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Abstract. The Mediterranean Sea comprises just 0.8 % of the global oceanic surface, yet considering its size, it is regarded as
a disproportionately large sink for anthropogenic carbon due to its physical and biogeochemical characteristics. An underwater
glider mission was carried out in March—April 2016 close to the BOUSSOLE and DyFAMed time series moorings in the
northwestern Mediterranean Sea. The glider deployment served as a test of a prototype ion-sensitive field-effect transistor pH
sensor. Dissolved oxygen (O2) concentrations and optical backscatter were also observed by the glider and increased between
19 March and 1 April, along with pH. These changes indicated the start of a phytoplankton spring bloom, following a period of
intense mixing. Concurrent measurements of CO» fugacity and O concentrations at the BOUSSOLE mooring buoy showed
fluctuations, in qualitative agreement with the pattern of glider measurements. Mean net community production rates (/V) were
estimated from glider and buoy measurements of dissolved Oy and inorganic carbon (DIC) concentrations, based on their mass
budgets. Glider and buoy DIC concentrations were derived from a salinity-based total alkalinity parameterisation, glider pH,
and buoy CO, fugacity. The spatial coverage of glider data allowed the calculation of advective O, and DIC fluxes. Mean N
estimates for the euphotic zone between 10 March and 3 April were (—+7+35—17 & 36) for glider O,, (44 £ 94) for glider
DIC, (+#=+3517 £ 37) for buoy O3 and (49 4= 86) mmolm~2d~! for buoy DIC, all indicating net metabolic balance over
these 25 days. However, these 25 days were actually split into a period of net DIC increase and O» decrease between 10 and
19 March and a period of net DIC decrease and O increase between 19 March and 3 April. The latter period is interpreted
as the onset of the spring bloom. The regression coefficients between Os and DIC-based N estimates were 0.25+0.08 for the
glider data and 0.5440.06 for the buoy, significantly lower than the canonical metabolic quotient of 1.45 £ 0.15. This study
shows the added value of co-locating a profiling glider with moored time series buoys, but also demonstrates the difficulty in

estimating [V, and the limitations in achievable precision.
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1 Introduction

Around a quarter of anthropogenic carbon dioxide (CO2) emitted between 2011 and 2020 was absorbed by the oceans
(Friedlingstein et al., 2021). On timescales of less than a day to many months, CO5 in the ocean is influenced by biolog-
ical (photosynthesis, respiration) and physical processes (air-sea gas exchange, mixing and advection) (Hood and Merlivat,
2001; Takahashi et al., 2002; Copin-Montégut et al., 2004; Hall et al., 2004; Alkire et al., 2014). Understanding the processes
affecting export of carbon from the surface to the interior ocean is key for quantifying the effects of a future warmer climate
(Bauer et al., 2013). Whether a location is predominantly autotrophic (dominated by photosynthesis) or heterotrophic (dom-
inated by respiration) determines the sign of net community production, which is defined as gross primary production (by
phytoplankton) minus total respiration (by phytoplankton, zooplankton, and bacteria) (Alkire et al., 2012).

The surface of the Mediterranean Sea (2.5 x 10% km?) represents just 0.8 % of oceans globally, but relative to its size, it
is regarded as an important sink for anthropogenic carbon dioxide emissions due to higher levels of anthropogenic carbon
than in the Atlantic or Pacific Oceans (Lee et al., 2011; Schneider et al., 2010). This is due to a low Revelle factor (Broecker
et al., 1979) related to relatively warm, salty, and high alkalinity waters, encouraging a net flux of carbon dioxide from the
atmosphere to the ocean. Carbon dioxide dissolved in water (CO2(aq) and HoCO3) dissociates to bicarbonate (HCO; ), and
carbonate (CO?), releasing H™ ions (Zeebe and Wolf-Gladrow, 2001). COx(aq), HoCOs, HCO3 and Cng make up total
dissolved inorganic carbon (DIC), with HCO; accounting for 90 % of DIC. Carbon dioxide absorbed by the ocean is thought
to reach the interior via deep water formation and biological processes (Alvarez et al., 2014; Arrigo et al., 2008).

The northwestern Mediterranean Sea displays strong seasonal variability. At the surface, temperatures remain at around 13
to 14 °C during winter, increasing to maxima of 26 to 28 °C during summer. Wind-driven vertical mixing occurs during autumn
and winter, whilst surface stratification is common during summer as a result of solar heating (Copin-Montégut et al., 2004;
D’Ortenzio et al., 2008). Vertical mixing can transport nutrients from greater depths to oligotrophic surface waters (Marty
and Chiavérini, 2002; de Fommervault et al., 2015). A combination of nutrient availability and increased stability driven by
surface warming of 0.2 °C can trigger phytoplankton blooms (Yao et al., 2016; Copin-Montégut et al., 2004). The onset of the
spring bloom in the northwestern Mediterranean Sea varies from March to April, as observed between 2013 and 2015 at the
BOUSSOLE buoy (Bouée pour I’acquisition de Séries Optiques a Long Terme, http://www.obs-vlfr.fr/Boussole/) close to the
DyFAMed (Dynamique des Flux Atmospheriques en Mediterraneé) site in the Ligurian-Provencal basin (Merlivat et al., 2018).
Significant increases of particulate and dissolved organic carbon (POC and DOC) concentrations have been observed during
bloom events (e.g. Carlson et al. (1998)). POC and DOC export from the ocean surface constitute the ‘biological carbon pump’
(Carlson et al., 1998; Van Der Loeff et al., 1997; Alkire et al., 2014).

Quantifying these processes in detail requires sufficient data coverage in space and time. Few DIC time series have been
maintained continuously, among them the DyFAMed mooring, which is complemented by monthly ship hydrocasts (Copin-
Montégut et al., 2004; Antoine et al., 2008; Taillandier et al., 2012). The DyFAMed site is considered an open ocean location
as it is roughly 52 km from the coast in > 2000 m deep water. The mooring is useful for studying processes occurring at

specific depth levels at one location (Merlivat et al., 2018; Copin-Montégut et al., 2004; Hood and Merlivat, 2001), but a lack
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of vertical and horizontal spatial information is a limiting factor when quantifying mass and energy budgets. Autonomous
underwater gliders have been used to survey the northwestern Mediterranean Sea since 2005 (Niewiadomska et al., 2008; Cyr
et al., 2017). They are useful platforms for a range of physical and biogeochemical sensors and can operate autonomously
for many months in up to 1000 m deep water using battery power (Eriksen et al., 2001; Piterbarg et al., 2014; Queste et al.,
2012). The deployment of autonomous platforms, such as underwater gliders, complements fixed-depth time series by enabling
observations of biogeochemical and physical horizontal and vertical gradients. This paper aims to estimate net community
production (/V) at the DyFAMed site using in situ continuous measurements from a mooring and an underwater glider deployed
in March—April 2016. The additional glider data help overcome limitations of the single-depth mooring data both in terms of
vertical data coverage and the contribution of horizontal advection. Furthermore, the glider mission served as a test for a
prototype ion-sensitive field-effect transistor (ISFET) pH sensor, which complemented the standard temperature, salinity, and

¢(O2) sensors, to provide both O,- and DIC-based net community production.

2 Data collection and quality
2.1 Ship measurements

Ship CTD and water sample profiles were collected by RV Téthys IT on 7 March and 16 April 2016 at the DyFAMed site (Fig. 1).
Ship hydrocast profiles of temperature and salinity (Sea-Bird Scientific SBE 9 CTD), and ¢(O2) (Sea-Bird Scientific SBE 43
sensor), were supplemented by discrete Niskin bottle samples for ¢(O2), ¢(DIC), total alkalinity (Ar), and concentrations of
total oxidised nitrogen (NO,, ~, i.e., the total of NO3~ and NO, ™), silicate (Si(OH),), and phosphate (PO4>~), see Appendix A

for details. Implausible outliers in the CTD profiles (< 1% of values) were flagged and excluded from further analysis.
2.2 BOUSSOLE and meteorological buoy measurements

At BOUSSOLE, CO fugacity f(COg) (Wanninkhof and Thoning, 1993) at 10 m depth was measured spectrophotometrically
via a CARIOCA sensor using thymol blue pH indicator. Inside an exchanger cell, dissolved CO, equilibrates with the pH
indicator across a silicon membrane. The change in the optical absorbance of the pH indicator is converted to hourly readings
of f(CO2) (Hood and Merlivat, 2001), with an accuracy of 3 patm (Copin-Montégut et al., 2004). The CARIOCA sensor is
replaced roughly every 6 months with a newly calibrated instrument (Merlivat et al., 2018). To remove temperature effects, we
show f13(CO-), normalised to a temperature of 13 °C (Takahashi et al., 1993).

Temperature and salinity were measured hourly using two Sea-Bird Scientific SBE 37-SM MicroCAT sensors at 3 and 10
m depth. The 10 m-MicroCAT failed on 15 March 2016. Up to that point, the mean temperature difference between 10 m
and 3 m was (—0.01 £0.03) °C. The corresponding mean practical salinity S(PSS-78) difference was —0.069 £ 0.004. The
10 m-MicroCAT had the same salinity offset to the ship CTD cast on 7 March. The 3 m-MicroCAT agreed to within 0.007°C
with temperature and to within 0.006 with salinity of the ship CTD cast on 7 March. Three days before the ship CTD cast on
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Figure 1. (a) The northwestern Mediterranean Sea and glider deployment area (small grey box) superimposed on the World Ocean Atlas 2013
surface ¢(O2) March climatology (https://www.nodc.noaa.gov/OC5/woal3/woal3data.htm), with accompanying AVISO satellite absolute
mean surface currents (cm s~ *, white arrows) for 6 March—6 April 2016 (http:/marine.copernicus.eu/services-portfolio/access-to-products).
(b) A close-up of the deployment area at the DyFAMed / BOUSSOLE site. The pesition-positions of each-the gliderdata-point’s track (yellow),
the DyFAMed mooring (7.90° E, 43.36° N) (white), the BOUSSOLE buoy (7.87° E 43.42° N), and the meteorological buoy ‘Cote D’ Azur’
(7.83° E 43.38° N), are superimposed on surface chlorophyll a concentrations (https://oceancolor.gsfc.nasa.gov/products) on 24 March 2016

(Hu et al., 2012). The bathymetry is flat and greater than 2000 m depth.
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16 April, the 3 m-MicroCAT also failed. However, its final salinity reading was within 0.01 of the ship value. We therefore
used the 3 m-MicroCAT temperature and salinity readings for calculating buoy-related results.

¢(O4) was measured at BOUSSOLE using Aanderaa oxygen optodes at 3 and 10 m. Only nighttime optode measurements
were used because the daytime readings were affected by light-induces spikes (Binetti et al., 2020). Winkler titration samples
taken during the ship visits on 7 March and 16 April were used to calibrate optode ¢(O2) (Coppola et al., 2018).

The meteorological buoy ‘Cdte D’ Azur’ maintained by Météo-France is located close to the BOUSSOLE buoy (Fig. 1). This
meteorological buoy measures wind speed at 3.8 m height above sea level (which is extrapolated to 10 m by adding 10 % of the
value), wind direction, air temperature, atmospheric pressure, relative humidity, precipitation and sea surface salinity. Data are
archived in the database ‘SErvice de DOnnées de I’OMP (SEDOO) Mistrals’ (http://mistrals.sedoo.fr/Data-Download). Wind

speed and sea level pressure were used in this study.
2.3 Glider measurements

An iRobot Seaglider model 1KA (sg537; named ‘Fin’) with an ogive fairing was deployed close to the DyFAMed mooring
site. A total of 147 dives (294 profiles) were completed by the glider between 7 March and 5 April 2016 covering a diamond-
shaped pattern at 7.64-8.00° E, 43.22-43.50° N (Fig. 1). The glider completed 7 circumnavigations of the survey pattern, each
in approximately 4 days, with each of the four sides of the pattern taking approximately 1 day to complete. The glider was
equipped with a non-pumped SBE model CTD sensor, an Aanderaa model 4330F oxygen optode sensor, a WET Labs Eco
Puck sensor measuring optical backscatter at two wavelengths (470 nm and 700 nm), and two paired prototype ISFET pH and
p(COy) sensors (Shitashima et al., 2013; Hemming et al., 2017).

Conductivity, temperature, and pressure were used to derive potential temperature (6) and practical salinity (.5). Glider ¢(O2)
was calibrated against ship-based ¢(O-) profiles (Fig. 2a, Appendix B1). Outliers (< 1% of values) outside specified standard
deviation ranges (3.5 standard deviations for depths > 400 m; 10 standard deviations for depths < 400 m) were flagged and
discarded from further analysis.

The deployment offered a second opportunity to trial prototype ISFET sensors, previously tested on a glider during the
REP14-MED experiment in the Sardinian Sea (Hemming et al., 2017; Onken et al., 2018). ISFET pH was corrected (Fig. 2b)
for drift and pressure effects, similar to the steps undertaken by Hemming et al. (2017). The drift- and pressure-corrected

ISFET pH was calibrated by linear regression against ship pH on 7 March and 16 April 2016 (Appendix B2).

3 Development of a spring bloom

The spring bloom at the DyFAMed site is characterised by a decrease of surface f13(CO3) due to photosynthesis. Its onset
varies from year to year (e.g., April 2013, March 2014), and usually occurs after a period of deep mixing (Merlivat et al., 2018).
The glider deployment in March—April 2016 provided horizontal and vertical context to the fixed-depth near-surface mooring

sensors when the spring bloom was expected to occur.
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corresponding equation between ¢(O2) and pHt — 8 is also shown.
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Sea surface temperature (SST) remained relatively stable below 13.5 °C between 7 March and 19 March whilst surface
f13(CO2) increased by 40 patm (Fig. 4a), and surface salinity increased by 0.13 (Fig. 4b). The higher f15(CO2), higher
salinity waters were likely the results of wind-induced deep mixing and increased convection (Fig. 4a). These waters originate
from 50-150 m depth where high salinity (Fig. 5b), high f13(CO3), low ¢(O3) (Fig. 5¢) Levantine Intermediate Water (LIW)
exists (Knoll et al., 2017). SST increased by up to 0.6 °C between 19 and 20 March, and continued to increase intermittently
to a maximum of 14.3 °C on 5 April (total increase of 1 °C over the deployment period).

Whilst SST increased between 19 March and 1 April, f13(CO2) decreased by 85 patm. This was the start of the spring bloom,
associated with increased surface ¢(O3), pHr, and optical backscatter (Fig. 4b, Fig. 5¢,d,e). O, is produced by photosynthesis.
The pHr increase reflects biological CO5 uptake altering the carbonate equilibria (Cornwall et al., 2013; Copin-Montégut
and Bégovic, 2002), and increases in temperature. Optical backscatter relates to predominantly POC (Stramski et al., 2004),
with minor contributions from mineral particles and gas bubbles at this site. Therefore, all of these observations suggested an
increase in biological production.

A clear relationship between potential temperature (), ¢(O3), and pHr existed within the euphotic layer (mean depth:
Zeu = 467 m) (Figs. 3, Sa,c,e), with higher potential temperature associated with higher pHr and ¢(O2). The stronger surface
stratification resulting from calmer meteorological conditions, (e.g. reduced wind speed after 19 March, Fig. 4a), enhancing
light supply and stability, causing productivity to increase (Sverdrup, 1953; Pingree et al., 1977). As a result of increased
photosynthesis, surface waters became O»-supersaturated by 27 March (Fig. 4b, Fig. 5c).

Nutrient concentrations obtained by ship hydrocasts for depths of 10-90 m on 7 March were generally highest at 90 m
where there is increased remineralisation, and lowest at the surface where there is increased usage by phytoplankton (Fig. 6a).
Clear differences can be seen in nutrient samples obtained before and after the spring bloom (Fig. 6b). NO, ~ concentrations
decreased by 7 mmolm ™3, Si(OH), by 2.5 mmolm 3 and PO,3~ by 0.22 mmolm~3 at 30 m depth, associated with bio-
logical production during the spring bloom period. A deep chlorophyll ¢ maximum is often found around this depth (Estrada,
1996) later in the season but was not apparent in our data. At 70 m and 90 m depth, nutrient concentrations did not vary much
between March and April, while there was a significant decrease in ¢(O2) and a small change in potential temperature (Fig. 6¢).

This corresponded to increased stratification with a stronger potential temperature gradient within the top 70 m.

4 Estimating net community production from Os and DIC mass budgets

Net community production [V is estimated based on mass budgets using the method described by (Alkire et al., 2014):

Zlim

(86 @ dc

8t+uam+v8y)dzE’lse+N(O2)+Fe+Fv (1)

This equation applies to N (Oz). For DIC, the N(O3) term is replaced with — N (DIC) because during photosynthesis, DIC

is consumed and Oy is produced, and vice versa for respiration.
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Figure 4. (a) Wind speed at 10 m above sea level at the meteorological buoy (dark grey shading), sea surface temperature (red), and CO2
fugacity normalised to 13 °C (blue) at 10 m depth at the BOUSSOLE buoy. The partial pressure of atmospheric CO3 in March 2016 (dotted
blue) at Lampedusa, Italy, is shown. The onset of the spring bloom (dashed green), determined using buoy f(CO2) measurements, is plotted
for comparison.(b) Glider measurements of salinity (orange), optical backscatter at 700 nm (black), dissolved oxygen concentrations (c(O2))
(turquoise), and calibrated pHr (pink) binned at 10 m. The oxygen concentration at saturation (dashed turquoise; parameterisation of Garcia

and Gordon (1992) based on Benson and Krause (1984)) is plotted for comparison.

The following diagnostic equations are therefore used to calculate NV based on Oy and DIC mass budgets:

Al

N(02) = 2192 4 (00) 4 Fae(02) ~ Fu(02) - (0) @

N(DIC) = 7%210) — Fpuo(DIC) — Fpay (DIC) + Fu(DIC) + F, (DIC) 3)
AT

A7 1s the integrated column inventory change over time, Fyqy is horizontal advection, Fys is the air-sea flux (positive for
the direction ocean to atmosphere), F is the entrainment flux due to mixed layer deepening, and F} is the diapycnal eddy
diffusion flux. The time period chosen to derive the fluxes required to calculate N spanned 25 days between 10 March and 3
April, and included 285 individual profiles (glider dives 10 to 147) spanning the entire survey domain. The first nine dives were
omitted because they were used for glider flight trimming. Mean values over the 25 day-period are shown in Table 2. Table 1

gives the uncertainties considerd for each budget term.

Al

4.1 Inventory change 37

Daily mean column inventories were integrated between surface and zy;y, for all glider profiles within a 4-day moving window

centred on each date. As integration depth zj;,,,, we used the mean euphotic depth of 46 m, derived from satellite measurements
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The vertical dashed black lines represent the glider reaching the most northerly point of its transects.
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(c) changes in potential temperature (), practical salinity (.5), and ¢(O2) (mmol m~?) between March and April 2016.

using the method described by Lee et al. (2007). Inventory changes (%) were calculated from the day-to-day inventory

differences:

Al S ergra(z)dz — [ e(z)dz
At 1d

4.2 Advection F,q4,

“)

The glider measured within an Eulerian framework, sampling geographic locations over time. In contrast to a Lagrangian
framework, estimates of F},4, are needed to close the budget. Advection was calculated following Alkire et al. (2014) using
zonal and meridional mean horizontal concentration gradients and current velocities within 23, using a moving time window
of 8 days. This longer time window of 8 days was chosen to reduce the error in the mean gradients (Fig. 7). Mean horizontal
concentration gradients A.(z) and B.(z) were calculated for each 5 m depth bin using robust plane-fits of all concentration

measurements in the 8-day time window:

ct(2) = Ac(2)x 4+ Be(2)y +de(2) 5)

10
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Figure 7. Plane-fits of dissolved oxygen concentrations (¢(Oz)) at 7.5 m), 17.5 m and 42.5 m depth within z1;m for 25 March 2016.

where d.(z) is a constant (not used), and x and y are Cartesian coordinates calculated using zonal and meridional distances,
respectively. Bisquare weights were applied when determining the fit coefficients (Gross, 1977) to limit the effect of outliers.

The zonal (east-west) concentration gradients were small for both O and DIC (Fig. 8). Opposing meridional (north-south)
gradients for Oy and DIC indicate biological patchiness. However, interestingly the positive gradient for O, (corresponding to
higher concentrations in the north) is opposite to the pattern seen in the satellite-derived ocean colour (Fig. 1b), which shows
lower chlorophyll @ concentrations in the north (implying that the bloom propagates from south to north). This highlights that
primary production and net community production are not always directly correlated.

To estimate the absolute geostrophic currents within the survey domain the dynamic height anomaly (%) was calculated
relative to the surface using glider salinity, temperature and pressure (Roquet et al., 2015), and planes were fitted for a moving

time window of 8-days:

Ui (2) = Aw(2)z+ Bu(2)y +du(2) ©)

Using these plane-fits, the meridional and zonal components of geostrophic shear were derived and referenced to the 8-day
running means of the meridional and zonal components of OSCAR velocities (Bonjean and Lagerloef, 2002). Referencing
the geostrophic shear with glider dive-averaged currents (DACs) was initially explored, but when compared with satellite data

products (Fig. 8c,d) it was clear that the meridional velocities (v) were unrealistic (cf. section 7).

11



Figure 8. Zonal and meridional mean horizontal concentration gradients for (a) ¢(O2) and (b) ¢(DIC) estimated using robust plane-fits.
The black box in panel (b) highlights the y-limits for panel (a) for reference. (c) Absolute mean u velocity, and (d) v velocity, using glider

measurements in the top 10 m referenced to OSCAR velocities (blue), and referenced to dive-averaged currents (DACs, red), absolute surface
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Table 1. The uncertainties considered for each flux term when estimating total propagated error. The mean errors for [V using glider (Ng)
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03/04

‘ Term ‘ Uncertainties considered ‘ Ng(02) ‘ Ny (02) ‘ Ng(DIC) | Nu(DIC)
% Standard error of profiles (glider) or concentrations over time (buoy); 14 9 38 8
root mean square error of the calibration fits (glider)
Flaav 10 % absolute velocity; concentration and velocity plane-fit errors 29 29 85 85
Flase Root mean square error of the calibration fits (O2); 15 14 2 2
20 % uncertainty of the gas transfer velocity (Wanninkhof, 2014);
standard deviations of temperature and salinity when calculating csa¢
F, Standard error of inventory 0.3 0.3 0.6 0.6
F, Standard error of F\, over 4-day moving window 0.2 0.2 0.1 0.1
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The advection flux (F,4,) was calculated from the horizontal concentration gradients and the absolute geostrophic velocities:

Faav(z) = Ac(2)u(z) + Be(2)v(2) (N

The mean gradients using measurements binned every 5 m between the surface and zj;,, were averaged at each time step and

used for estimating advection (Fig. 8a,b).
4.3 Air-sea gas exchange F 5

Air-sea gas exchange (negative for fluxes from atmosphere to ocean) was estimated for Oz and CO2/DIC using:

J] in (Zlim: Zmix)

Fase(OQ) = k‘(OZ) [Csurf(o2) - (1 + Abubble) Csat(OQ - ®
with the equilibrium bubble correction Apupbie = 0.01[wio/(9ms™2)]* (Woolf and Thorpe, 1991), and

min(z im; Zmix
Fe(€03) = K(CO3) [yt (CO3) — e (COy)) i Zmix) ©)

Zmix

The gas transfer velocity k is calculated according to Wanninkhof (2014). ¢, is the mean concentration in the top 10 m over
a moving 4-day time window. The mixed layer depth z,,;, was estimated using the potential density criteria of the algorithm, of
Holte and Talley (2009), with a threshold of 0.03 kg m ™3 and gradient of 0.0005 kg m~3 dbar~!. These criteria are sensitive
enough to detect the actual mixing layer-depth relevant for gas exchange fluxes (Brainerd and Gregg, 1995). cg.t(O2) is
the O5 air-saturation concentration of Garcia and Gordon (1992), corrected to actual sea-level pressure, pharo- Csat(CO2) =
X(CO2)pbaro F'(CO2) is the CO, air-saturation concentration, calculated using the dry mole fraction of atmospheric COx,
X(CO2), at the nearest NOAA Carbon Cycle network station Lampedusa, Italy, in March 2016 (ftp://aftp.cmdl.noaa.gov/
data/trace_gases/co2/flask/surface, site code: LMP, Dlugokencky et al. (2021)). F(CO3) is the CO2 solubility function in
mol dm ™2 atm~"! (Weiss and Price, 1980). The last term of the equations is a scaling factor that apportions the air-sea exchange

flux to the depth layer of interest (z);, = 46 m) when zp,i« is deeper than zjjp,.
4.4 Entrainment F,

When the mixed layer deepens to depths greater than zy;,,, water from below with different concentrations mix with water
within the layer. As a result, there is either a reduction or an increase in mean concentration within zj;,, depending on the

vertical concentration distribution. To account for this, F;, was estimated following Binetti et al. (2020):

I (Zmix(t2)) 22— — 11 (21im)
F = mix (t2) (10)
ta—1
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where 17 (zmix(t2)) is the inventory at time ¢; within the mixed layer depth z,,,;x at time t2; 7 (211, ) is the inventory at ¢; within
21im; t2 — t1 represents the time difference. Mean values of z,,;x and c averaged over a 4 day moving time window were used.
The mean F,(O) was (—65 4 1) mmolm~2d~! and the mean F,(DIC) was (—74 + 1) mmolm~2 d~! for the 7 days in

the 25 day-period when entrainment (mixed-layer deepening) occurred and zp,ix > Zjim-
4.5 Vertical diapycnal eddy diffusion F},

Vertical diapycnal eddy diffusion across the base of zj;,,, was estimated using the measured concentration—density gradients

(Copin-Montégut, 2000) and an estimate of the turbulence energy dissipation rate e:

0.25¢p 0
P, = 2P (11)
g Op
where the concentration gradient was evaluated using centred finite differences at zjj,, £5m. e = 1.5 X 1079 m2s—3 was

taken from measurements in the Mediterranean bottom pycnoline (Cuypers et al., 2012). Copin-Montégut (2000) guessed a 33
times higher value of 5 x 1078 m? s™2 in her study of net community production at DYFAMED, but this value was probably
an overestimate because even in the presence of eddies, Cuypers et al. (2012) estimates ¢ to be only 8.5 x 1079 m?s~3,
Concentration gradients were calculated for each profile within a 4-day moving window and then averaged to get one gradient
per time step.

The mean F,(O3) was (—0.8 £0.2) mmolm~2d~! and the mean F, (DIC) was (—0.140.1) mmolm~—2d =" over the 25
day-period. With the higher € value of 8.5 x 1072 m?s~3 found in eddies, these fluxes would be 5.7 times higher, but still

negligible with respect to the other four terms in the mass budget.
4.6 Buoy measurements

We calculate N from ¢(O2) and ¢(DIC) at the BOUSSOLE buoy (/V},) for comparison with N, estimates. Ny, was estimated
similarly to N, in that we follow the budget approach defined in Sect. 4, and equations defined thereafter. Inventory changes
were calculated from surface observations multiplied by zy;,, because depth-profiles are not measured at the buoy. When 2p,ix
< Z1im, this most likely results in an overestimate of the actual inventory change because N decreases with depth. Also, F,se
was scaled in the same way as the glider-based estimates when zy,ix > 21im. Finally, Faqv, Fo, and F, could not be derived

from the single-depth measurements at BOUSSOLE. Instead, the glider-derived fluxes were also used to compute Ny,.

5 Net community production [NV

Prior to 21 March, N, and IV}, were negative or close to zero most of the time. This could be a sign of local net heterotrophic
conditions, but could also be due to underestimated entrainment (F¢) or vertical eddy diffusion fluxes (F}). This observation
cannot be explained by physical undersaturation driven by recent cooling because temperatures decreased by only 0.2 °C

between 1 and 21 March, explaining at most 0.4 % undersaturation. After 21 March, N exceeds zero until the end of the
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Figure 9. Inventory change (AI/At), advection (Faqv), air-sea exchange (Fase), entrainment (F.) fluxes and net community production (V)
of O3 (a,b; top legend) and DIC (c,d; bottom legend) related to glider (a,c) and buoy (b,d) measurements. Uncertainty intervals are shown as

dotted lines. All N estimates are compared in panel (e).

deployment period. The approximate start of the spring bloom was 19 March as evidenced by the buoy ¢(DIC) (Fig. 4), which
is also the time when NV}, (DIC) becomes positive, lasting until the end of the deployment period.

Ng(O2) peaks on 22-23 and 31 March at around 70 mmol m~2d~!, matching periods of high ¢(O2) (Fig. 5¢). In contrast,
N, (Oy) is highest between 25 and 31 March at > 80 mmol m~—2 d~!. The total range of N(DIC) is larger than for N(Oy).
Ng(DIC) and Ny,(DIC) reach similar peak values on 26 and 29-30 March.

The contributions of F,q4, and F, are significant at times. F,(O2) < —80 mmolm~2d~! on days when wind is high and
the surface mixed layer is deepening (Fig. 9), and there are periods when absolute F,qy(O2) > 50 mmolm~2d~1. Ab-
solute F,q,(DIC) is on average 34 mmolm~2d~! higher than F,4,(O>), and on some days absolute Fq,(DIC) > 100
mmolm~2d~1. F,(DIC) is generally of absolute F,(O3). Surface waters are undersaturated with Oy prior to 29 March
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Table 2. Comparison of AI/At , Fadv, Fase, Fyv and N estimates using ¢(O2) and ¢(DIC), and the corresponding flux terms used in
this study with others in the literature. The N estimates of Copin-Montégut (2000) are based on AI/At, Fase, and Fy, (calculated with a

turbulence energy dissipation rate of e = 5.0 x 108 m?s73).

Time period Variable AI/At Faav Fose F, N

mmolm~2d7!

10 March — 3 April 2016 O glider 15+14 —94+29 | —42£15 —-1£0 —-17+£36
O3 buoy 37+£9 —9+29 | 3014 —-1+0 17+37
DIC glider | —24+38 12+85 —10+2 1£0 44 £94
DIC buoy —32+£8 12+85 —9+2 1£0 49 £ 86

19 March — 3 April 2016 O glider 49+£15 —21+31 | 2449 —-1=£0 9+ 36
O3 buoy 85£11 —21+31 —2+7 —-1+0 67£35
DIC glider | —77+41 7+89 —9+2 1£0 85 £98
DIC buoy —120£7 7+89 —9+2 1£0 128 £90

Coppola et al. (2018)

1994 — 2014 average O ship 18+5 — T£5 — 2547
1994 — 2014 March average | O2 ship 11+£12 — —4+5 — 7T+£13
1994 — 2014 April average O, ship 20+13 — 15+3 — 35+13

Copin-Montégut (2000)

4-8 May 1995 (0-30 m) O3 ship —-3+14 — 20+6 —26+£10 | 43+£19
4-8 May 1995 (0-38 m) DIC ship —28+13 — —1+0 39+4 68 £13
19-23 May 1995 (046 m) | Og ship 56 £18 — 14+4 —45+10 | 115+23
19-23 May 1995 (046 m) DIC ship —36+18 — —2+1 31+£4 69£19

(negative F,g), and then oversaturated until the end of the deployment period (positive Fyse; Fig. 4.) Surface waters are
undersaturated in CO4 throughout the deployment period (negative Flge).

Between 10 March and 3 April we estimate an average N of between (—17 4= 35) and (49 + 86) mmol m~2 d~!, depending
on the variable used (Table 2). Between 19 March and 3 April, [NV was positive most of the time, and on average ranged between

(9 + 36) and (128 & 90) mmolm—2d 1.

6 Stoichiometric relationship

Dividing N(O2) by N(DIC) provides the photosynthetic quotient Qp, previously estimated as 1.45+ 0.15 (Laws, 1991; An-
derson and Sarmiento, 1995; Anderson, 1995). The average Qp in this study using N, (O2) and N, (DIC) between 10 March
and 3 April was 0.14£0.81, excluding periods when N, (DIC) < 30 mmolm~2 d~" (i.e., close to zero within its uncertainty).
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When using Ny, (O2) and N, (DIC) over the same time period, average Qp was 0.49 £0.60. Using linear regression of N (Oz)
against N (DIC) provides another way to derive Qp. The resulting slopes are 0.25 4 0.06 for the glider and 0.54 +0.06 for the
buoy N estimates. These Qp values therefore do not match the canonical values of 1.45 4+ 0.15, but similarly low values of
0.63 + 0.30 were observed by Copin-Montégut (2000) in early May 1995 at the same site (Table 2).

The change of nutrient concentrations provides an alternative to estimating net community production. Assuming the ob-
served NO, ~ drawdown of 7 mmol m ™~ and the PO,3~ drawdown of 0.22 mmol m 3 occurred over a period of 15 to 25 days
(with 15 days corresponding to the period 19 March to 3 April; the exact period is not known because we only have observa-
tions on 7 March and 16 April), extends over the same depth horizon (46 m) as used for the Os- and DIC-based N calculations,
and neglecting any additional contribution to NCP fuelled by diapycnal mixing, this corresponds to rates of 13 to 21 mmol
mmolm~2d~! for nitrogen and 0.4 to 0.7 mmol mmol m~2 d~! for phosphorus. Assuming a Redfield C:N:P stoichiometric
ratio of 106:16:1 (Redfield et al., 1963), this corresponds to carbon fluxes of 85 to 142 mmolm~2 d~! (based on nitrogen) and
43 to 72 mmolm~2 d~! (based on phosphorus). The values are in reasonable agreement with the N (DIC) values derived for
the bloom period between 19 March and 3 April of (85+98) to (128490) mmol m~2 d !, indicating nutrient consumption in
line with the assumed stoichiometric ratio.

The discrepancy between Redfield and observed stoichiometry is larger for the Oz-based net community production, espe-
cially for the glider-based values. Non-Redfield ratios have been documented before, including at the same site. For example,
Copin-Montégut (2000) found non-Redfield ratios for Os and DIC-derived N at DyFAMed. Hull et al. (2021) found non-
Redfield ratios for Os- and nitrate-derived IV in the North Sea. We do not have a physiological explanation for such large
deviations from the canonical stoichiometric values. It is unlikely to be due to a calibration error in the Oy concentration be-
cause it would have to be of the order of 20 mmol m~2 and our observations at depths > 400 m agree to within 3 mmol m~—3

with the record of historic measurements.

7 Discussion

Quantifying net community production helps us to understand the role of biological production and consumption on carbon
export from the surface to deep waters. If the rate of carbon export is known, the rate of atmospheric COy drawdown into
the ocean can be better quantified, and the accuracy of future climate projections might improve. Using underwater gliders as
tools to observe the water column on timescales of less than a month over a wider area allow us to estimate physical processes
(e.g. mixing, advection) that affect biogeochemical tracer concentrations and estimates of net community production derived
therefrom.

During the spring bloom (19 March to 3 April) we estimate N between (9 + 36) and (128 +90) mmolm~2 d~! on average,
with maxima > 300 mmolm~2 d~! at times. Few studies have estimated IV at the DyFAMed site, and there are currently no
N estimates that incorporate F,q, using concentrations over a larger area surrounding DyFAMed.

Another study at this site estimated an annual mean N (Oz) of (25 +7) mmolm~2d ™! (equivalent to 9.2 molm=2a~1),

and monthly mean O, production of (7 4= 13) mmolm~2 d~! and (35 + 13) mmol m~2 d~! in March and April, respectively,
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using excess Oy above 100 % saturation over a period of 20 years (Coppola et al., 2018). Furthermore, Copin-Montégut (2000)
estimated N (Oz) as (43+19) mmolm~=2d~! in the top 30 m during 4-8 May 1995, and as (115423) mmolm~—2d~! in
the top 46 m during 19-23 May 1995. A direct comparison is not possible between this study, Coppola et al. (2018), and
Copin-Montégut (2000) because each study is based on different timescales (from years to days), different vertical integration
horizons and different seasons. Keeping this in mind, our range of IV estimates are similar to those of Coppola et al. (2018)
and Copin-Montégut (2000).

We can compare our study with other studies elsewhere that estimate /V using glider measurements. Alkire et al. (2014)
estimated mean N (Oz) as (65 £ 25) mmolm~2 d~! over a 23 day period in June 2008 in the North Atlantic. Like our study,
they estimated N (O2) incorporating F,q4, derived using horizontal gradients measured by a glider. Further, Hull et al. (2021)
estimate-estimated N (Oo) as (154 +2) mmolm~2 d~! in the North Sea in April 2019.

Uncertainties for N(DIC) are generally higher than those for N(O3), and the highest uncertainties are associated with
Fgv. Fagy uncertainties are high because the uncertainties associated with the concentration plane-fits are high due to ¢(DIC)
variability within the time-centred window. For example, ¢(DIC) within zj;,,, varied over 33 mmol m~3 for the time-centred
window on 16 March leading to low standard errors (Fig. 8b), while ¢(DIC) varied over 40 mmol m~2 for the time-centred
window on 26 March leading to high standard errors. For this latter window centred on 26 March, the decrease in ¢(DIC)
over time between 25 and 30 March caused this high uncertainty. We use an 8-day time-centred moving window to reduce
the potential effect of biologically-related concentrations on the mean gradients, typically seen on short time scales. However,
as demonstrated here, a trade-off is the higher uncertainty. Additional gliders deployed in future missions could potentially
decrease the uncertainty associated with F},q, by combination of alternative sampling strategies, leading to more measurements
in horizontal space and thus improve the robustness of the plane-fits.

We initially explored using the glider DACs to reference geostrophic shear, required to estimate F,q,. However, DAC v
velocities were positive throughout most of the deployment period in an area where negative v velocity is expected, as seen
in satellite data products (Fig. 8). We think the erroneous DAC v velocities relate to the glider’s roll during flight, which was
consistently > 100° starboard. The disadvantage of using OSCAR velocities to derive velocity profiles relates to resolution;
OSCAR velocities are derived every 8 days on a grid with 0.25° resolution.

The NV, estimates incorporate measurements at a depth of approximately 10 m that we extrapolate over the average euphotic
depth (21im, = 46 m), while N, estimates account for the vertical variability between the surface and zjiy,. This means that
the glider-based IV estimates should in principle be more accurate. It also explains why the buoy-based inventory changes are
larger than for the glider, due to concentrations varying more near the surface than at depth.

We chose zji,,, =46 m as the integration depth for estimating N. We investigated the sensitivity of the integration depth to
N estimates by estimating [N over the top 36 m and top 56 m of the water column. We found that [V estimates are not very
sensitive to the integration depth, e.g., using i, = 36 m, we obtain N values between (11428) and (113+75) mmolm~—2d !

for the period 19 March to 3 April. Using 2z}, = 56 m, we obtain IV values between (3 £ 44) and (147 +109) mmolm—2d !,
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8 Conclusions

The spring bloom started in this area of the northwestern Mediterranean Sea around 19 March 2016. We identified the spring

bloom through a decrease in the DIC concentration (inferred from a pH increase) and an increase in the oxygen concentration.
The spring bloom followed a period of high winds and a well-mixed higher nutrient water column. The glider also detected
increased optical backscatter with spikes on 19 and 20 March, an indication of increased particle concentrations. The spring
bloom start date fell into the time frame of previeus—years—phytoplankton-bleoms-phytoplankton blooms in previous years
according to buoy-based sensors. However, this was the first time that high-resolution glider profiles provided-were available
providing insights into the biogeochemical and physical processes at depth and in waters horizontally surrounding the Dy-

FaMed mooring.

This study demonstrates the potential of using autonomous glider measurements for estimating net community production
() It is the first study of this kind in the northwestern Mediterranean Sea. Both oxygen and dissolved inorganic carbon
concentrations were used to derive mass budgets, taking into account IV, air-sea gas exchange, horizontal advection, vertical
entrainment and diapycnal eddy diffusion. Estimating IV using different data sets was challenging, which is reflected in the
range of )V estimates and their uncertainties presented here. We found that day-to-day variations in derived N estimates were
dominated by net inventory changes, air-sea exchange and horizontal advection. Entrainment only came into play on 7 out
of 25 days, i.c., during periods when the mixed-layer depth deepened beyond the integration limit of the mean euphotic zone
depth of 46 m. Diapycnal eddy diffusion was negligible at all times. Over the duration of the deployment from 10 March to
3 April, we estimate IV over the mean euphotic zone depth to be (=17 4 36) mmolm™2 d ™" based on glider O5, (44£94)
mmolm~2d~" based on glider DIC, (—17 4 37) mmolm~*d ™" based on buoy Oy, and (49 4 86) mmolm~*d~" based on
buoy DIC. Within their uncertainties these values agree and show net metabolic balance. Unlike previous studies in this region
of the northwestern Mediterranean Sea, our results and their uncertainties explicitly consider the role of horizontal advection.

We showed that advection can potentially be significant in the area of our study, bearing in mind that the associated un-
certainty was high. Daily mean N estimated from point measurements typical of fixed moorings were affected by advection
on some days. Advection may also be relevant on time-scales longer than one month, but the current study was too short to
explore this. However, when the advection flux was averaged over the 25-day-peried25-day period, there was less of an effect

on N, suggesting that at least in this region, its importance might diminish for longer integration periods. To better resolve the

influence of advection on shorter time-scales and reduce its uncertainty, similar future studies should increase the number of
liders circumnavigating the central mooring so that averaging intervals can be reduced and the time-resolution enhanced.

19



355

360

365

370

375

380

This was the second test deployment of the prototype ISFET sensors on gliders, following our first test in 2014 (Hemming
et al., 2017). There were still considerable problems with drift and a need for calibration. Since then, Saba et al. (2018) and
Takeshita et al. (2021) had more success with a Sea-bird Scientific ISFET sensor and a Deep-Sea-DuraFET sensor, respectively.

However, these sensors are not yet commercially available for gliders.

Data availability.

BOUSSOLE buoy data: http://www.obs-vlfr.fr/Boussole/

Meteorological buoy data: Data are archived in the database ‘SErvice de DOnnées de I’OMP (SEDOO) Mistrals’ (http:
//mistrals.sedoo.fr/Data-Download)

All glider data will be archived at the British Oceanographic Data Centre (BODC, https://www.bodc.ac.uk/data/bodc_

database/gliders/) prior to article acceptance.

Appendix A: Discrete Water Samples

Water samples used to measure ¢(O5) were collected at the DyFAMed site on 7 March (n = 10) and 16 April 2016 (n = 8)
using 12 L Niskin bottles (General Oceanics 1010X) from the top 1000 m of the water column; four samples each were from
the top 100 m (Fig. B1b). Reagents needed for the fixation of oxygen were added to the samples at the time of water sample
collection onboard the ship. An automated Winkler titration method with endpoint detection was used after each cruise in the
laboratory at the Observatoire Océanologique de Villefranche sur Mer, France, to determine ¢(O2). Replicates were obtained
to determine precision. ¢(O5) measured by the rosette-mounted SBE43 sensor within the top 150 m were 15 mmol m~2 higher
than the Winkler measurements (Fig. B1b). SBE 43 sensor ¢(O3) was corrected by regressing against the Winkler ¢(O2)
values. The resulting regression coefficients were 0.8924-0.009 for slope and (18.74-2.0) mmol m 3 for intercept on 7 March
(r? = 0.9993; o = 0.9 mmol m~2). The corresponding values on 16 April were 0.920 +0.008 and (11.8 +1.6) mmol m—3
(r? =0.9997; 0 = 0.7 mmol m—3).

A Marianda Versatile INstrument for the Determination of Titration Alkalinity (VINDTA 3C; https://www.marianda.com)
was used to measure ¢(DIC) and A at ten depth levels. 19 bottles of certified reference material (CRM) supplied by Scripps
Institution of Oceanography (San Diego, California, USA) were run to calibrate the instrument. Coulometry following standard
operating procedure SOP 2 was used to measure ¢(DIC) (Dickson et al., 2007; Johnson et al., 1985), and potentiometric
titration following SOP 3b was used to measure At (Dickson et al., 2007).

Nutrients at DyFAMed were measured using water collected in the same Niskin bottles as those used for ¢(O3), ¢(DIC), and
Ar. Samples were analysed via a standard automated colorimetry system (Seal Analytical continuous flow AutoAnalyser III)
at Observatoire Océanologique de Villefranche-sur-Mer for NO,, ~ (nitrate NO3 ™~ and nitrite NO5 ~ combined) (Bendschneider
and Robinson, 1952), Si(OH), (Murphy and Riley, 1962) and PO,3~ (Strickland and Parsons, 1972), with detection limits of
0.01, 0.02, and 0.02 mmol m 3, respectively (de Fommervault et al., 2015).
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Figure B1. Calibration of the glider dissolved oxygen concentration (¢(Oz2)) sensor. (a) The linear regression fit using back-calculated ship
pseudo-CalPhase and glider TCPhase for 7 March (blue) and 16 April (orange), along with the corresponding linear equations, % and root
mean squared errors (RMSE). The 95% confidence bounds are also shown. (b) Glider ¢(O2) measured on 8-9 March 8-9 and on 3—4 April
before (grey), and after (blue) calibration, the ship sensor ¢(O2) on 7 March (yellow) and on 16 April (green), and the ¢(O2) Winkler samples
on 7 March (white with red border) and on 16 April (white with green border). (c) All glider sensor ¢(O2) at 3 m depth (blue spots), < 5 km
away from the BOUSSOLE buoy only (orange spots), and glider csat (purple line) are compared with the BOUSSOLE buoy sensor ¢(O2)

measurements (orange spots) at 3 m depth, and buoy csat (green line).

Appendix B: Glider calibrations
B1 O> Measurements

Glider ¢(O2) were calibrated to take into account the response time (7) of the sensor, which is dependent on the thickness, and
usage of the sensor foil (McNeil and D’ Asaro, 2014), as well as temperature, and to account for the difference between the
glider measurements and ¢(O3) obtained by the ship (Fig. B1b) (Binetti et al., 2020; Hemming et al., 2017). To correct ¢(O2)
measured by the glider sensor, the sensor-related oxygen engineering parameters TCPhase and CalPhase were used. A mean 7
of 8 seconds was applied to correct measurements for the sensor time lag. This mean 7 value was determined from the lowest
root mean square difference between descending and ascending TCPhase profiles shifted in time by values of 7 ranging from 0
to 50 seconds. After lag-correction of the glider TCPhase, the relationship between the ship sensor pseudo-CalPhase measured
on 7 March and on 16 April, and the glider TCPhase measured on 8 March, and on 4 April was determined (Fig. B1a). The ship
sensor pseudo-CalPhase was calculated from the calibrated ship sensor ¢(O2) by inverting the set of equations normally used

to obtain ¢(O3) from glider optode TCPhase and CalPhase. The slope and offset coefficients obtained from the relationship
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between the glider TCPhase over the entire deployment time period and ship sensor pseudo-CalPhase on 7 March and 16
April (Fig. Bla) were linearly interpolated over the duration of the deployment. The interpolated coefficients were matched
with glider measurements in time, and used to correct all glider CalPhase profiles obtained during the deployment, allowing
a calibration of glider ¢(O2) (Fig. B1b). After calibration, the glider ¢(Oz) agreed with buoy ¢(O2) (Fig. Blc), as would be

expected because the same Winkler samples were used to calibrate ship and buoy oxygen sensors.
B2 ISFET pH Measurements

The deployment offered a second opportunity to trial two prototype ISFET pH-p(COs) sensor pairs, previously tested on
an underwater glider in the Sardinian Sea during the REP14-MED experiment (Hemming et al., 2017; Onken et al., 2018).
The sensors are custom-built non-commercially by Kiminori Shitashima’s group at Tokyo University of Marine Science and
Technology, Japan. ISFET sensors measure pH using the interface potential between a reference chlorine electrode (CI-ISE)
and a semiconducting ion sensing transistor (Hemming et al., 2017).

One pH-p(CO3) sensor pair was stand-alone, meaning measurements were logged and stored by the sensor and retrieved
after the deployment. Another sensor pair was integrated into the glider electronics allowing measurements to be sent remotely
by satellite in near-realtime. Both the stand-alone and integrated sensors were positioned on the underside of the glider to limit
the effect of sunlight on measurements, and backup batteries were provided to supply power in between sampling (Hemming
et al., 2017). Unfortunately, the stand-alone sensor ceased operating after less than 3 days around 0700 CET on 10 March
because of an issue with its power supply. For this reason, pHt obtained by the stand-alone sensor was not used. The sensors
were placed in a bucket of locally-collected coastal surface seawater for a period of 10 hours before deployment. Several
weeks of pre-deployment conditioning have been recommended (Bresnahan et al., 2014; Takeshita et al., 2014), but this was
not possible due to time constraints.

A comparison of sensor measurements with pHr calculated from discrete ¢(DIC) and At measurements both during the de-
ployment and with archived data from between 1998 and 2013 at the DyFAMed site (http://mistrals.sedoo.fr/Data-Download),
indicated problems in accuracy and stability (Fig. B2). The pHr of the integrated sensor drifted by 0.8 over the course of the
29 day deployment, with a depth-dependent range in pHr of 1.

pHr measurements were corrected for drift using the mean difference (offset) between dive 10 pHt measured between 350
and 950 m and pHt measured at the same depths during each subsequent dive. This method assumes that pHr variations over
the 29 day deployment between 350 and 950 m are negligible with respect to the sensor precision. The offsets were added to
the full-depth glider pHrt profiles, and the range of pHt was reduced threefold to approximately 0.3 (Fig. B2).

After correcting pHr for drift, pH was corrected for pressure using a pressure coefficient of +-5.6 x 107° dbar~!. After
adding this correction term, the range of pHt was reduced to approximately 0.2 (Fig. B2).

Finally, integrated ISFET pHt were corrected relative to ‘true’ discrete pHr. Regression coefficients calculated using glider
drift- and pressure-corrected pHt and ship pHt collected on 7 March and on 16 April were used to correct glider pHr. The

range of glider pHT was now matched that of historical discrete samples (Fig. B2).
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Figure B2. A comparison of glider pHr after various corrections have been applied. Raw pHr (blue) is corrected for drift (orange), and
subsequently for pressure effects (yellow). Finally pHt is compared with ‘true’ ship pHt and corrected. Historical pHt anomalies (black)

collected in March and April between 1998 and 2013 are shown for comparison, alongside the ship pHt on 7 March and 16 April 2016.

Appendix C: Deriving parameters using CO2SYS

The CO2SYS software package (Van Heuven et al., 2011; Orr et al., 2015) was used to derive discrete pHr for correcting glider
ISFET pHr, using discrete measurements of ¢(DIC), Ar, in situ temperature, salinity, pressure, and Si(OH)4 and PO, ™
concentrations. Equilibrium constants (Mehrbach et al., 1973; Dickson and Millero, 1987), sulfate acid dissociation constant
(Dickson, 1990) and total borate concentration (Uppstrom, 1974) were used, as recommended by previous Mediterranean-
based studies (Alvarez et al., 2014; Key et al., 2010). ¢(DIC) and A had an uncertainty of 3.5 umol kg~ and 3.2 ymol kg *,
respectively, determined from CRM measurements, representing a combined uncertainty of 0.008 in derived pHr.

The At — S relationship was determined using At and salinity measurements from discrete ship samples collected in
spring 2016 above the salinity maximum (n = 20). This parameterisation, At /umol kg ~! = (80.72 £ 10) (S — 38) + 2551 + 4
(r? =0.88; 0 = 5.7 umol kg —1), was used to obtain Ay from glider and buoy salinity.

Calibrated glider pHr, and At were used to derive glider f(CO3) and ¢(DIC) using CO2SYS. The mean uncertainties of
derived f(CO3) and ¢(DIC) were 5.3 patm and 4.1 umol kg~ respectively, calculated as the mean of the absolute differences
of f(COy), and ¢(DIC) derived using single values of At and pH (including the margin of error associated with the Ap — S

relationship, and the pHt pressure correction, respectively).
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To obtain buoy ¢(DIC), observed f(CO3) at 10 m was used with A calculated from S. The uncertainty of derived buoy
¢(DIC) was 6.6 pmol kg ™!, calculated as the absolute difference between the ship ¢(DIC) sample collected on 7 March at 10
m depth and average ¢(DIC) measured by the buoy on the same day.
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