Walker, J., Lohmann, D., and Toll, D.: The global land data assimilation system, B. Am. Meteorol. Soc., 85, 381–394, https://doi.org/10.1175/BAMS-85-3-381, 2004.
Scargle, J. D.: Studies in astronomical time series analysis. II – Statistical aspects of spectral analysis of unevenly spaced data, Astrophys. J., 263, 835–853, https://doi.org/10.1086/160554, 1982.
Siegismund, F., Romanova, V., Köhl, A., and Stammer, D.: Ocean bottom pressure variations estimated from gravity, nonsteric sea surface height and hydrodynamic model simulations, J. Geophys. Res., 116, C07021, https://doi.org/10.1029/2010JC006727, 2011.
Stepanov, V. and Hughes, C.: Parameterization of ocean self-attraction and loading in numerical models of the ocean circulation, J. Geophys. Res.-Oceans, 109, C03037, https://doi.org/10.1029/2003JC002034, 2004.
Tamisiea, M. E., Hill, E. M., Ponte, R. M., Davis, J. L., Velicogna, I., and Vinogradova, N. T.: Impact of self-attraction and loading on the annual cycle in sea level, J. Geophys. Res., 115, C07004, https://doi.org/10.1029/2009JC005687, 2010.
Velicogna, I.: Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE, Geophys. Res. Lett., 36, L19503, https://doi.org/10.1029/2009GL040222, 2009.
Vinogradov, S. V., Ponte, R. M., Heimbach, P., and Wunsch, C.: The mean seasonal cycle in sea level estimated from a data-constrained general circulation model, J. Geophys. Res.-Oceans, 113, C03032, https://doi.org/10.1029/2007JC004496, 2008.
Watts, D. R. and Kontoyiannis, H.: Deep-Ocean Bottom Pressure Measurement: Drift Removal and Performance, J. Atmos. Ocean. Tech., 7, 296–306, https://doi.org/10.1175/1520-0426(1990)007<0296:DOBPMD>2.0.CO;2, 1990.
Willis, J. K., Chambers, D. P., and Nerem, R. S.: Assessing the globally averaged sea level budget on seasonal to interannual timescales, J. Geophys. Res., 113, C06015, https://doi.org/10.1029/2007JC004517, 2008.
Wouters, B., Riva, R. E. M., Lavallée, D. A., and Bamber, J. L.: Seasonal variations in sea level induced by continental water mass: First results from GRACE, Geophys. Res. Lett., 38, L03303, https://doi.org/10.1029/2010GL046128, 2011.
Wu, X., Heflin, M. B., Ivins, E. R., and Fukumori, I.: Seasonal and interannual global surface mass variations from multisatellite geodetic data, J. Geophys. Res., 111, B09401, https://doi.org/10.1029/2005JB004100, 2006.