Articles | Volume 10, issue 6
https://doi.org/10.5194/os-10-1047-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-10-1047-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Chemical and physical transformations of mercury in the ocean: a review
N. Batrakova
CORRESPONDING AUTHOR
Meteorological Synthesizing Centre – East of EMEP, 2nd Roshchinsky proezd, 8/5, 115419 Moscow, Russia
O. Travnikov
Meteorological Synthesizing Centre – East of EMEP, 2nd Roshchinsky proezd, 8/5, 115419 Moscow, Russia
O. Rozovskaya
Meteorological Synthesizing Centre – East of EMEP, 2nd Roshchinsky proezd, 8/5, 115419 Moscow, Russia
Related authors
No articles found.
Ashu Dastoor, Hélène Angot, Johannes Bieser, Flora Brocza, Brock Edwards, Aryeh Feinberg, Xinbin Feng, Benjamin Geyman, Charikleia Gournia, Yipeng He, Ian M. Hedgecock, Ilia Ilyin, Terry Keating, Jane Kirk, Che-Jen Lin, Igor Lehnherr, Robert Mason, David McLagan, Marilena Muntean, Peter Rafaj, Eric M. Roy, Andrei Ryjkov, Noelle E. Selin, Francesco De Simone, Anne L. Soerensen, Frits Steenhuisen, Oleg Travnikov, Shuxiao Wang, Xun Wang, Simon Wilson, Rosa Wu, Qingru Wu, Yanxu Zhang, Jun Zhou, Wei Zhu, and Scott Zolkos
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-65, https://doi.org/10.5194/gmd-2024-65, 2024
Preprint under review for GMD
Short summary
Short summary
This paper introduces the Multi-Compartment Mercury (Hg) Modeling and Analysis Project (MCHgMAP) aimed to inform the effectiveness evaluations of two multilateral environmental agreements: the Minamata Convention on Mercury and Convention on Long-Range Transboundary Air Pollution. The experimental design exploits a variety of models (atmospheric, land, oceanic and multi-media mass balance models) to assess the short- and long-term influences of anthropogenic Hg releases in the environment.
This article is included in the Encyclopedia of Geosciences
Johannes Bieser, Franz Slemr, Jesse Ambrose, Carl Brenninkmeijer, Steve Brooks, Ashu Dastoor, Francesco DeSimone, Ralf Ebinghaus, Christian N. Gencarelli, Beate Geyer, Lynne E. Gratz, Ian M. Hedgecock, Daniel Jaffe, Paul Kelley, Che-Jen Lin, Lyatt Jaegle, Volker Matthias, Andrei Ryjkov, Noelle E. Selin, Shaojie Song, Oleg Travnikov, Andreas Weigelt, Winston Luke, Xinrong Ren, Andreas Zahn, Xin Yang, Yun Zhu, and Nicola Pirrone
Atmos. Chem. Phys., 17, 6925–6955, https://doi.org/10.5194/acp-17-6925-2017, https://doi.org/10.5194/acp-17-6925-2017, 2017
Short summary
Short summary
We conducted a multi model study to investigate our ability to reproduce the vertical distribution of mercury in the atmosphere. For this, we used observational data from over 40 aircraft flights in EU and US. We compared observations to the results of seven chemistry transport models and found that the models are able to reproduce vertical gradients of total and elemental Hg. Finally, we found that different chemical reactions seem responsible for the oxidation of Hg depending on altitude.
This article is included in the Encyclopedia of Geosciences
Oleg Travnikov, Hélène Angot, Paulo Artaxo, Mariantonia Bencardino, Johannes Bieser, Francesco D'Amore, Ashu Dastoor, Francesco De Simone, María del Carmen Diéguez, Aurélien Dommergue, Ralf Ebinghaus, Xin Bin Feng, Christian N. Gencarelli, Ian M. Hedgecock, Olivier Magand, Lynwill Martin, Volker Matthias, Nikolay Mashyanov, Nicola Pirrone, Ramesh Ramachandran, Katie Alana Read, Andrei Ryjkov, Noelle E. Selin, Fabrizio Sena, Shaojie Song, Francesca Sprovieri, Dennis Wip, Ingvar Wängberg, and Xin Yang
Atmos. Chem. Phys., 17, 5271–5295, https://doi.org/10.5194/acp-17-5271-2017, https://doi.org/10.5194/acp-17-5271-2017, 2017
Short summary
Short summary
The study provides a complex analysis of processes governing Hg fate in the atmosphere involving both measurement data and simulation results of chemical transport models. Evaluation of the model simulations and numerical experiments against observations allows explaining spatial and temporal variations of Hg concentration in the near-surface atmospheric layer and shows possibility of multiple pathways of Hg oxidation occurring concurrently in various parts of the atmosphere.
This article is included in the Encyclopedia of Geosciences
Christian N. Gencarelli, Johannes Bieser, Francesco Carbone, Francesco De Simone, Ian M. Hedgecock, Volker Matthias, Oleg Travnikov, Xin Yang, and Nicola Pirrone
Atmos. Chem. Phys., 17, 627–643, https://doi.org/10.5194/acp-17-627-2017, https://doi.org/10.5194/acp-17-627-2017, 2017
Short summary
Short summary
Atmospheric deposition is an important pathway by which Hg reaches marine ecosystems, where it can be methylated and enter the base of food chain. High resolution numerical experiments has been performed in order to investigate the contributions (sensitivity) of the Hg anthtropogenic emissions, speciation and atmospherical chemical reactions on Hg depositions over Europe. The comparison of wet deposition fluxes and concentrations measured on 28 monitioring sites were used to support the analysis.
This article is included in the Encyclopedia of Geosciences
Jozef M. Pacyna, Oleg Travnikov, Francesco De Simone, Ian M. Hedgecock, Kyrre Sundseth, Elisabeth G. Pacyna, Frits Steenhuisen, Nicola Pirrone, John Munthe, and Karin Kindbom
Atmos. Chem. Phys., 16, 12495–12511, https://doi.org/10.5194/acp-16-12495-2016, https://doi.org/10.5194/acp-16-12495-2016, 2016
Short summary
Short summary
An assessment of current and future emissions, air concentrations and atmospheric deposition of mercury worldwide is presented on the basis of results obtained during the performance of the EU GMOS (Global Mercury Observation System) project. Emission estimates for mercury were prepared with the main goal of applying them in models to assess current (2013) and future (2035) air concentrations and atmospheric deposition of this contaminant.
This article is included in the Encyclopedia of Geosciences
Hélène Angot, Ashu Dastoor, Francesco De Simone, Katarina Gårdfeldt, Christian N. Gencarelli, Ian M. Hedgecock, Sarka Langer, Olivier Magand, Michelle N. Mastromonaco, Claus Nordstrøm, Katrine A. Pfaffhuber, Nicola Pirrone, Andrei Ryjkov, Noelle E. Selin, Henrik Skov, Shaojie Song, Francesca Sprovieri, Alexandra Steffen, Kenjiro Toyota, Oleg Travnikov, Xin Yang, and Aurélien Dommergue
Atmos. Chem. Phys., 16, 10735–10763, https://doi.org/10.5194/acp-16-10735-2016, https://doi.org/10.5194/acp-16-10735-2016, 2016
Short summary
Short summary
This is a synthesis of the atmospheric mercury (Hg) monitoring data available in recent years (2011–2015) in the Arctic and in Antarctica along with a comparison of these observations with numerical simulations using four cutting-edge global models. Based on this comparison, we discuss whether the processes that affect atmospheric Hg seasonality and interannual variability are appropriately represented in the models, and identify remaining research gaps.
This article is included in the Encyclopedia of Geosciences
Cited articles
Allard, B. and Arsenie, I.: Abiotic reduction of mercury by humic substances in aquatic system – an important process for the mercury cycle, Water Air Soil Poll., 56, 457–464, 1991.
Allison, J. D. and Allison, T. L.: Partition coefficients for metals in surface water, soil, and waste, US Environmental Protection Agency, Washington, DC, 2005.
Amos H. M., Jacob D. J., Streets D. G., and Sunderland E. M.: Legacy impacts of all-time anthropogenic emissions on the global mercury cycle, Global Biogeochem. Cy., 27, 410–421, https://doi.org/10.1002/gbc.20040, 2013.
Amyot, M., Mierle, G., Lean, D. R. S., and McQueen, D. J.: Sunlight induced formation of dissolved gaseous mercury in lake waters, Environ. Sci. Technol., 28, 2366–2371, 1994.
Amyot, M., Gill, G. A., and Morel, F. M. M.: Production and loss of dissolved gaseous mercury in coastal seawater, Environ. Sci. Technol., 31, 3606–3611, 1997.
Amyot, M., Lean, D. R. D., Poissant, L., and Doyon, M.-R.: Distribution and transformation of elemental mercury in the St. Lawrence River and Lake Ontario, Can. J. Fish. Aquat. Sci., 57, 155–163, 2000.
Amyot, M., Southworth, G., Lindberg, S. E., Hintelmann, H., Lalonde, J. D., Ogrinc, N., Poulain, A. J., and Sandilands, K. A.: Formation and evasion of dissolved gaseous mercury in large enclosures amended with \chem^{200HgCl_2}, Atmos. Environ., 38, 4729–4289, 2004.
Amyot, M., Morel, F. M. M., and Ariya, P. A.: Dark oxidation of dissolved and liquid elemental mercury in aquatic environments, Environ. Sci. Technol., 39, 110–114, 2005.
Andersson, M. E., Sommar, J., Gårdfeldt, K., and Jutterström, S.: Air-sea exchange of volatile mercury in the North Atlantic Ocean, Mar. Chem., 125, 1–7, 2011.
Baeyens, W., Decadt, G., Dehairs, F., and Goeyens, L.: An automated method for the assessment of mercury adsorption rates on particulate suspended matter, Oceanol. Acta, 5, 261–264, 1982.
Baeyens, W., Meuleman, C., and Leermakers, M.: Behavior and speciation of mercury in the Scheldt estuary (water, sediment and benthic organisms), Hydrobiologia, 366, 63–79, 1998.
Barkay, T., Liebert, C., and Gillman, M.: Environmental significance of the potential for mer(Tn21)-mediated reduction of \chemHg^{2+} to \chemHg^0 in natural waters, Appl. Environ. Microbiol., 55, 1196–1202, 1989.
Bash, J. O. and Cooter, E. J.: Bi-directional mercury exchange over surface waters simulated by a regional air pollution model (poster presentation), 88th American Meteorological Society Annual Meeting, New Orleans, LA, 20–24 January, 2008.
Baskaran, M., Santschi, P. H., Benoit, G., and Honeyman, B. D.: Scavenging of thorium isotopes by colloids in seawater of the Gulf of Mexico, Geochim. Cosmochim. Ac., 56, 3375–3388, 1992.
Ben-Bassat, D. and Mayer, A. M.: Reduction of mercury chloride by Chlorella: evidence for a reducing factor, Physiol. Plant., 40, 157–162, 1977.
Ben-Bassat, D. and Mayer, A. M.: Light-induced volatilization and O2 evolution in Chlorella and the effect of DCMU and methylamine, Physiol. Plant., 42, 33–38, 1978.
Bengtsson, G. and Picado, F.: Mercury sorption to sediments: dependence on grain size, dissolved organic carbon, and suspended bacteria, Chemosphere, 73, 526–531, 2008.
Benoit, J.: Evidence of the particle concentration effect for lead and other metals in fresh waters based on ultraclean technique analyses, Geochim. Cosmochim. Ac., 59, 2677–2687, 1995.
Benoit, J. M. and Rozan, T. F.: The influence of size distribution on the particle concentration effect and trace metal partitioning in rivers, Geochim. Cosmochim. Ac., 63, 112–127, 1999.
Benoit, J., Oktay-Marshall, S. D., Cantu II, A., Hood, E. M., Coleman, C. H., Corapcioglu, M. O., and Santschi, P. H.: Partitioning of Cu, Pb, Ag, Zn, Fe, Al, and Mn between filterretained particles, colloids, and solution in six Texas estuaries, Mar. Chem., 45, 307–336, 1994.
Benoit, J., Gilmour, C. C., Mason, R. P., and Heyes, A.: Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters, Environ. Sci. Technol., 33, 951–957, 1999.
Benoit, J. M., Gilmour, C. C., and Mason, R. P.: Aspects of bioavailability of mercury for methylation in pure cultures of Desulfobulbus propionicus (1pr3), Appl. Environ. Microb., 67, 51–58, 2001a.
Benoit, J. M., Gilmour, C. C., and Mason, R. P.: The influence of sulfide on solid-phase mercury bioavailability for methylation by pure cultures of Desulfobulbus propionicus (1pr3), Environ. Sci. Technol., 35, 127–132, 2001b.
Benoit, J. M., Mason, R. P., Gilmour, C. C., and Aiken, G. R.: Constants for mercury binding by dissolved organic matter isolates from the Florida Everglades, Geochim. Cosmochim. Ac., 65, 4445–4451, 2001c.
Black, F. J., Conaway, C. H., and Flegal, A. R.: Stability of dimethyl mercury in seawater and its conversion to monomethyl mercury, Environ. Sci. Technol., 43, 4056–4062, https://doi.org/10.1021/es9001218, 2009.
Bloom, N. S.: On the chemical form of mercury in edible fish and marine invertebrate tissue, Can. J. Fish. Aquat. Sci., 49, 1010–1017, 1992.
Blum, J. D., Popp, B. N, Drazen, J. C., Choy, C. A., Johnson, M. W.: Methylmercury production below the mixed layerin the North Pacific Ocean, Nat. Geosci., 1–6, https://doi.org/10.1038/NGEO1918, online first, 2013.
Bonzongo, J.-C. and Donkor, A. K.: Increasing UV-B radiation at the Earth's surface and potential effects on aqueous mercury cycling and toxicity, Chemosphere, 52, 1263–1273, 2003.
Boszke, L., Głosi\'nska, G., and Siepak, J.: Some aspects of speciation of mercury in a water environment, Pol. J. Environ. Stud., 11, 285–298, 2002.
Bryan, G. W. and Langston, W. J.: Bioavailability, accumulation and effects of heavy metals with special reference to United Kingdom estuaries: a review, Environ. Pollut., 76, 89–131, 1992.
Castelle, S., Schäfer, J., Blanc, G., Dabrin, A., Lanceleur, L., and Masson, M.: Gaseous mercury at the air–water interface of a highly turbid estuary (Gironde Estuary, France), Mar. Chem., 117, 42–51, https://doi.org/10.1016/j.marchem.2009.01.005, 2009.
Ceratti, G., Bernhard, M., and Weber, J. H.: Model reactions for abiotic mercury (II) methylation: kinetics of methylation of mercury (II) by mono-, di- and tri- methyltin in seawater, Appl. Organomet. Chem., 6, 587–595, 1992.
Chen, J., Pehkonen, S. O., and Lin, C.-J.: Degradation of monomethylmercury chloride by hydroxyl radicals in simulated natural waters, Water Res., 37, 2496–2504, 2003.
Choe, K.-Y., Gill, G. A., and Lehman, R. D.: Distributions of particulate, colloidal and dissolved mercury in the San Francisco Bay estuary: 1. Total mercury, Limnol. Oceanogr., 48, 1535–1546, 2003.
Ci, Z. J., Zhang, X. S., Wang, Z. W., Niu, Z. C., Diao, X. Y., and Wang, S. W.: Distribution and air-sea exchange of mercury (Hg) in the Yellow Sea, Atmos. Chem. Phys., 11, 2881–2892, https://doi.org/10.5194/acp-11-2881-2011, 2011.
Compeau, G. and Bartha, R.: Methylation and demethylation of mercury under controlled redox, pH, and salinity conditions, Appl. Environ. Microb., 48, 1203–1207, 1984.
Cossa, M. and Liss, P. S.: Photoreduction of mercury in sea water and its possible implications for elemental Hg air–sea fluxes, Mar. Chem., 68, 87–95, 1999.
Cossa, D., Martin, J. M., Takayanagi, K., and Sanjuan, J.: The distribution and cycling of mercury species in the western Mediterranean, Deep-Sea Res. Pt. II, 44, 721–740, 1997.
Cossa, D., Cotte-Krief, M. H., Mason, R. P., and Bretaudeau-Sanjuan, J.: Total mercury in the water column near the shelf edge of the European continental margin, Mar. Chem., 90, 21–29, 2004.
Cossa, D., Heimbürger, L. E., Lannuzel, D., Rintoul, S. R, Butler, E. CV; Bowie, A. R, Averty, B., Watson, R. J, and Remenyi, T.: Mercury in the Southern Ocean, Geochim. Cosmochim. Ac., 75, 4037–4052, https://doi.org/10.1016/j.gca.2011.05.001, 2011.
Dalziel, J. A.: Reactive mercury in the eastern North Atlantic and southeast Atlantic, Mar. Chem., 49, 307–314, 1995.
Degetto, S., Schintu, M., Contu, A., and Sbrignadello, G.: Santa Gilla Lagoon (Italy): a mercury sediment pollution case study, contamination assessment and restoration of the site, Sci. Total Environ., 204, 49–56, https://doi.org/10.1016/S0048-9697(97)00165-4, 1997.
Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J., and Pirrone, N.: Mercury as a Global Pollutant: Sources, Pathways, and Effects, Environ. Sci. Technol., 47, 4967–4983, https://doi.org/10.1021/es305071v, 2013
Ebinghaus, R., Hintelman, H., and Wilken, R. D.: Mercury-cycling in surface waters and in the atmosphere – species analysis for the investigation of transformation and transport properties of mercury, Fresen, J. Anal. Chem., 350, 21–29, https://doi.org/110.1007/BF00326247, 1994.
Fantozzi, L., Ferrara, R., Frontini, F. P., and Dini, F.: Factors influencing the daily behaviour of dissolved gaseous mercury concentration in the Mediterranean Sea, Mar. Chem., 107, 4–12, https://doi.org/10.1016/j.marchem.2007.02.008, 2007.
Farrell, R. E., Huang, P. M., and Germida, J. J.: Biomethylation of mercury(II) adsorbed on mineral colloids common in freshwater sediments, Appl. Organomet. Chem., 12, 613–620, 1998.
Fitzgerald, W. F., Lamborg, C. H., Heinrich, D. H., and Karl, K. T.: Geochemistry of mercury in the environment, in: Treatise on Geochemistry, Pergamon, Oxford, 1–47, 2007.
Galvin, R. M.: Occurrence of metals in waters: an overview, Water S. A., 22, 7–18, 1996.
Garcia, E., Poulain, A. J., Amyot, M., and Ariya, P.: Diel variations in photoinduced oxidation of Hg0 in freshwater, Chemosphere, 59, 977–981, 2005.
Gårdfeldt, K. and Jonsson, M.: Is bimolecular reduction of Hg(II) complexes possible in aqueous systems of environmental importance, J. Phys. Chem. Atmos., 107, 4478–4482, 2003.
Gårdfeldt, K., Feng, X., Sommar, J., and Lindqvist, O.: Total gaseous exchange between air and water at river and sea surfaces in Swedish coastal regions, Atmos. Environ., 35, 3027–3038, 2001.
Gårdfeldt, K., Sommar, J., Ferrara, R., Ceccarini, C., Lanzillotta, E., Munthe, J., Wängberg, I., Lindqvist, O., Pirrone, N., Sprovieri, F., Pesenti, E., and Strömberg, D.: Evasion of mercury from coastal and open waters of the Atlantic Ocean and Mediterranean Sea, Atmos. Environ., 37, S73–S84, 2003.
Gill, G. A.: Air-Water Exchange Studies, in: Transport, cycling, and fate of mercury and monomethyl mercury in the San Francisco Delta and tributaries: an integrated mass balance assessment approach, Task 5.4 Air-Water Exchange Studies, Final Report, Calfed Bay-Delta Program, Calfed Mercury Project "Assessment of Ecological and Human Health Impacts of Mercury in the Bay-Delta Watershed", available at: http://mercury.mlml.calstate.edu/rep orts/reports/, 2008.
Gill, G. A. and Fitzgerald, W. F.: Vertical mercury distributions in the oceans, Geochim. Cosmochim. Ac., 52, 1719–1728, 1988.
Grandjean, P., Weihe, P., White, R. F., Debes, F., Araki, S., Yokoyama, K., Murata, K., Sørensen, N., Dahl, R., and Jørgensen, P. J.: Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury, Neurotoxicol Teratol., 19, 417–428, 1997.
Haitzer, M., Aiken, G. R., and Ryan, J. N.: Binding of mercury (II) to aquatic humic substances, Environ. Sci. Technol., 37, 2436–2441, 2003.
Hamasaki, T., Nagase, H., Yoshioka, Y., and Sato, T.: Formation, distribution, and ecotoxicology of methylmetals of tin, mercury, and arsenic in the environment, Crit. Rev. Env. Sci. Tec., 25, 45–91, 1995.
Harmon, S. M., King, J. K., Gladden, J. B., and Newman, L. A.: Using sulfate-amended sediment slurry batch reactors to evaluate mercury methylation, Arch. Environ. Con. Tox., 52, 326–331, 2007.
Heyes, A., Miller, C., and Mason, R. P.: Mercury and methylmercury in Hudson River sediment: impact of tidal resuspension on partitioning and methylation, Mar. Chem., 90, 75–89, 2004.
Heyes, A., Mason, R. P., Kim, E., and Sunderland, E.: Mercury methylation in estuaries: insights from using measuring rates using stable mercury isotopes, Mar. Chem., 102, 134–147, 2006.
Hines, N. A. and Brezonik, P. L.: Mercury dynamics in a small Northern Minnesota lake: water to air exchange and photoreactions of mercury, Mar. Chem., 90, 137–149, 2004.
Hobman, J. L., Wilson, J. R., and Brown, N. L.: Microbial mercury reduction, In: Environmental Microbe-Metal Interaction, edited by: Lovley, D. R., ASM Press, Washington, 2000.
Hollweg, T. A.: Mercury cycling in sediments of Chesapeake Bay and the Mid-Atlantic continental shelf and slope, Ph. D. thesis, University of Connecticut, 2010.
Honeyman, B. D. and Santschi, P. H.: A brownian-pumping model for oceanic trace metal scavenging: evidence from thorium isotopes, J. Mar. Res., 47, 951–992, 1989.
Hsu-Kim, H., Kucharzyk, K. H., Zhang, T., Deshusses, M. A.: Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: a critical review, Environ. Sci. Technol., 47, 2441–2456, https://doi.org/10.1021/es304370g, 2013.
Hu, H., Lin, H., Zheng, W., Rao, B., Feng, X., Liang, L., Elias, D. A., and Gu, B.: Mercury reduction and cell-surface adsorption by Geobacter sulfurreducens PCA, Environ. Sci. Technol., 47, 10922, https://doi.org/10.1021/es400527m, 2013.
Kempter, T.: Cycling of monomethylmercury in the ocean, an exploration of sources and sinks, ETHZ – Term Paper in Biogeochemistry and Pollutant Dynamics, 1–17, 2009.
Kim, E.-H., Mason, R. P., Porter, E. T., and Soulen, H. L.: The effect of sediment resuspension on the fate and bioaccumulation of mercury in estuarine sediments, Mar. Chem., 102, 300–315, 2006.
Kirk, J. L, Lehnherr, I., Andersson, M., Braune, B. M., Chan, L., Dastoor, A. P., Durnford, D., Gleason, A. L., Loseto, L. L., Steffen, A. L., and St. Louis, V. L.: Mercury in Arctic marine ecosystems: sources, pathways and exposure, Environ. Res., 119, 64-87, https://doi.org/10.1016/j.envres.2012.08.012, 2012
Krabbenhoft, D. P., Hurler, J. P., Olson, M. L., and Cleckner, L. B.: Diel variability of mercury phase and species distributions in the Florida Everglades, Biogeochemistry, 40, 311–325, 1998.
Lalonde, J. D., Amyot, M., Kraepiel, A. M. L., and Morel, F. M. M.: Photooxidation of Hg(0) in artificial and natural waters, Environ. Sci. Technol., 35, 1367–1372, 2001.
Lalonde, J. D., Amyot, M., Orvoine, J., Morel, F. M. M., Auclair, J.-C., and Ariya, P. A.: Photoinduced oxidation of Hg0(aq) in the waters from the St. Lawrence Estuary, Environ. Sci. Technol., 38, 508–514, 2004.
Lamborg, C. H., Tseng, C.-M., Fitzgerald, W. F., Balcom, P. H., and Hammerschmidt, C. R.: Determination of the mercury complexation characteristics of dissolved organic matter in natural waters with "reducible Hg" titrations, Environ. Sci. Technol., 37, 3316–3322, 2002.
Lamborg, C. H., Damm, K. L., Fitzgerald, W. F., Hammerschmidt, C. R., and Zierenberg, R.: Mercury and monomethylmercury in fluids from Sea Cliff submarine hydrothermal field, Gorda Ridge, Geophys. Res. Lett., 33, L17606, https://doi.org/10.1029/2006GL026321, 2006.
Lamborg, C. H., Hammerschmidt, C. R., Gill, G. A., Mason, R. P., and Gichuki, S.: An intercomparison of procedures for the determination of total mercury in seawater and recommendations regarding mercury speciation during GEOTRACES cruises, Limnol. Oceanogr.-Methods, 10, 90–100, https://doi.org/10.4319/lom.2012.10.90, 2012.
Laurier, F. J. G., Mason, R. P., Gill, G. A., and Whalin, L.: Mercury distributions in the North Pacific Ocean: 20 years of observations, Mar. Chem., 90, 3–19, 2004.
Lawrence, A. L. and Mason, R. P.: Factors controlling the bioaccumulationof mercury and methylmercury by the estuarine amphipod Leptocheirus plumulosus, Environ. Pollut., 111, 217–231, 2001.
Lawson, N. M. and Mason, R. P.: Accumulation of mercury in estuarine food chains, Biogeochemistry, 40, 235–247, 1998.
Leermakers, M., Elskens, M., Panutrakul, S., Monteny, F., and Baeyens, W.: Geochemistry of mercury in an intertidal flat of the Scheldt Estuary, Netherlands, J. Aquat. Ecol., 27, 267–277, 1993.
Leermakers, M., Galletti, S., De Galan, S., Brion, N., and Baeyens, W.: Mercury in the southern North Sea and Scheldt estuary, Mar. Chem., 75, 229–248, 2001.
Lehnherr, I., St. Louis, V. L., Hintelmann, H., and Kirk, J. L.: Methylation of inorganic mercury in polar marine waters, Nat. Geosci., 4, 298–302, https://doi.org/10.1038/ngeo1134, 2011
Lepane, V., Persson, T., and Wedborg, M.: Effects of UV-B radiation on molecular weight distribution and fluorescence from humic substances in riverine and low salinity water, Estuar. Coast. Shelf. S., 56, 161–173, 2003.
Lin, C.-C., Yee, N., and Barkay, T.: Microbial transformations in the mercury cycle, in: Environmental Chemistry and Toxicology of Mercury, 1st Edn., edited by: Liu, G., Cai, Y., and O'Driscoll, N., John Wiley & Sons, Inc., 155–192, 2012.
Lin, C.-J. and Pehkonen, S. O.: Aqueous phase reaction of mercury with free radicals and chlorine: implications for atmospheric mercury chemistry, Chemosphere, 38, 1253–1263, 1999.
Liu, H., Li, X. Z., Leng, Y. J., and Wang, C.: Kinetic modeling of electro-Fenton reaction in aqueous solution, Water Res., 41, 1161–1167, 2007.
Liu, G., Li, Y., and Cai, Y.: Adsorption of mercury on solids in the aquatic environment, in: Environmental Chemistry and Toxicology of Mercury, 1st edn., edited by: Liu, G., Cai, Y., and O'Driscoll, N., John Wiley & Sons, Inc., 367–387, 2012.
Lockwood, R. A. and Chen, K. Y.: Adsorption of mercury(II) by hydrous manganese oxides, Environ. Sci. Technol., 7, 1028–1034, 1973.
Luther, G. W. and Tsamakis, E.: Concentration and form of dissolved sulfide in the oxic water column of the ocean, Mar. Chem., 127, 165–177, 1989.
Marvin-DiPasquale, M. M., Agee, J., McGowan, C., Oremland, R. S., Thomas, M., Krabbenhoft, D., and Gilmour, C. C.: Methylmercury degradation pathways: a comparison among three mercury-impacted ecosystems, Environ. Sci. Technol., 34, 4908–4916, 2000.
Marvin-DiPasquale, M. M., Stewart, R., Fisher, N. S., Pickhardt, P., Mason, R. P., Heyes, A., and Windham-Myers, L.: Evaluation of Mercury Transformations and Trophic Transfer in the San Francisco Bay/Delta: Identifying Critical Processes for the Ecosystem Restoration Program, Annual Report of Progress for Project #ERP-02-P40 to the California Bay-Delta Authority (CBDA), Sacramento, CA, 2007.
Mason, R. P.: The chemistry of mercury in the equatorial Pacific Ocean, Ph. D. thesis, University of Connecticut, Storrs, CT, 1991.
Mason, R. P. and Benoit, J. M.: Organomercury compounds in the environment, in: Organometallics in the Environment, edited by: Craig, P., John Wiley & Sons, New York, 57–99, 2003.
Mason, R. P. and Fitzgerald, W. F.: Mercury speciation in open ocean waters, Water Air Soil Pollut., 56, 779–789, 1991.
Mason, R. P. and Fitzgerald, W. F.: The distribution and cycling of mercury in the equatorial Pacific Ocean, Deep-Sea Res. Pt. I, 40, 1897–1924, 1993.
Mason, R. P. and Fitzgerald, W. F.: Sources, sinks and biogeochemical cycling of mercury in the ocean. In: Global and Regional Mercury Cycles: Sources, Fluxes and Mass Balances, edited by: Baeyens, W., Ebinghaus, R., and Vasiliev, O., Kluwer Academic, Netherlands, 249–272, 1996.
Mason, R. P. and Gill, G. A.: Mercury in the marine environment, in: Mercury: Sources, Measurements, Cycles and Effects, edited by: Parsons, M. B. and Percival, J. B., Short Course Series, 34, Mineral. Assoc. of Canada, Halifax, Nova Scotia, Canada, 179–216, 2005.
Mason, R. P. and Lawrence, A. L.: Concentration, distribution, and bioavailability of mercury and methylmercury in sediments of Baltimore Harbor and Chesapeake Bay, Maryland, USA, Environ. Toxicol. Chem., 18, 2438–2447, 1999.
Mason, R. P. and Sheu, G. R.: Role of the ocean in the global mercury cycle, Global Biogeochem. Cy., 16, 1093, https://doi.org/10.1029/2001GB001440, 2002.
Mason, R. P. and Sullivan, K. A.: The distribution and speciation of mercury in the south and equatorial Atlantic, Deep-Sea Res. Pt. II, 46, 937–956, 1999.
Mason, R. P.: The methylation of metals and metalloids in aquatic systems, methylation – from DNA, RNA and histones to diseases and treatment, edited by: Prof. Anica Dricu ISBN: 978-953-51-0881-8, InTech, https://doi.org/10.5772/51774, 2012.
Mason, R. P., Fitzgerald, W. F., and Morel, F. M. M.: The biogeochemical cycling of elemental mercury: anthropogenic influences, Geochim. Cosmochim. Ac., 58, 3191–3198, 1994.
Mason, R. P., Morel, F. M. M., and Hemond, H. F.: The role of microorganisms in elemental mercury formation in natural waters, Water Air Soil Poll., 80, 775–787, 1995.
Mason, R. P., Rolfhus, K. R., and Fitzgerald, W. F.: Mercury in the North Atlantic, Mar. Chem., 61, 37–53, 1998.
Mason, R. P., Lawson, N. M., Lawrence, A. L., Leaner, J. J., Lee, J. G., and Sheu, G. R.: Mercury in the Chesapeake Bay, Mar. Chem., 65, 77–96, 1999.
Mason, R. P., Lawson, N. M., and Sheu, G.-R.: Mercury in the Atlantic Ocean: factors controlling air-sea exchange of mercury and its distribution in the upper waters, Deep-Sea Res. Pt. II, 48, 2829–2853, 2001.
Mason, R. P., Choi, A. L., Fitzgerald, W. F., Hammerschmidt, C. R., Lamborg, C. H., Soerensen, A. L., and Sunderland, E. M.: Mercury biogeochemical cycling in the ocean and policy implications, Environ. Res., 119, 101–117, 2012.
Matilainen, T.: Involvent of bacteria in methylmercury formation in anaerobic lake waters, Water Air Soil Pollut., 80, 757–764, https://doi.org/10.1007/BF01189727, 1995.
Matilainen, T. and Verta, M.: Mercury methylation and demethylation in aerobic surface waters, Can. J. Fish. Aquat. Sci., 52, 1597-1608, 1995.
Mergler, D., Anderson, H. A., Chan, L. H. M., Mahaffey, K. R., Murray, M., Sakamoto, M., and Stern, A. H.: Methylmercury exposure and health effects in humans: a worldwide concern, Ambio, 36, 3–11, 2007.
Monperrus, M., Tessier, E., Amouroux, D., Leynaert, A., Huonnic, P., and Donard, O. F. X.: Mercury methylation, demethylation and reduction rates in coastal and marine surface waters of the Mediterranean Sea, Mar. Chem., 107, 49–63, 2007.
Mopper, K. and Zhou, X.: Hydroxyl radical photoproduction in the sea and its potential impact on marine processes, Science, 250, 661–664, 1990.
Moran, S. B. and Buesseler, K. O.: Short residence time of colloids in the upper ocean estimated from 238U–234Th disequilibria, Nature, 359, 221–223, 1992.
Morel, F. M. M. and Hering, J. G.: Principles and Applications of Aquatic Chemistry, John Wiley & Sons, Inc., New York, NY, 1993.
Morel, F. M. M., Kraepiel, A. M. L., and Amyot, M.: The chemical cycle and bioaccumulation of mercury, Annu. Rev. Ecol. Syst., 29, 543–566, 1998.
Muhaya, B. B. M., Leermakers, M., and Baeyens, W.: Total mercury and methylmercury in sediments and in the polychaete Nereis diversicolor at Groot Buitenschoor (Sheldt Estuary, Belgium), Water Air Soil Pollut., 94, 109–123, 1997.
O'Driscoll, N. J., Beauchamp, S., Siciliano, S. D., Rencz, A. N., and Lean, D. R. S.: Continuous analysis of dissolved gaseous mercury (DGM) and mercury flux in two freshwater lakes in Kejimkujik Park, Nova Scotia: evaluating mercury flux models with quantitative data, Environ. Sci. Technol., 37, 2226–2235, 2003a.
O'Driscoll, N. J., Siciliano, S. D., and Lean, D. R. S.: Continuous analysis of dissolved gaseous mercury in freshwater lakes, Sci. Total Environ., 304, 285–294, 2003b.
O'Driscoll, N. J., Rencz, A. N., and Lean, D. R. S.: The biogeochemistry and fate of mercury in natural environments, in: Metal Ions in Biological Systems, edited by: Sigel, A., Sigel, H., and Sigel, R. K. O., Marcel Dekker, New York, 43, chap. 14, 221–238, 2005.
O'Driscoll, N. J., Siciliano, S. D., Lean, D. R. S., and Amyot, M.: Gross photoreduction kinetics of mercury in temperate freshwater lakes and rivers: application to a general model of DGM dynamics, Environ. Sci. Technol., 40, 837–843, https://doi.org/10.1021/es051062y, 2006.
Ogawa, H. and Tanoue, E.: Dissolved organic matter in oceanic waters, J. Oceanogr., 59, 129–147, 2003.
Orihel, D. M., Paterson, M. J., Blanchfield, P. J., Bodaly, R. A., and Hintelmann, H.: Experimental evidence of a linear relationship between inorganic mercury loading and methylmercury accumulation by aquatic biota, Environ. Sci. Technol., 47, 4952–4958, 2007.
Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R. B., Friedli, H. R., Leaner, J., Mason, R., Mukherjee, A. B., Stracher, G., Streets, D. G., and Telmer, K.: Global mercury emissions to the atmosphere from natural and anthropogenic sources, in: Mercury Fate and Transport in the Global Atmosphere: Emissions, Measurements, and Models, edited by: Pirrone, N. and Mason, R. P., Springer, 3–49, 2009.
Poissant, L., Dommergue, A., and Fefferi, C. P.: Mercury as a global pollutant, J. Phys. IV, 12, 143, https://doi.org/10.1051/jp4:20020457, 2002.
Powell, R. T., Landing, W. M., and Bauer, J. E.: Colloidal trace metals, organic carbon and nitrogen in a southeastern US estuary, Mar. Chem., 55, 165–176, 1996.
Quemerais, B., Cossa, D., Rondeau, B., Pham, T. T., and Fortin, B.: Mercury distribution in relation to iron and manganese in the waters of the St. Lawrence River, Sci. Total Environ., 213, 193–201, 1998.
Qureshi, A., O'Driscoll, N. J., MacLeod, M., Neuhold, Y. M., and Hungerbuhler, K.: Photoreactions of mercury in surface ocean water: gross reaction kinetics and possible pathways, Environ. Sci. Technol., 44, 644–649, 2010.
Rajar, R., Zagar, D., Sirca, A., and Horvat, M.: Three-dimensional modelling of mercury cycling in the Gulf of Trieste, Sci. Total Environ., 260, 109–123, 2000.
Rajar, R., Četina, M., Horvat, M., and Žagar, D.: Mass balance of mercury in the Mediterranean Sea, Mar. Chem., 107, 89–102, https://doi.org/10.1016/j.marchem.2006.10.001, 2007.
Ravichandran, M.: Interactions between mercury and dissolved organic matter – a review, Chemosphere, 55, 319–331, https://doi.org/10.1016/j.chemosphere.2003.11.011, 2004
Regnell, O., Tunlid, A., Ewald, G., and Sangfors, O.: Methyl mercury production in freshwater microcosms affected by dissolved oxygen levels: role of cobolamin and microbial community composition, Can. J. Fish. Aquat. Sci., 53, 1535–1545, 1996.
Rolfhus, K. R. and Fitzgerald, W. F.: Mechanisms and temporal variability of dissolved gaseous mercury production in coastal seawater, Mar. Chem., 90, 125–136, 2004.
Selin, N. E.: Science and strategies to reduce mercury risks: a critical review, J. Environ. Monitor., 13, 2389–2399, 2011.
Selin, N. E., Jacob, D. J., Yantosca, R. M., Strode, S., Jaegl, L., and Sunderland, E. M.: Global 3-D land-ocean-atmosphere model for mercury: present-day vs. pre-industrial cycles and anthropogenic enrichment factors for deposition, Global Biogeochem. Cy., 22, GB2011, https://doi.org/10.1029/2007GB003040, 2008.
Sellers, P., Kelly, C. A., Rudd, J. W. M., and MacHutchon, A. R.: Photodegradation of methylmercury in lakes, Nature, 380, 694–697, 1996.
Siciliano, S. D., O'Driscoll, N. J., and Lean, D. R.S: Microbial reduction and oxidation of mercury in freshwater lakes, Environ. Sci. Technol., 36, 3064–3068, 2002.
Sigleo, A. C. and Means, J. C.: Organic and inorganic components in estuarine colloids: Implications for sorption and transport of pollutants, Rev. Environ. Contam. T., 122, 123–147, 1990.
Soerensen, A. L., Sunderland, E. M., Holmes, C. D., Jacob, D. J., Yantosca, R., Skov, H., Christensen, J. H., Strode, S. A., and Mason, R. B.: An improved global model for air–sea exchange of mercury: high concentrations over the North Atlantic, Environ. Sci. Technol., 44, 8574–8580, 2010.
Soerensen, A. L., Mason, R. P., Balcom, P. H., and Sunderland, E. M.: Drivers of surface ocean mercury concentrations and air-sea exchange in the west Atlantic Ocean, Environ. Sci. Technol., 47, 7757–7765, https://doi.org/10.1021/es401354q, 2013.
Spokes, L. J. and Liss, P. S.: Photochemically induced redox reactions in seawater, I. Cations, Mar. Chem., 49, 201–213, 1995.
Stein, E. D, Cohen, Y., and Winer, A. M.: Environmental distribution and transformation of mercury compounds, Crit. Rev. Env. Sci. Tec., 26, 1–43, https://doi.org/10.1080/10643389609388485, 1996.
Stoichev, T., Amouroux, D., Wasserman, J. C., Point, D., Diego, A. D., Bareille, G., and Donard, O. F. X.: Dynamics of mercury species in surface sediments of a macrotidal estuarine-coastal system (Ardour River, Bay of Biscay), Estuar. Coast. Shelf S., 59, 511–521, 2004.
Stordal, M. C., Gill, G. A., Wen, L.-S., and Santschi, P. H.: Mercury phase speciation in the surface waters of three Texas estuaries: importance of colloidal forms, Limnol. Oceanogr., 41, 52–61, 1996.
Strode, S. A., Jaegl'e, L., Selin,, N. E., Jacob, D. J., Park, R. J., Yantosca, R. M., Mason, R. P., and Slemr, F.: Air–sea exchange in the global mercury cycle, Global Biogeochem. Cy., 21, GB1017, https://doi.org/10.1029/2006GB002766, 2007.
Strode, S., Jaegl'e, L., and Emerson, S.: Vertical transport of anthropogenic mercury in the ocean, Glob. Biogeochem. Cy., 24, GB4014, https://doi.org/10.1029/2009GB003728, 2010.
Stumm, W.: Chemistry of the Solid–Water Interface, John Wiley & Sons, Inc., New York (NY), 1992.
Sunderland, E. M. and Mason, R. P.: Human impacts on open ocean mercury concentrations, Global Biogeochem. Cy., 21, GB4022 https://doi.org/10.1029/2006GB002876, 2007.
Sunderland, E. M., Gobas, F. A. P. C., Heyes, A., Branfireun, B. A., Bayer, A. K., Cranston, R. E., and Parsons, M. B.: Speciation and bioavailability of mercury in well-mixed estuarine sediments, Mar. Chem., 90, 91–105, 2004.
Sunderland, E. M., Gobas, F. A. P. C., Heyes, A., and Branfireun, B.: Environmental controls on the speciation and distribution of mercury in coastal sediments, Mar. Chem., 102, 111–123, 2006.
Sunderland, E. M., Krabbenhoft D. P., Moreau J. W., Strode S. A., and Landing W. M.: Mercury sources,distribution, and bioavailability in the North Pacific Ocean: Insights from data and models, Global Biogeochem. Cy., 23, GB2010, https://doi.org/10.1029/2008GB003425, 2009
Sunderland, E. M., Dalziel, J., Heyes, A., Branfireun, B. A., Krabbenhoft, D. P., and Gobas, F. A. P. C.: Response of a macrotidal estuary to changes in anthropogenic mercury loading between 1850 and 2000, Environ. Sci. Technol., 44, 1698–1704, 2010.
Tessier, A. and Turner, D. R.: Metal Speciation and Bioavailability in Aquatic Systems, Wiley, 1995.
Ullrich, S. M., Tanton, T. W., and Abdrashitowa, S. A.: Mercury in the aquatic environment: a review of factors affecting methylation, Crit. Rev. Env. Sci. Tec., 31, 241–293, https://doi.org/10.1080/20016491089226, 2001.
Van Oostdam, J., Donaldson, S. G., Feeley, M., Arnold, D., Ayotte, P., Bondy, G., Chan, L., Dewaily, E., Furgal, C. M., Kuhnlein, H., Loring, E., Muckle, G., Myles, E., Receveur, O., Tracy, B., Gill, U., and Kalhok, S.: Human health implications of environmental contaminants in Arctic Canada: a review, Sci. Total Environ., 351–352, 165–246, 2005.
Voelker, B., Morel, F. M. M., and Sulzberger, B.: Iron redox cycling in surface waters: effects of humic substances and light, Environ. Sci. Technol., 31, 1004–1011, 1997.
Vost, E., Amyot, M., and O'Driscoll, N.: Photoreactions of mercury in aquatic systems, in: Environmental Chemistry and Toxicology of Mercury, 1st edn., edited by: Liu, G., Cai, Y., and O'Driscoll, N., John Wiley & Sons, Inc., 193–218, 2012.
Voughan, P. P. and Blough, N. V.: Photochemical formation of hydroxyl radical by constituents of natural waters, Environ. Sci. Technol., 32, 2947–2953, 1998.
Weber, J. H.: Review of possible paths for abiotic methylation of mercury(II) in aquatic environment, Chemosphere, 51, 2063–2077, 1993.
Wen, L.-S., Santschi, P. H., Gill, G. A., and Paternostro, C.: Estuarine trace metal distribution in Galveston Bay: importance of colloidal forms in the speciation of the dissolved phase, Mar. Chem., 63, 185–212, 1999.
Whalin, L. M.: The investigation of mercury redox chemistry in natural waters and the development of a new method for incubation experiments, M.S. thesis, University of Maryland, College Park, USA, 106 pp., available at: http://hdl.handle.net/1903/2490, 2005.
Whalin, L. M. and Mason, R. P.: A new method for the investigation of mercury redox chemistry in natural waters utilizing deflatable Teflon© bags and additions of isotopically labeled mercury, Anal. Chim. Acta, 558, 211–221, 2006.
Whalin, L., Kim, E.-H., and Mason, R.: Factors influencing the oxidation, reduction, methylation and demethylation of mercury species in coastal waters, Mar. Chem., 107, 278–294, 2007.
Xiao, Z. F., Stomberg, D., and Lindqvist, O.: Influence of humic substances on photolysis of divalent mercury in aqueous solutions, Water Air Soil Pollut., 80, 789–798, 1995.
Zafiriou, O. C., True, M. B., and Hayon, E.: Consequences of OH radical reaction in sea water: formation and decay of Br2-ion radical, in: Photochemistry of Environmental Aquatic Systems, edited by: Zika, R. G. and Cooper, W. J., ACS Symposium Series, ACS, 89–105, 1987.
Zagar, D., Petkovšek, G., Rajar, R., Sirnik, N., Horvat, M., Voudouri, A., Kallos, G., and Četina, M.: Modelling of mercury transport and transformations in the water compartment of the Mediterranean Sea, Mar. Chem., 107, 64–88, https://doi.org/10.1016/j.marchem.2007.02.007, 2007.
Zagar, D., Sirnik, N., Četina, M., Horvat, M., Kotnik, J., Ogrinc, N., Hedgecock, I. M., Cinnirella, S., De Simone, F., Gencarelli, C. N., and Pirrone, N.: Mercury in the Mediterranean. Part 2: processes and mass balance, Environ. Sci. Pollut. Res., 21, 4081–4094, https://doi.org/10.1007/s11356-013-2055-5, 2014.
Zhang, H. and Lindberg, S. E.: Sunlight and iron(III)-induced photochemical production of dissolved gaseous mercury in freshwater, Environ. Sci. Technol., 35, 928–935, 2001.
Download
- Article
(328 KB) - Metadata XML