Articles | Volume 10, issue 3
https://doi.org/10.5194/os-10-523-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-10-523-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Assessment of the structure and variability of Weddell Sea water masses in distinct ocean reanalysis products
T. S. Dotto
Laboratório de Estudos dos Oceanos e Clima, Instituto de Oceanografia, Universidade Federal do Rio Grande – FURG, Rio Grande, RS, 96203-900, Brazil
Laboratório de Estudos dos Oceanos e Clima, Instituto de Oceanografia, Universidade Federal do Rio Grande – FURG, Rio Grande, RS, 96203-900, Brazil
M. M. Mata
Laboratório de Estudos dos Oceanos e Clima, Instituto de Oceanografia, Universidade Federal do Rio Grande – FURG, Rio Grande, RS, 96203-900, Brazil
M. Azaneu
Laboratório de Estudos dos Oceanos e Clima, Instituto de Oceanografia, Universidade Federal do Rio Grande – FURG, Rio Grande, RS, 96203-900, Brazil
I. Wainer
Laboratório de Oceanografia Física, Clima e Criosfera, Instituto Oceanográfico, Universidade de São Paulo – USP, São Paulo, SP, 05508-120, Brazil
E. Fahrbach
Stiftung Alfred-Wegener-Institut für Polar- und Meeresforschung in der Helmholtz-Gemeinschaft, Fachbereich Klimawissenschaften, Sektion Messende Ozeanographie, Postfach 120121 Bremerhaven, Germany
G. Rohardt
Stiftung Alfred-Wegener-Institut für Polar- und Meeresforschung in der Helmholtz-Gemeinschaft, Fachbereich Klimawissenschaften, Sektion Messende Ozeanographie, Postfach 120121 Bremerhaven, Germany
Related authors
Tiago S. Dotto, Mauricio M. Mata, Rodrigo Kerr, and Carlos A. E. Garcia
Earth Syst. Sci. Data, 13, 671–696, https://doi.org/10.5194/essd-13-671-2021, https://doi.org/10.5194/essd-13-671-2021, 2021
Short summary
Short summary
A novel seasonal three-dimensional high-resolution hydrographic gridded data set for the northern Antarctic Peninsula (NAP) based on measurements obtained from 1990–2019 by the ship-based Argo profilers and tagged marine mammals is presented. The main oceanographic features of the NAP are well represented, with the final product having many advantages compared to low-resolution climatologies. In addition, new information on the regional water mass pathways and their characteristics is unveiled.
Arthur M. Oldeman, Michiel L. J. Baatsen, Anna S. von der Heydt, Henk A. Dijkstra, Julia C. Tindall, Ayako Abe-Ouchi, Alice R. Booth, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Mark A. Chandler, Camille Contoux, Ran Feng, Chuncheng Guo, Alan M. Haywood, Stephen J. Hunter, Youichi Kamae, Qiang Li, Xiangyu Li, Gerrit Lohmann, Daniel J. Lunt, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Gabriel M. Pontes, Gilles Ramstein, Linda E. Sohl, Christian Stepanek, Ning Tan, Qiong Zhang, Zhongshi Zhang, Ilana Wainer, and Charles J. R. Williams
Clim. Past, 17, 2427–2450, https://doi.org/10.5194/cp-17-2427-2021, https://doi.org/10.5194/cp-17-2427-2021, 2021
Short summary
Short summary
In this work, we have studied the behaviour of El Niño events in the mid-Pliocene, a period of around 3 million years ago, using a collection of 17 climate models. It is an interesting period to study, as it saw similar atmospheric carbon dioxide levels to the present day. We find that the El Niño events were less strong in the mid-Pliocene simulations, when compared to pre-industrial climate. Our results could help to interpret El Niño behaviour in future climate projections.
Tiago S. Dotto, Mauricio M. Mata, Rodrigo Kerr, and Carlos A. E. Garcia
Earth Syst. Sci. Data, 13, 671–696, https://doi.org/10.5194/essd-13-671-2021, https://doi.org/10.5194/essd-13-671-2021, 2021
Short summary
Short summary
A novel seasonal three-dimensional high-resolution hydrographic gridded data set for the northern Antarctic Peninsula (NAP) based on measurements obtained from 1990–2019 by the ship-based Argo profilers and tagged marine mammals is presented. The main oceanographic features of the NAP are well represented, with the final product having many advantages compared to low-resolution climatologies. In addition, new information on the regional water mass pathways and their characteristics is unveiled.
Chris Brierley and Ilana Wainer
Clim. Past, 14, 1377–1390, https://doi.org/10.5194/cp-14-1377-2018, https://doi.org/10.5194/cp-14-1377-2018, 2018
Short summary
Short summary
Year-to-year changes in rainfall over Africa and South America are influenced by variations in the temperatures of tropical Atlantic variability. Here we investigate how these variations behave under climate change using a series of multi-model experiments. We look at how cold and warm climates of the past relate to future shifts in variability.
Wilton Aguiar, Mauricio M. Mata, and Rodrigo Kerr
Ocean Sci., 13, 851–872, https://doi.org/10.5194/os-13-851-2017, https://doi.org/10.5194/os-13-851-2017, 2017
Short summary
Short summary
In ocean models, Antarctic Bottom Water (AABW) formation is frequently misrepresented. Hence, assessing the causes of spurious formation is important to ensure accurate future simulations. Only one of the state-of-art reanalyses investigated showed AABW formation accurately. Spurious formation in the other two products resulted from opening of open ocean polynyas. The relatively accurate AABW formation in one of the products is an important advance in the simulation of deep ocean circulation.
K. A. Reeve, O. Boebel, T. Kanzow, V. Strass, G. Rohardt, and E. Fahrbach
Earth Syst. Sci. Data, 8, 15–40, https://doi.org/10.5194/essd-8-15-2016, https://doi.org/10.5194/essd-8-15-2016, 2016
Short summary
Short summary
We present spatially gridded, time-composite mapped data of temperature and salinity of the upper 2000m of the Weddell Gyre through the objective mapping of Argo float data. This was realized on fixed-pressure surfaces ranging from 50 to 2000 dbar. Pressure, temperature and salinity are also available at the level of the sub-surface temperature maximum, which represents the core of Warm Deep Water, the primary heat source of the Weddell Gyre. A detailed description of the methods is provided.
G. S. Pilo, M. M. Mata, and J. L. L. Azevedo
Ocean Sci., 11, 629–641, https://doi.org/10.5194/os-11-629-2015, https://doi.org/10.5194/os-11-629-2015, 2015
Short summary
Short summary
Oceanic eddies are closed circulation features that transport water between regions, taking part in the ocean's heat and salt balance. We perform a comparative eddy census in the East Australian, Agulhas and Brazil currents. We find that eddy propagation in all systems is steered by the local mean flow and bathymetry. Also, eddies present a geographic segregation according to size. Investigating eddy propagation helps us to better understand their effect in local mixing.
M. Azaneu, R. Kerr, and M. M. Mata
Ocean Sci., 10, 923–946, https://doi.org/10.5194/os-10-923-2014, https://doi.org/10.5194/os-10-923-2014, 2014
Short summary
Short summary
We analyzed the ability of the ECCO2 reanalysis to represent the hydrographic properties and variability of Antarctic Bottom Water in the Southern Ocean. After 2004, the opening of an oceanic polynya in the Weddell Sea sector and consequent intense dense water production leads to an unrealistic scenario. Even before 2004, bottom waters are warmer and less dense than expected, while the absolute volume transport and velocity estimates are underrepresented.
J. M. Marson, I. Wainer, M. M. Mata, and Z. Liu
Clim. Past, 10, 1723–1734, https://doi.org/10.5194/cp-10-1723-2014, https://doi.org/10.5194/cp-10-1723-2014, 2014
A. Castagna, H. Evangelista, L. G. Tilstra, and R. Kerr
Biogeosciences Discuss., https://doi.org/10.5194/bgd-11-11671-2014, https://doi.org/10.5194/bgd-11-11671-2014, 2014
Revised manuscript not accepted
L. F. Prado, I. Wainer, C. M. Chiessi, M.-P. Ledru, and B. Turcq
Clim. Past, 9, 2117–2133, https://doi.org/10.5194/cp-9-2117-2013, https://doi.org/10.5194/cp-9-2117-2013, 2013
V. Meccia, I. Wainer, M. Tonelli, and E. Curchitser
Geosci. Model Dev., 6, 1209–1219, https://doi.org/10.5194/gmd-6-1209-2013, https://doi.org/10.5194/gmd-6-1209-2013, 2013
Related subject area
Approach: Data Assimilation | Depth range: Deep Ocean | Geographical range: Deep Seas: Southern Ocean | Phenomena: Temperature, Salinity and Density Fields
Assessment of the representation of Antarctic Bottom Water properties in the ECCO2 reanalysis
M. Azaneu, R. Kerr, and M. M. Mata
Ocean Sci., 10, 923–946, https://doi.org/10.5194/os-10-923-2014, https://doi.org/10.5194/os-10-923-2014, 2014
Short summary
Short summary
We analyzed the ability of the ECCO2 reanalysis to represent the hydrographic properties and variability of Antarctic Bottom Water in the Southern Ocean. After 2004, the opening of an oceanic polynya in the Weddell Sea sector and consequent intense dense water production leads to an unrealistic scenario. Even before 2004, bottom waters are warmer and less dense than expected, while the absolute volume transport and velocity estimates are underrepresented.
Cited articles
Azaneu, M., Kerr, R., Mata, M. M., and Garcia, C. A. E.: Trends in the deep Southern Ocean (1958–2010): Implications for Antarctic bottom water properties and volume export, J. Geophys. Res., 118, 4213–4227, https://doi.org/10.1002/jgrc.20303, 2013.
Azaneu, M., Kerr, R., and Mata, M. M.: Assessment of the ECCO2 reanalysis on the representation of Antarctic Bottom Water properties, Ocean Sci. Discuss., 11, 1023–1091, https://doi.org/10.5194/osd-11-1023-2014, 2014.
Balmaseda, M. A., Mogensen, K., and Weaver, A. T.: Evaluation of the ECMWF ocean reanalysis system ORAS4, Q. J. Roy. Meteorol. Soc., 139, 1132–1161, https://doi.org/10.1002/qj.2063, 2013.
Briegleb, B., Danabasoglu, G., and Large, W.: An overflow parameterization for the ocean component of the Community Climate System Model, Tech. Note NCAR/TN-481+ STR, 84 pp., 2010.
Bromwich, D. H., Nicolas, J. P., and Monaghan, A. J.: An assessment of precipitation changes over Antarctica and the Southern Ocean since 1989 in contemporary global reanalyses, J. Climate, 24, 4189–4209, https://doi.org/10.1175/2011JCLI4074.1, 2011.
Carmack, E. C. and Foster, T. D.: On the flow of water out of the Weddell Sea, Deep Sea Res., 22, 711–724, https://doi.org/10.1016/0011-7471(75)90077-7, 1975.
Carton, J. A. and Giese, B. S.: A Reanalysis of Ocean Climate Using Simple Ocean Data Assimilation (SODA), Mon. Weather Rev., 136, 2999–3017, https://doi.org/10.1175/2007MWR1978.1, 2008.
Carton, J. A. and Santorelli, A.: Global decadal upper-ocean heat content as viewed in nine analyses, J. Climate, 21, 6015–6035, https://doi.org/10.1175/2008JCLI2489.1, 2008.
Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin, X., Gleason, B. E., Vose, R. S., Rutledge, G., Bessemoulin, P., Brönnimann, S., Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman, P. Y., Jones, P. D., Kruk, M. C., Kruger, A. C., Marshall, G. J., Maugeri, M., Mok, H. Y., Nordli, Ø., Ross, T. F., Trigo, R. M., Wang, X. L., Woodruff, S. D., and Worley, S. J.: The twentieth century reanalysis project, Q. J. Roy. Meteorol. Soc., 137, 1–28, https://doi.org/10.1002/qj.776, 2011.
Dee, D. P.: Bias and data assimilation, Q. J. Roy. Meteorol. Soc., 131, 3323–3343, https://doi.org/10.1256/qj.05.137, 2005.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Fahrbach, E. and De Baar, H.: The Expedition of the Research Vessel Polarstern to the Antarctic in 2008 (ANT-XXIV/3). Berichtezur Polar- und Meeresforschung, Vol. 606, Alfred-Wegener-Institut, Bremerhaven, 228 pp., 2010.
Fahrbach, E., Rohardt, G., Scheele, N., Schröder, M., Strass, V., and Wisotzki, A.: Formation and discharge of deep and bottom water in the northwestern Weddell Sea, J. Marine Res., 53, 515–538, https://doi.org/10.1357/0022240953213089, 1995.
Fahrbach, E., Harms, S., Rohardt, G., Schröder, M., and Woodgate, R. A.: Flow of bottom water in the northwestern Weddell Sea, J. Geophys. Res., 106, 2761–2778, https://doi.org/10.1029/2000JC900142, 2001.
Fahrbach, E., Hoppema, M., Rohardt, G., Schröder, M., and Wisotzki, A.: Decadal-scale variations of water mass properties in the deep Weddell Sea, Ocean Dynam., 54, 77–91, https://doi.org/10.1007/s10236-003-0082-3, 2004.
Fahrbach, E., Rohardt, G., and Sieger, R.: 25 Years of Polarstern hydrography (1982–2007), WDC-MARE Reports 5, Alfred-Wegener-Institut, Bremerhaven, 94 pp., 2007.
Fahrbach, E., Hoppema, M., Rohardt, G., Boebel, O., Klatt, O., and Wisotzki, A.: Warming of deep and abyssal water masses along the Greenwich meridian on decadal time scales: The Weddell gyre as a heat buffer, Deep Sea Res. Pt. II, 58, 2509–2523, https://doi.org/10.1016/j.dsr2.2011.06.007, 2011.
Ferry, N., Barnier, B., Garric, G., Haines, K., Masina, S., Parent, L., Storto, A., Valdivieso, M., Guinehut, S., and Mulet, S.: Nemo: The modelling engine of global ocean reanalysis, Mercator Ocean Quarterly Newsletter, 46, 46–59, 2012.
Fichefet, T. and Morales-Maqueda, M. A.: Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics, J. Geophys. Res., 102, 12609–12646, https://doi.org/10.1029/97JC00480, 1997.
Foldvik, A., Gammelsrød, T., and Tørrensen, T.: Circulations and Water Masses on the Southern Weddell Sea Shelf, Antarctic Research Series, 43, 5–20, 1985.
Foster, T. and Carmack, E.: Temperature and salinity structure in the Weddell Sea, J. Phys. Oceanogr., 6, 36–44, https://doi.org/10.1175/1520-0485(1976)006<0036:TASSIT>2.0.CO;2, 1976.
Franco, B., Mata, M. M., Piola, A., and Garcia, C. A. E.: Northwestern Weddell Sea deep outflow into the Scotia Sea during the austral summers of 2000 and 2001 estimated by inverse methods, Deep Sea Res. Pt. I, 54, 1815–1840, https://doi.org/10.1016/j.dsr.2007.06.003, 2007.
Giese, B. S. and Ray, S.: El Niño variability in simple ocean data assimilation (SODA), 1871–2008, J. Geophys. Res., 116, C02024, https://doi.org/10.1029/2010JC006695, 2011.
Gouretski, V. and Danilov, A.: Weddell Gyre: structure of the eastern boundary, Deep Sea Res. Pt. I, 40, 561–582, https://doi.org/10.1016/0967-0637(93)90146-T, 1993.
Griffies, S. M., Harrison, M. J., Pacanowski, R. C., and Rosati, A.: A Technical Guide to MOM4, GFDL Ocean Group Technical Report No. 5, NOAA/Geophysical Fluid Dynamics Laboratory, available at: www.gfdl.noaa.gov (last access: 12 February 2014), 2008.
Hellmer, H. H.: Impact of Antarctic ice shelf basal melting on sea ice and deep ocean properties, Geophys. Res. Lett., 31, L10307, https://doi.org/10.1029/2004GL019506, 2004.
Hellmer, H. H., Schodlok, M. P., Wenzel, M., and Schröter, J. G.: On the influence of adequate Weddell Sea characteristics in a large-scale global ocean circulation model, Ocean Dynam., 55, 88–99, https://doi.org/10.1007/s10236-005-0112-4, 2005.
Hellmer, H. H., Huhn, O., Gomis, D., and Timmermann, R.: On the freshening of the northwestern Weddell Sea continental shelf, Ocean Sci., 7, 305–316, https://doi.org/10.5194/os-7-305-2011, 2011.
Heuzé, C., Heywood, K. J., Stevens, D. P., and Ridley, J. K.: Southern Ocean bottom water characteristics in CMIP5 models, Geophys. Res. Lett., 40, 1–6, https://doi.org/10.1002/grl.50287, 2013.
Holland, D. M.: Transient sea-ice polynya forced by oceanic flow variability, Progr. Oceanogr., 48, 403–460, https://doi.org/10.1016/S0079-6611(01)00010-6, 2001.
Huhn, O., Hellmer, H. H., Rhein, M., Rodehacke, C. B., Roether, W., Schodlok, M. P., and Schroder, M.: Evidence of deep and bottom water formation in the western Weddell Sea, Deep Sea Res. Pt. II, 55, 1098–1116, https://doi.org/10.1016/j.dsr2.2007.12.015, 2008.
Huhn, O., Hellmer, H. H., Rhein, M., Rodehacke, C. B., Roether, W., Schodlok, M. P., and Schröder, M.: Evidence of deep and bottom water formation in the western Weddell Sea, Deep Sea Res. Pt. II, 55, 1098–1116, https://doi.org/10.1016/j.dsr2.2007.12.015, 2008.
Jackett, D. R. and McDougall, T. J.: A neutral density variable for the world's oceans, J. Phys. Oceanogr., 27, 237–263, https://doi.org/10.1175/1520-0485(1997)027<0237:ANDVFT>2.0.CO;2, 1997.
Jacobs, S. S. and Comiso, J. C.: Sea ice and oceanic processes on the Ross Sea continental shelf, J. Geophys. Res., 94, 18195, https://doi.org/10.1029/JC094iC12p18195, 1989.
Jullion, L., Naveira Garabato, A. C., Meredith, M. P., Holland, P. R., Courtois, P., and King, B. A.: Decadal freshening of the Antarctic Bottom Water exported from the Weddell Sea, J. Climate, 26, 8111–8125, https://doi.org/10.1175/JCLI-D-12-00765.1, 2013.
Kerr, R., Mata, M. M., and Garcia, C. A. E.: On the temporal variability of the Weddell Sea Deep Water masses, Antarctic Science, 21, 383–400, https://doi.org/10.1017/S0954102009001990, 2009a.
Kerr, R., Wainer, I., and Mata, M. M.: Representation of the Weddell Sea deep water masses in the ocean component of the NCAR-CCSM model, Antarctic Sci., 21, 301–312, 2009b.
Kerr, R., Heywood, K. J., Mata, M. M., and Garcia, C. A. E.: On the outflow of dense water from the Weddell and Ross Seas in OCCAM model, Ocean Sci., 8, 369–388, https://doi.org/10.5194/os-8-369-2012, 2012a.
Kerr, R., Wainer, I., Mata, M. M., and Garcia, C. A. E.: Quantifying Antarctic deep waters in SODA reanalysis product, Pesquisa Antártica Brasileira, 5, 47–59, 2012b.
Klatt, O., Fahrbach, E., Hoppema, M., and Rohardt, G.: The transport of the Weddell Gyre across the Prime Meridian, Deep Sea Res. Pt. II, 52, 513–528, https://doi.org/10.1016/j.dsr2.2004.12.015, 2005.
Large, W. G. and Yeager, S. G.: The global climatology of an interannually varying air–sea flux data set, Clim. Dynam., 33, 341–364, https://doi.org/10.1007/s00382-008-0441-3, 2009.
Lumpkin, R. and Speer, K.: Global Ocean Meridional Overturning, J. Phys. Oceanogr., 37, 2550–2562, https://doi.org/10.1175/JPO3130.1, 2007.
Madec, G.: NEMO ocean engine, Note du Pôle de modélisation de l'Institut Pierre-Simon Laplace, 27, 217 pp., 2008.
Marshall, J., Adcroft, A., Hill, C., Perelman, L., and Heisey, C.: A finite-volume, ncompressible Navier Stokes model for studies of the ocean on parallel computers, J. Geophys. Res., 102, 5753–5766, https://doi.org/10.1029/96JC02775, 1997.
Meccia, V., Wainer, I., Tonelli, M., and Curchitser, E.: Coupling a thermodynamically active ice shelf to a regional simulation of the Weddell Sea, Geosci. Model Dev., 6, 1209–1219, https://doi.org/10.5194/gmd-6-1209-2013, 2013.
Menemenlis, D., Fukumori, I., and Lee, T.: Using Green's functions to calibrate an ocean general circulation model, Mon. Weather Rev., 133, 1224–1240, https://doi.org/10.1175/MWR2912.1, 2005.
Menemenlis, D., Campin, J.M., Heimbach, P., Hill, C., Lee, T., Nguyen, A., Schodlok, M., and Zhang, H.: ECCO2: High Resolution Global Ocean and Sea Ice Data Synthesis, Mercator Ocean Quarterly Newsletter, 31, 13–21, 2008.
Mogensen, K., Alonso, M., and Weaver, A.: The NEMOVAR ocean data assimilation system as implemented in the ECMWF ocean analysis for System 4, Technical Memorandum, 668, 59 pp., 2012.
Naveira Garabato, A. C., McDonagh, E. L., Stevens, D. P., Heywood, K. J., and Sanders, R. J.: On the export of Antarctic Bottom Water from the Weddell Sea, Deep Sea Res. Pt. II, 49, 4715–4742, https://doi.org/10.1016/S0967-0645(02)00156-X, 2002.
Nicholls, K. W., Østerhus, S., Makinson, K., Gammelsrød, T., and Fahrbach, E.: Ice-Ocean processes ocer the continental shelf of the southern Weddell Sea, Antarctica: A review, Rev. Geophys., 47, RG3003, https://doi.org/10.1029/2007RG000250, 2009.
Ohshima, K. I., Fukamachi, Y., Williams, G. D., Nihashi, S., Roquet, F., Kitade, Y., Tamura, T., Hirano, D., Herraiz-Borreguero, L., Field, I., Hindell, M., Aoki, S., and Wakatsuchi, M.: Antarctic Bottom Water production by intense sea-ice formation in the Cape Darnley polynya, Nat. Geosci., 6, 235–240, https://doi.org/10.1038/ngeo1738, 2013.
Onogi, K., Tsutsui, J., Koide, H., Sakamoto, M., Kobayashi, S., Hatsushika, H., Matsumoto, T., Yamazaki, N., Kamahori, H., Takahashi, K., Kodokura, S., Wada, K., Kato, K., Oyama, R., Ose, T., Mannoji, N., and Taira, R.: The JRA-25 reanalysis, J. Meteorol. Soc. Jpn., 85, 369–432, 2007.
Orsi, A. H., Nowlin Jr., W. D., and Whitworth III, T.: On the circulation and stratification of the Weddell Gyre, Deep Sea Res. Pt. I, 40, 169–203, https://doi.org/10.1016/0967-0637(93)90060-G, 1993.
Orsi, A. H., Whitworth III, T., and Nowlin Jr., W. D.: On the meridional extent and fronts of the Antarctic Circumpolar Current, Deep Sea Res. I, 42, 641–673, https://doi.org/10.1016/0967-0637(95)00021-W, 1995.
Orsi, A. H., Johnson, G. C., and Bullister, J. L.: Circulation, mixing, and production of Antarctic Bottom Water, Progr. Oceanogr., 43, 55–109, https://doi.org/10.1016/S0079-6611(99)00004-X, 1999.
Purkey, S. G. and Johnson, G. C.: Warming of Global Abyssal and Deep Southern Ocean Waters between the 1990s and 2000s: Contributions to Global Heat and Sea Level Rise Budgets, J. Climate, 23, 6336–6351, https://doi.org/10.1175/2010JCLI3682.1, 2010.
Purkey, S. G. and Johnson, G. C.: Global Contraction of Antarctic Bottom Water between the 1980s and 2000s, J. Climate, 25, 5830–5844, https://doi.org/10.1175/JCLI-D-11-00612.1, 2012.
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century, J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670, 2003.
Renner, A. H. H., Heywood, K. J., and Thorpe, S. E.: Validation of three global ocean models in the Weddell Sea, Ocean Modell., 30, 1–15, https://doi.org/10.1016/j.ocemod.2009.05.007, 2009.
Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., and Wang, W.: An improved in situ and satellite SST analysis for climate, J. Climate, 15, 1609–1625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2, 2002.
Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., and Schlax, M. G.: Daily high-resolution-blended analyses for sea surface temperature, J. Climate, 20, 5473–5496, 2007.
Robertson, R., Visbeck, M., Gordon, A. L., and Fahrbach, E.: Long-term temperature trends in the deep waters of the Weddell Sea, Deep Sea Res. Pt. II, 49, 4791–4806, https://doi.org/10.1016/S0967-0645(02)00159-5, 2002.
Rohardt, G., Fahrbach, E., and Wisotzki, A.: Physical oceanography during POLARSTERN cruise ANT-XXVII/2, Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven, https://doi.org/10.1594/PANGAEA.772244, 2011.
Saha, S., Moorthi, S., Pan, H.-L., Wu, Z., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R., Gayno, G., Wang, J., Hou, Y.-T., Chuang, H.-Y., Juang, H.-M. H., Sela, J., Iredell, M., Treadon, R., Kleist, D., Van Delst, P., Keyser, D., Derber, J., Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., Van Den Dool, H., Kumar, A., Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.-K., Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C.-Z., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R. W., Rutledge, G., and Goldberg, M.: The NCEP climate forecast system reanalysis, Bull. Am. Meteorol. Soc., 91, 1015–1057, https://doi.org/10.1175/2010BAMS3001.1, 2010.
Schröder, M. and Fahrbach, E.: On the structure and the transport of the eastern Weddell Gyre, Deep-Sea Res. Pt. II, 46, 501–527, https://doi.org/10.1016/S0967-0645(98)00112-X, 1999.
Smedsrud, L. H.: Warming of the deep water in the Weddell Sea along the Greenwich meridian: 1977–2001, Deep Sea Res. Pt. I, 52, 241–258, https://doi.org/10.1016/j.dsr.2004.10.004, 2005.
Smith, R., Dukowicz, J., and Malone, R.: Parallel ocean general circulation modeling, Physica D: Nonlinear Phenomena, 60, 38–61, https://doi.org/10.1016/0167-2789(92)90225-C, 1992.
Stark, J. D., Donlon, C. J., Martin, M. J., and McCulloch, M. E.: OSTIA: An operational, high resolution, real time, global sea surface temperature analysis system, In: Oceans'07 IEEE Aberdeen, conference proceedings. Marine challenges: coastline to deep sea. Aberdeen, Scotland, IEEE., 1–4, 2007.
Storkey, D., Blockley, E. W., Furner, R., Guiavarc'h, C., Lea, D., Martin, M. J., Barciela, R. M., Hines, A., Hyder, P., and Siddorn, J. R.: Forecasting the ocean state using NEMO: The new FOAM system, J. Operational Oceanogr., 3, 3–15, 2010.
Talley, L. D.: Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: Schematics and transports, Oceanography, 26, 80–97, https://doi.org/10.5670/oceanog.2013.07, 2013.
Taylor, K. E.: Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res., 106, 7183–7192, https://doi.org/10.1029/2000JD900719, 2001.
Uppala, S. M., KÅllberg, P. W., Simmons, A. J., Andrae, U., Bechtold, V. D. C., Fiorino, M., Gibson, J. K., Haseler, J., Hernandez, A., Kelly, G. A., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R. P., Andersson, E., Arpe, K., Balmaseda, M. A., Beljaars, A. C. M., Berg, L. V. D., Bidlot, J., Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M., Fuentes, M., Hagemann, S., Hólm, E., Hoskins, B. J., Isaksen, L., Janssen, P. A. E. M., Jenne, R., Mcnally, A. P., Mahfouf, J.-F., Morcrette, J.-J., Rayner, N. A., Saunders, R. W., Simon, P., Sterl, A., Trenberth, K. E., Untch, A., Vasiljevic, D., Viterbo, P., and Woollen, J.: The ERA-40 re-analysis, Q. J. Roy. Meteorol. Soc., 131, 2961–3012, https://doi.org/10.1256/qj.04.176, 2005.
van Sebille, E., Spence, P., Mazloff, M. R., England, M. H., Rintoul, S. R., and Saenko, O. A.: Abyssal connections of Antarctic Bottom Water in a Southern Ocean State Estimate, Geophys. Res. Lett., 40, 2177–2182, https://doi.org/10.1002/grl.50483, 2013.
Venegas, S. A. and Drinkwater, M. R.: Sea ice, atmosphere and upper ocean variability in the Weddell Sea, Antarctica, J. Geophys. Res., 106, 16747–16766, https://doi.org/10.1029/2000JC000594, 2001.
Wang, C. and Beckmann, A.: Investigation of the impact of Antarctic ice-shelf melting in a global ice–ocean model (ORCA2-LIM), Ann. Glaciol., 46, 78–82, https://doi.org/10.3189/172756407782871602, 2007.
Whitworth III, T. and Nowlin Jr., W. D.: Water masses and currents of the Southern Ocean at the Greenwich meridian, J. Geophys. Res., 92, 6462–6476, https://doi.org/10.1029/JC092iC06p06462, 1987.
Whitworth III, T., Orsi, A. H., Kim, S. J., Nowlin Jr., W. D., and Locarnini R. A.: Water masses and mixing near the Antarctic slope front, in: Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin, Antarct. Res. Ser., 75, edited by: Jacobs, S. S. and Weiss, R. F., 26 pp., AGU, Washington, DC, 1998.
Willebrand, J., Barnier, B., Böning, C., Dieterich, C., Killworth, P. D., Le Provost, C., Jia, Y., Molines, J.-M., and New, A. L.: Circulation characteristics in three eddy-permitting models of the North Atlantic, Progr. Oceanogr., 48, 123–161, https://doi.org/10.1016/S0079-6611(01)00003-9, 2001.
Winton, M., Hallberg, R., and Gnanadesikan, A.: Simulation of Density-Driven Frictional Downslope Flow in Z-Coordinate Ocean Models, J. Phys. Oceanogr., 28, 2163–2174, https://doi.org/10.1175/1520-0485(1998)028<2163:SODDFD>2.0.CO;2, 1998.
Woodruff, S. D., Worley, S. J., Lubker, S. J., Ji, Z., Freeman, J. E., Berry, D. I., Brohan, P., Kent, E. C., Reynolds, R. W., Smith, S. R., and Wilkinson, C.: ICOADS Release 2.5: Extensions and enhancements to the surface marine meteorological archive, Int. J. Climatol., 31, 951–967, https://doi.org/10.1002/joc.2103, 2011.
Worley, S. J., Woodruff, S. D., Reynolds, R. W., Lubker, S. J., and Lott, N.: ICOADS release 2.1 data and products, International J. Climatol., 25, 823–842, https://doi.org/10.1002/joc.1166, 2005.
Xue, Y., Huang, B., Hu, Z.-Z., Kumar, A. A., Wen, C., Behringer, D., and Nadiga, S.: An assessment of oceanic variability in the NCEP climate forecast system reanalysis, Clim. Dynam., 37, 2511–2539, https://doi.org/10.1007/s00382-010-0954-4, 2011.