Articles | Volume 10, issue 3
https://doi.org/10.5194/os-10-571-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-10-571-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Quantification of octacalcium phosphate, authigenic apatite and detrital apatite in coastal sediments using differential dissolution and standard addition
J. F. Oxmann
School of Environment, The University of Auckland, Auckland 1010, New Zealand
currently at: GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Biogeochemistry, 24148 Kiel, Germany
L. Schwendenmann
School of Environment, The University of Auckland, Auckland 1010, New Zealand
Related authors
Sebastian Beil, Wolfgang Kuhnt, Ann Holbourn, Florian Scholz, Julian Oxmann, Klaus Wallmann, Janne Lorenzen, Mohamed Aquit, and El Hassane Chellai
Clim. Past, 16, 757–782, https://doi.org/10.5194/cp-16-757-2020, https://doi.org/10.5194/cp-16-757-2020, 2020
Short summary
Short summary
Comparison of Cretaceous OAE1a and OAE2 in two drill cores with unusually high sedimentation rates shows that long-lasting negative δ13C excursions precede the positive δ13C excursions and that the evolution of the marine δ13C positive excursions is similar during both OAEs, although the durations of individual phases differ substantially. Phosphorus speciation data across OAE2 and the Mid-Cenomanian Event suggest a positive feedback loop, enhancing marine productivity during OAEs.
J. F. Oxmann and L. Schwendenmann
Biogeosciences, 12, 723–738, https://doi.org/10.5194/bg-12-723-2015, https://doi.org/10.5194/bg-12-723-2015, 2015
J. F. Oxmann
Biogeosciences, 11, 2169–2183, https://doi.org/10.5194/bg-11-2169-2014, https://doi.org/10.5194/bg-11-2169-2014, 2014
Sebastian Beil, Wolfgang Kuhnt, Ann Holbourn, Florian Scholz, Julian Oxmann, Klaus Wallmann, Janne Lorenzen, Mohamed Aquit, and El Hassane Chellai
Clim. Past, 16, 757–782, https://doi.org/10.5194/cp-16-757-2020, https://doi.org/10.5194/cp-16-757-2020, 2020
Short summary
Short summary
Comparison of Cretaceous OAE1a and OAE2 in two drill cores with unusually high sedimentation rates shows that long-lasting negative δ13C excursions precede the positive δ13C excursions and that the evolution of the marine δ13C positive excursions is similar during both OAEs, although the durations of individual phases differ substantially. Phosphorus speciation data across OAE2 and the Mid-Cenomanian Event suggest a positive feedback loop, enhancing marine productivity during OAEs.
Daniele Penna, Luisa Hopp, Francesca Scandellari, Scott T. Allen, Paolo Benettin, Matthias Beyer, Josie Geris, Julian Klaus, John D. Marshall, Luitgard Schwendenmann, Till H. M. Volkmann, Jana von Freyberg, Anam Amin, Natalie Ceperley, Michael Engel, Jay Frentress, Yamuna Giambastiani, Jeff J. McDonnell, Giulia Zuecco, Pilar Llorens, Rolf T. W. Siegwolf, Todd E. Dawson, and James W. Kirchner
Biogeosciences, 15, 6399–6415, https://doi.org/10.5194/bg-15-6399-2018, https://doi.org/10.5194/bg-15-6399-2018, 2018
Short summary
Short summary
Understanding how water flows through ecosystems is needed to provide society and policymakers with the scientific background to manage water resources sustainably. Stable isotopes of hydrogen and oxygen in water are a powerful tool for tracking water fluxes, although the heterogeneity of natural systems and practical methodological issues still limit their full application. Here, we examine the challenges in this research field and highlight new perspectives based on interdisciplinary research.
Luitgard Schwendenmann and Cate Macinnis-Ng
SOIL, 2, 403–419, https://doi.org/10.5194/soil-2-403-2016, https://doi.org/10.5194/soil-2-403-2016, 2016
Short summary
Short summary
This is the first study quantifying total soil CO2 efflux, heterotrophic and autotrophic respiration in an old-growth kauri forest. Root biomass explained a high proportion of the spatial variation suggesting that soil CO2 efflux in this forest is not only directly affected by the amount of autotrophic respiration but also by the supply of C through roots and mycorrhiza. Our findings also suggest that biotic factors such as tree structure should be investigated in soil carbon related studies.
R. H. Bulmer, C. J. Lundquist, and L. Schwendenmann
Biogeosciences, 12, 6169–6180, https://doi.org/10.5194/bg-12-6169-2015, https://doi.org/10.5194/bg-12-6169-2015, 2015
Short summary
Short summary
This is the first study investigating the effect of clearing on sediment CO2 efflux in temperate Avicennia marina forests. We found that rates of sediment CO2 efflux from cleared and intact temperate Avicennia marina forests are comparable to rates observed in other temperate and tropical forests. Our results show that greater consideration should be made regarding the rate of carbon released from mangrove forest following clearance and the relative contribution to global carbon emissions.
J. F. Oxmann and L. Schwendenmann
Biogeosciences, 12, 723–738, https://doi.org/10.5194/bg-12-723-2015, https://doi.org/10.5194/bg-12-723-2015, 2015
J. F. Oxmann
Biogeosciences, 11, 2169–2183, https://doi.org/10.5194/bg-11-2169-2014, https://doi.org/10.5194/bg-11-2169-2014, 2014
Cited articles
Avnimelech, Y.: Phosphorus and calcium carbonate solubilities in Lake Kinneret, Limnol. Oceanogr., 28, 640–645, 1983.
Atlas, E. L.: Phosphate equilibria in seawater and interstitial waters, Ph.D. thesis, Oregon State University, Corvallis, 1975.
Atlas, E. L. and Pytkowicz, R. M.: Solubility behavior of apatites in seawater, Limnol. Oceanogr., 22, 290–300, 1977.
Baker, M. J., Blowes, D. W., and Ptacek, C. J.: Laboratory development of permeable reactive mixtures for the removal of phosphorus from onsite wastewater disposal systems, Environ. Sci. Technol., 32, 2308–2316, 1998.
Barrow, N. J., Bowden, J. W., Posner, A. M., and Quirk, J. P.: Describing the effects of electrolyte on adsorption of phosphate by a variable charge surface, Aust. J. Soil Res., 18, 395–404, 1980.
Bar-Yosef, B., Kafkafi, U., Rosenberg, R., and Sposito, G.: Phosphorus adsorption by Kaolinite and Montmorillonite: I. Effect of time, ionic strength, and pH, Soil Sci. Soc. Am. J., 52, 1580–1585, 1988.
Baturin, G. N. (Ed.): Principal features of the marine geochemistry of disseminated phosphorus, in: Developments in Sedimentology, Elsevier B. V., Amsterdam, 1981.
Bell, L. C. and Black, C. A.: Transformation of dibasic calcium phosphate dihydrate and octacalcium phosphate in slightly acid and alkaline soils, Soil Sci. Soc. Am. Proc., 34, 583–587, 1970.
Bentor, Y. K. (Ed.): Phosphorites: The unsolved problems, in: Marine Phosphorites: Geochemistry, occurrence, genesis, SEPM Special Publication, 29, 3–18, 1980.
Bray, J. T., Bricker, O. P., and Troup, B. N.: Phosphate in interstitial waters of anoxic sediments: Oxidation effects during sampling procedure, Science, 180, 1362–1364, 1973.
Burdige, D. J. (Ed.): Geochemistry of marine sediments, Princeton University Press, New Jersey/Oxfordshire, 2006.
Carman, R. and Rahm, L.: Early diagenesis and chemical characteristics of interstitial water and sediments in the deep deposition bottoms of the Baltic Proper, J. Sea Res., 37, 25–47, 1997.
Chen, Y. S. R., Butler, J. N., and Stumm, W.: Kinetic study of phosphate reaction with aluminum oxide and kaolinite, Environ. Sci. Technol., 7, 327–332, 1973.
Chien, S. H. and Black, C. A.: Free energy of formation of carbonate apatites in some phosphate rocks, Soil Sci. Soc. Am. J., 40, 234–239, 1976.
Christoffersen, M. R., Christoffersen, J., and Kibalczyc, W.: Apparent solubilities of 2 amorphous calcium phosphates and of octacalcium phosphate in the temperature-range 30–42 °C, J. Cryst. Growth, 106, 349–354, 1990.
Crosby, C. H. and Bailey, J.: The role of microbes in the formation of modern and ancient phosphatic mineral deposits, Front. Microbiol., 3, 241, https://doi.org/10.3389/fmicb.2012.00241, 2012.
Daesslé, L. W., Camacho-Ibar, V. F., Carriquiry, J. D., and Ortiz-Hernández, M. C.: The geochemistry and sources of metals and phosphorus in the recent sediments from the Northern Gulf of California, Cont. Shelf Res., 24, 2093–2106, 2004.
Eaton, J. W., Bateman, D., and Hauberg, S.: GNU Octave Manual Version 3, Network Theory Ltd, UK, 2008.
Einsele, W.: Über die Beziehungen des Eisenkreislaufs zum Phosphatkreislauf im eutrophen See, Arch. Hydrobiol., 29, 664–686, 1936.
Emerson, S. and Widmer, G.: Early diagenesis in anaerobic lake sediments II. Thermodynamic and kinetic factors controlling the formation of iron phosphate, Geochim. Cosmochim. Ac., 42, 1316–1316, 1978.
Faul, K. L., Paytan, A., and Delaney, M. L.: Phosphorus distribution in sinking oceanic particulate matter, Mar. Chem., 97, 307–333, 2005.
Featherstone, J. D. B., Pearson, S., and LeGeros, R. Z.: An infrared method for quantification of carbonate in carbonated apatites, Caries Res., 18, 63–66, 1984.
Gaudette, H. E. and Lyons, W. B.: Phosphate geochemistry in nearshore carbonate sediments: a suggestion of apatite formation, SEPM Special Publication, 29, 215–225, 1980.
Golterman, H. L.: Phosphate release from anoxic sediments or "What did Mortimer really write?", Hydrobiologia, 450, 99–106, 2001.
Golubev, S. V., Pokrovsky, O. S., and Savenko, V. S.: Unseeded precipitation of calcium and magnesium phosphates from modified seawater solutions, J. Cryst. Growth, 205, 354–360, 1999.
Guidry, M. W. and MacKenzie, F. T.: Experimental study of igneous and sedimentary apatite dissolution: Control of pH, distance from equilibrium, and temperature on dissolution rates, Geochim. Cosmochim. Ac., 67, 2949–2963, 2003.
Gulbrandsen, R. A., Roberson, C. E., and Neil, S. T.: Time and the crystallization of apatite in seawater, Geochim. Cosmochim. Ac., 48, 213–218, 1984.
Gunnars, A., Blomqvist, S., and Martinsson, C.: Inorganic formation of apatite in brackish seawater from the Baltic Sea: an experimental approach, Mar. Chem., 91, 15–26, 2004.
Hedley, M. J., Stewart, J. W. B., and Chauhan, B. S.: Changes in inorganic and organic soil phosphorus fractions by cultivation practices and by laboratory incubations, Soil Sci. Soc. Am. J., 46, 970–976, 1982.
Hutchison, K. J. and Hesterberg, D.: Dissolution of phosphate in a phosphorus-enriched ultisol as affected by microbial reduction, J. Environ. Qual., 33, 1793–1802, 2004.
Jahnke, R. A.: The synthesis and solubility of carbonate fluorapatite, Am. J. Sci., 284, 58–78, 1984.
Jahnke, R. A., Emerson, S. R., Roe, K. K., and Burnett, W. C.: The present day formation of apatite in Mexican continental margin sediments, Geochim. Cosmochim. Ac., 47, 259–266, 1983.
Johnsson, M. S. and Nancollas, G. H.: The role of brushite and octacalcium phosphate in apatite formation, Crit. Rev. Oral Biol. Med., 3, 61–82, 1992.
Jourabchi, P., Van Cappellen, P., and Regnier, P.: Quantitative interpretation of pH distributions in aquatic sediments: A reaction-transport modeling approach, Am. J. Sci., 305, 919–956, 2005.
Kazakov, A. V.: The phosphorite facies and the genesis of phosphorites, in: Geological investigations of agricultural ores, Transactions of the Science Institute of Fertilizers and Insecto-Fungicides, Leningrad, 95–113, 1937.
Krajewski, K. P., Van Cappellen, P., Trichet, J., Kuhn, O., Lucas, J., Martinalgarra, A., Prevot, L., Tewari, V. C., Gaspar, L., Knight, R. I., and Lamboy, M.: Biological processes and apatite formation in sedimentary environments, Eclog. Geol. Helvet., 87, 701–745, 1994.
Kruse, J., Negassa, W., Appathurai, N., Zuin, L., and Leinweber, P.: Phosphorus speciation in sequentially extracted agro-industrial by-products: Evidence from X-ray absorption near edge structure spectroscopy, J. Environ. Qual., 39, 2179–2184, 2010.
Kuo, S.: Phosphorus, Methods of Soil Analysis: Chemical Methods. Part 3, WASA and SSSA, Madison, 869–919, 1996.
Kurmies, B.: Zur Fraktionierung der Bodenphosphate, Die Phosphorsäure, 29, 118–149, 1972.
LeGeros, R. Z. and LeGeros, J. P.: Phosphate minerals in human tissues, Phosphate minerals, Springer Verlag, Berlin, 1984.
Lindsay, W. L., Vlek, P. L. G., and Chien, S. H.: Phosphate minerals, in: Minerals in soil environments, edited by: Dixon, J. B. and Weed, S. B., Soil Sci. Soc. Am., Madison, 1089–1130, 1989.
Lyons, G., Benitez-Nelson, C. R., and Thunell, R. C.: Phosphorus composition of sinking particles in the Guaymas Basin, Guf of California, Limnol. Oceanogr., 56, 1093–1105, 2011.
Martens, C. S. and Harriss, R. C.: Inhibition of apatite precipitation in the marine environment by magnesium ions, Geochim. Cosmochim. Ac., 84, 621–625, 1970.
Morse, J. W. and Casey, W. H.: Ostwald processes and mineral paragenesis in sediments, Am. J. Sci., 288, 537–560, 1988.
Morse, J. W. and Cook, N.: The distribution and form of phosphorus in North Atlantic Ocean deep-sea and continental slope sediments, Limnol. Oceanogr., 23, 825–830, 1978.
Mortimer, C. H.: The exchange of dissolved substances between mud and water in lakes, J. Ecol., 29, 280–329, 1941.
Mortimer, C. H.: Chemical exchanges between sediments and water in Great Lakes – Speculations on probable regulatory mechanisms, Limnol. Oceanogr., 16, 387–404, 1971.
Murphy, J. and Riley, J. P.: A modified single solution method for the determination of phosphate in natural waters, Anal. Chim. Ac., 27, 31–36, 1962.
Murrmann, R. P. and Peech, M.: Effect of pH on labile and soluble phosphate in soils, Soil. Sci. Soc. Am. Proc., 33, 205–210, 1969.
Naidu, R., Syersy, J. K., Tillman, R. W., and Kirkman, J. H.: Effect of liming on phosphate sorption by acid soils, Eur. J. Soil Sci., 41, 165–175, 1990.
Nancollas, G. H., LoRe, M., Perez, L., Richardson, C., and Zawacki, S. J.: Mineral phases of calcium phosphate, Anat. Rec., 224, 234–241, 1989.
Oh, Y.-M., Hesterberg, D. L., and Nelson, P. V.: Comparison of phosphate adsorption on clay minerals for soilless root media, Commun. Soil Sci. Plan., 30, 747–756, 1999.
Oxmann, J. F.: Technical Note: An X-ray absorption method for the identification of calcium phosphate species using peak-height ratios, Biogeosciences, 11, 2169–2183, https://doi.org/10.5194/bg-11-2169-2014, 2014.
Oxmann, J. F., Pham, Q. H., and Lara, R. J.: Quantification of individual phosphorus species in sediment: A sequential conversion and extraction method, Eur. J. Soil Sci., 59, 1177–1190, 2008.
Oxmann, J. F., Pham, Q. H., Schwendenmann, L., Stellman, J. M., and Lara, R. J.: Mangrove reforestation in Vietnam: The effect of sediment physicochemical properties on nutrient cycling, Plant Soil, 326, 225–241, 2010.
Parfitt, R. L., Atkinson, R. J., and Smart, R. S. C.: The mechanism of phosphate fixation by iron oxides, Soil Sci. Soc. Am. J., 39, 837–841, 1975.
Parrish, J. T., Zeigler, A. M., Scotese, C. R., Humphreville, R. G., and Kirschvink, J. K.: Proterozoic and Cambrian phosphorites – specialist studies, Early Cambrian palaeogeography, palaeoceanography and phosphorites, in: Phosphate deposits of the world. Volume I, Proterozoic and Cambrian phosphorites, edited by: Cook, P. J. and Shergold, J. H., Cambridge University Press, Cambridge, 280–294, 1986.
Perrone, J., Fourest, B., and Giffaut, E.: Surface characterization of synthetic and mineral carbonate fluoroapatites, J. Colloid Interf. Sci., 249, 441–452, 2002.
Pevear, D. R.: The estuarine formation of United States Atlantic Coastal Plain phosphorite, Econ. Geol., 61, 251–256, 1966.
Puigdomenech, I.: Windows software for the graphical presentation of chemical speciation, in: 219th ACS National Meeting, Abstracts of Papers, Vol. 1, Am. Chem. Soc., Washington, DC, 2000.
Rey, C., Combes, C., Drouet, C., and Glimcher, M. J.: Bone mineral: update on chemical composition and structure, Osteoporosis Int., 20, 1013–1021, 2009.
Ruttenberg, K. C.: Development of a sequential extraction method for different forms of phosphorus in marine sediments, Limnol. Oceanogr., 37, 1460–1482, 1992.
Ruttenberg, K. C. and Berner, R. A.: Authigenic apatite formation and burial in sediments from non-upwelling continental margin environments, Geochim. Cosmochim. Ac., 57, 991–1007, 1993.
Schenau, S. J. and De Lange, G. J.: A novel chemical method to quantify fish debris in marine sediments, Limnol. Oceanogr., 45, 963–971, 2000.
Schenau, S. J., Slomp, C. P., and De Lange, G. J.: Phosphogenesis and active phosphorite formation in sediments from the Arabian Sea oxygen minimum zone, Mar. Geol., 169, 1–20, 2000.
Schulz, H. N. and Schulz, H. D.: Large sulfur bacteria and the formation of phosphorite, Science, 307, 416–418, 2005.
Sheldon, R. P.: Ancient marine phosphorites, Annu. Rev. Earth Pl. Sc., 9, 251–284, 1981.
Spiteri, C., Cappellen, P. V., and Regnier, P.: Surface complexation effects on phosphate adsorption to ferric iron oxyhydroxides along pH and salinity gradients in estuaries and coastal aquifers, Geochim. Cosmochim. Ac., 72, 3431–3445, 2008.
Tribble, J. S., Arvidson, R. S., Lane III, M., and Mackenzie, F. T.: Crystal chemistry, and thermodynamic and kinetic properties of calcite, dolomite, apatite, and biogenic silica: applications to petrologic problems, Sediment. Geol., 95, 11–37, 1995.
Tyler, G.: Phosphorus fractions in grassland soils, Chemosphere, 48, 343–349, 2002.
Van Beusekom, J. E. E. and De Jonge, V. N.: Transformation of phosphorus in the Wadden Sea: Apatite formation, Deutsche Hydrographische Zeitschrift, 49, 297–305, 1997.
Van Cappellen, P. and Berner, R. A.: A mathematical model for the early diagenesis of phosphorus and fluorine in marine sediments; apatite precipitation, Am. J. Sci., 288, 289–333, 1988.
Wopenka, B. and Pasteris, J. D.: A mineralogical perspective on the apatite in bone, Mater. Sci. Eng., 25, 131–143, 2005.