The EU Project SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) (ACP/AMT/BG/OS inter-journal SI)(ACP/AMT/BG/OS inter-journal SI)
The EU Project SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) (ACP/AMT/BG/OS inter-journal SI)(ACP/AMT/BG/OS inter-journal SI)
Editor(s): W. T. Sturges, J. Williams, G. Roberts, C. Robinson, and R. Sander Special issue jointly organized between Atmospheric Chemistry and Physics, Atmospheric Measurement Techniques, Biogeosciences, and Ocean Science

The EU project SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) was initiated by a larger international consortium, in order to study the contribution of mostly naturally emitted halogenated very short-lived substances (VSLS) to the stratospheric inventory of ozone destroying halogens. Today the SHIVA consortium comprises about 120 full or associated partners coming from 19 institutions in 9 countries.

SHIVA’s scientific objectives infer from past research that mostly brominated and less likely iodinated VSLS, predominately emitted from biologically active surface waters of the global oceans, are eventually significantly contributing to the halogen load of the global stratosphere. Moreover, theoretical studies revealed that only the combination of sufficiently strong VSLS sources together with efficient vertical atmospheric transport would support a relevant contribution of VSLS to the stratospheric halogen burden. Both conditions are likely to be met in the western Pacific during the wet season (November to March). Since details of the relevant processes and their relevance for stratospheric ozone are yet largely unexplored, four major objectives of EU-SHIVA were identified, namely investigations of the following:

  • the oceanic emission strengths of a suite of halogenated VSLS;
  • the atmospheric transport and transformation of the halogenated VSLS;
  • the past, present and likely future trend of the total stratospheric halogen burden;
  • the impact of long and short-lived halogenated trace gases and their inorganic product gases for past, present and future ozone within the upper troposphere, TTL and global stratosphere.

The special ACP-AMT-BG-OS SI is intended to cover the research performed within the EU project SHIVA and related undertakings. Contributing manuscripts may cover investigations of halogenated VSLS emissions from marine micro- and macroalgae, to their atmospheric transport and transformation as well as impacts of VSLS for global ozone studied in the laboratory, field and by theoretical models.

Download citations of all papers

21 Jun 2016
The contribution of oceanic halocarbons to marine and free tropospheric air over the tropical West Pacific
Steffen Fuhlbrügge, Birgit Quack, Susann Tegtmeier, Elliot Atlas, Helmke Hepach, Qiang Shi, Stefan Raimund, and Kirstin Krüger
Atmos. Chem. Phys., 16, 7569–7585, https://doi.org/10.5194/acp-16-7569-2016,https://doi.org/10.5194/acp-16-7569-2016, 2016
Short summary
10 Dec 2015
Oceanic bromoform emissions weighted by their ozone depletion potential
S. Tegtmeier, F. Ziska, I. Pisso, B. Quack, G. J. M. Velders, X. Yang, and K. Krüger
Atmos. Chem. Phys., 15, 13647–13663, https://doi.org/10.5194/acp-15-13647-2015,https://doi.org/10.5194/acp-15-13647-2015, 2015
Short summary
09 Jan 2015
An airborne perfluorocarbon tracer system and its first application for a Lagrangian experiment
Y. Ren, R. Baumann, and H. Schlager
Atmos. Meas. Tech., 8, 69–80, https://doi.org/10.5194/amt-8-69-2015,https://doi.org/10.5194/amt-8-69-2015, 2015
01 Oct 2014
How sensitive is the recovery of stratospheric ozone to changes in concentrations of very short-lived bromocarbons?
X. Yang, N. L. Abraham, A. T. Archibald, P. Braesicke, J. Keeble, P. J. Telford, N. J. Warwick, and J. A. Pyle
Atmos. Chem. Phys., 14, 10431–10438, https://doi.org/10.5194/acp-14-10431-2014,https://doi.org/10.5194/acp-14-10431-2014, 2014
21 Aug 2014
Long-term halocarbon observations from a coastal and an inland site in Sabah, Malaysian Borneo
A. D. Robinson, N. R. P. Harris, M. J. Ashfold, B. Gostlow, N. J. Warwick, L. M. O'Brien, E. J. Beardmore, M. S. M. Nadzir, S. M. Phang, A. A. Samah, S. Ong, H. E. Ung, L. K. Peng, S. E. Yong, M. Mohamad, and J. A. Pyle
Atmos. Chem. Phys., 14, 8369–8388, https://doi.org/10.5194/acp-14-8369-2014,https://doi.org/10.5194/acp-14-8369-2014, 2014
14 Aug 2014
Bromocarbons in the tropical coastal and open ocean atmosphere during the 2009 Prime Expedition Scientific Cruise (PESC-09)
M. S. Mohd Nadzir, S. M. Phang, M. R. Abas, N. Abdul Rahman, A. Abu Samah, W. T. Sturges, D. E. Oram, G. P. Mills, Emma C. Leedham Elvidge, J. A. Pyle, N. R. P. Harris, A. D. Robinson, M. J. Ashfold, M. I. Mead, M. T. Latif, M. F. Khan, A. M. Amiruddin, N. Banan, and M. M. Hanafiah
Atmos. Chem. Phys., 14, 8137–8148, https://doi.org/10.5194/acp-14-8137-2014,https://doi.org/10.5194/acp-14-8137-2014, 2014
04 Jul 2014
Deriving an atmospheric budget of total organic bromine using airborne in situ measurements from the western Pacific area during SHIVA
S. Sala, H. Bönisch, T. Keber, D. E. Oram, G. Mills, and A. Engel
Atmos. Chem. Phys., 14, 6903–6923, https://doi.org/10.5194/acp-14-6903-2014,https://doi.org/10.5194/acp-14-6903-2014, 2014
08 Apr 2014
Very short-lived bromomethanes measured by the CARIBIC observatory over the North Atlantic, Africa and Southeast Asia during 2009–2013
A. Wisher, D. E. Oram, J. C. Laube, G. P. Mills, P. van Velthoven, A. Zahn, and C. A. M. Brenninkmeijer
Atmos. Chem. Phys., 14, 3557–3570, https://doi.org/10.5194/acp-14-3557-2014,https://doi.org/10.5194/acp-14-3557-2014, 2014
02 Apr 2014
Chemical ozone loss and ozone mini-hole event during the Arctic winter 2010/2011 as observed by SCIAMACHY and GOME-2
R. Hommel, K.-U. Eichmann, J. Aschmann, K. Bramstedt, M. Weber, C. von Savigny, A. Richter, A. Rozanov, F. Wittrock, F. Khosrawi, R. Bauer, and J. P. Burrows
Atmos. Chem. Phys., 14, 3247–3276, https://doi.org/10.5194/acp-14-3247-2014,https://doi.org/10.5194/acp-14-3247-2014, 2014
03 Feb 2014
Drivers of diel and regional variations of halocarbon emissions from the tropical North East Atlantic
H. Hepach, B. Quack, F. Ziska, S. Fuhlbrügge, E. L. Atlas, K. Krüger, I. Peeken, and D. W. R. Wallace
Atmos. Chem. Phys., 14, 1255–1275, https://doi.org/10.5194/acp-14-1255-2014,https://doi.org/10.5194/acp-14-1255-2014, 2014
28 Jan 2014
Estimates of tropical bromoform emissions using an inversion method
M. J. Ashfold, N. R. P. Harris, A. J. Manning, A. D. Robinson, N. J. Warwick, and J. A. Pyle
Atmos. Chem. Phys., 14, 979–994, https://doi.org/10.5194/acp-14-979-2014,https://doi.org/10.5194/acp-14-979-2014, 2014
09 Dec 2013
The contribution of oceanic methyl iodide to stratospheric iodine
S. Tegtmeier, K. Krüger, B. Quack, E. Atlas, D. R. Blake, H. Boenisch, A. Engel, H. Hepach, R. Hossaini, M. A. Navarro, S. Raimund, S. Sala, Q. Shi, and F. Ziska
Atmos. Chem. Phys., 13, 11869–11886, https://doi.org/10.5194/acp-13-11869-2013,https://doi.org/10.5194/acp-13-11869-2013, 2013
06 Dec 2013
Evaluating global emission inventories of biogenic bromocarbons
R. Hossaini, H. Mantle, M. P. Chipperfield, S. A. Montzka, P. Hamer, F. Ziska, B. Quack, K. Krüger, S. Tegtmeier, E. Atlas, S. Sala, A. Engel, H. Bönisch, T. Keber, D. Oram, G. Mills, C. Ordóñez, A. Saiz-Lopez, N. Warwick, Q. Liang, W. Feng, F. Moore, B. R. Miller, V. Marécal, N. A. D. Richards, M. Dorf, and K. Pfeilsticker
Atmos. Chem. Phys., 13, 11819–11838, https://doi.org/10.5194/acp-13-11819-2013,https://doi.org/10.5194/acp-13-11819-2013, 2013
15 May 2014
| Highlight paper
A tropical West Pacific OH minimum and implications for stratospheric composition
M. Rex, I. Wohltmann, T. Ridder, R. Lehmann, K. Rosenlof, P. Wennberg, D. Weisenstein, J. Notholt, K. Krüger, V. Mohr, and S. Tegtmeier
Atmos. Chem. Phys., 14, 4827–4841, https://doi.org/10.5194/acp-14-4827-2014,https://doi.org/10.5194/acp-14-4827-2014, 2014
04 Jul 2013
Impact of the marine atmospheric boundary layer conditions on VSLS abundances in the eastern tropical and subtropical North Atlantic Ocean
S. Fuhlbrügge, K. Krüger, B. Quack, E. Atlas, H. Hepach, and F. Ziska
Atmos. Chem. Phys., 13, 6345–6357, https://doi.org/10.5194/acp-13-6345-2013,https://doi.org/10.5194/acp-13-6345-2013, 2013
02 Jul 2013
Atmospheric test of the J(BrONO2)/kBrO+NO2 ratio: implications for total stratospheric Bry and bromine-mediated ozone loss
S. Kreycy, C. Camy-Peyret, M. P. Chipperfield, M. Dorf, W. Feng, R. Hossaini, L. Kritten, B. Werner, and K. Pfeilsticker
Atmos. Chem. Phys., 13, 6263–6274, https://doi.org/10.5194/acp-13-6263-2013,https://doi.org/10.5194/acp-13-6263-2013, 2013
03 Jun 2013
Emission of atmospherically significant halocarbons by naturally occurring and farmed tropical macroalgae
Emma C. Leedham Elvidge, C. Hughes, F. S. L. Keng, S.-M. Phang, G. Malin, and W. T. Sturges
Biogeosciences, 10, 3615–3633, https://doi.org/10.5194/bg-10-3615-2013,https://doi.org/10.5194/bg-10-3615-2013, 2013
CC BY 4.0