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Abstract 7 

The asymptotic behavior of Rossby waves in the ocean interacting with a shear stationary flow is 8 

considered. It is shown that there is a qualitative difference between the problems for the zonal 9 

and non-zonal background flow. Whereas only one critical layer arises for a zonal flow, then 10 

several critical layers can exist for a non-zonal flow. It is established that the integrated ray 11 

equations of Hamilton are equivalent to the asymptotic behavior of the Cauchy problem solution. 12 

Explicit analytical solutions are obtained for the tracks of Rossby waves as a function of time and 13 

initial parameters of the wave disturbance, as well as the magnitude of the shear and angle of 14 

inclination of the flow to the zonal direction. On the example of Rossby waves on a shear flow, 15 

the ray equations of Hamilton are analytically integrated. The obtained explicit expressions make 16 

it possible to calculate in real-time the Rossby wave tracks for any initial wave direction and any 17 

shear current inclination angle. It is shown qualitatively that these tracks for a non-zonal flow are 18 

strongly anisotropic. 19 
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 23 

1. Introduction 24 

Historically, the problem of studying the interaction of Rossby waves with large-scale 25 

currents began with problems for the atmosphere, in a formulation in which the large-scale 26 

background flow was considered strictly zonal (Rossby et al., 1939). This formulation is quite 27 

justified for the atmosphere. Rapid advances in satellite altimetry have contributed to the rapid 28 

development of empirical understanding of Rossby waves in the ocean (Fu and Cazenave, 2000). 29 

Analysis of the variability of oceanological fields confirms the existence of Rossby waves in the 30 

World Ocean. However, unlike the atmosphere, Rossby waves in the ocean have their specifics. 31 
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The main difference is that in the ocean, background currents are usually not zonal. Moreover, the 32 

strongest dynamic processes occur on non-zonal flows or when the initial zonal flow deviates from 33 

the zonal direction as observations show (Gnevyshev et al., 2020a, b). 34 

 One of the central moments in the interaction of Rossby waves and large-scale flows are 35 

critical layers. The classical critical layer is not formally attainable for waves. It is the geometric 36 

border of the transparency region and the shadow region. The critical layer is defined as c = U, i.e. 37 

the equality of the longitudinal component of the phase velocity of the wave c and the velocity of 38 

the background current U. The critical layers have been studied and are well known for 39 

gravitational waves and internal waves (LeBlond, Mysak, 1978). For Rossby waves, the study of 40 

the critical layer historically also began with the zonal critical layer. 41 

 If the background current is strictly zonal, then, as shown in (Gnevyshev et al., 2020a), the 42 

determination of the critical layer through the phase velocity is quite correct and can be applied 43 

for Rossby waves. However, if the flow is not zonal, such a definition becomes ambiguous and 44 

allows Rossby waves to cross the critical layer, with the formation of the so-called overshooting 45 

effect. The propagation of Rossby waves on shear flows has its specific feature: the wave track 46 

gradually approaches its critical layer, this occurs asymptotically for a long time. 47 

 One of the features of Rossby waves is the qualitative difference between the problems for 48 

the zonal and non-zonal background flow. The first key point that distinguishes the problems of a 49 

zonal background flow and a critical layer from a non-zonal one is the number of critical layers. 50 

For a strictly zonal flow, there is only one critical layer, while for a non-zonal shear flow, three 51 

qualitatively different cases can be distinguished (Gnevyshev et al., 2020a, b) we will consider a 52 

bit later. As a consequence, the passage to the limit from a non-zonal flow to a strictly zonal case 53 

is nontrivial. In particular, all asymptotic laws under the passage to the limit are of a discontinuous 54 

nature (Gnevyshev et al., 2020a, b). In this case, of the three non-zonal critical layers in the passage 55 

to the limit, from the non-zonal to the zonal critical layer, only one critical layer remains. And the 56 

transition from the zonal to the non-zonal case, in principle, is not possible. As a consequence, a 57 

strictly meridional flow acquires the most general character, rather than a purely zonal flow. 58 

 The second important point for Rossby waves is that the linear operator of Rossby waves 59 

ceases to be Hermitian upon passing to the non-zonal case. The adiabatic invariant in the form of 60 

the enstrophy conservation law, which exists in the WKB approximation, ceases to hold for non-61 

zonal piecewise linear flow profiles of the "vortex layer" type. A non-zonal strong shear current 62 

enters into an active exchange of vorticity with Rossby waves (LeBlond and Mysak, 1978; 63 

Fabrikant, 1987; Stepanyants and Fabrikant, 1989; Gnevyshev and Shrira, 1990). 64 
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 The fundamental point in which the analysis of problems for the ocean differs from the 65 

atmosphere is the limitedness of ocean currents in space and, as a consequence, in time. Therefore, 66 

for the obtained qualitative results of the analysis of the dynamics of Rossby waves to have an 67 

applied character, it is important to understand what periods and spatial scales are behind such 68 

concepts as "approaching" the critical layer? 69 

 The classical approach for analyzing the kinematics of waves in dispersive systems is based 70 

on the ray equations of Hamilton. However, as is customary even in classical mechanics, no one 71 

explicitly solves the differential equations of Hamilton in analytical form. The traditional approach 72 

is qualitative and is based on the presence of cyclic variables in the problem. As a rule, these are 73 

the longitudinal component of the impulse and the frequency of the wave. If we also use a certain 74 

set of symmetries, related to the Hermitian nature of the linear wave operator, then this purely 75 

geometric approach suffices to understand qualitatively the evolution of waves on plane-parallel 76 

inhomogeneous flows, without solving the ray equations of Hamilton explicitly. Therefore, it is 77 

better to use a qualitative method, which is called the isofrequency method. It is based on the 78 

geometric construction of isofrequency lines and the concept of the direction of the group velocity. 79 

For Rossby waves, a qualitative analysis of the kinematics based on the isofrequency method was 80 

performed as early as (Ahmed, Eltaeb, 1980; Duba et al., 2014). 81 

 82 

Based on the fact that asymptotically long adhesion of Rossby waves to the critical layer 83 

has already been established, we are trying to understand the specific features of this process. The 84 

goal of our work is to determine how real the periods and spatial scales of this process are so that 85 

they can be realized for real conditions in the ocean. To answer this question, it is necessary to 86 

have explicit analytical solutions for wave tracks as a function of time and initial parameters of the 87 

wave disturbance, as well as the magnitude of the shear and the angle of inclination of the flow to 88 

the zonal direction. In addition, in this paper, using the example of Rossby waves on a shear flow, 89 

we analytically integrate ray equations of Hamilton for the first time. The obtained explicit 90 

expressions make it possible to calculate in real-time the Rossby wave tracks for any initial wave 91 

direction and any shear current inclination angle. As will be shown below, such tracks for a non-92 

zonal flow are qualitatively highly anisotropic. 93 

 The generally accepted way to obtain a solution as a function of the initial position of the 94 

wave and time is to solve the Cauchy problem. For barotropic Rossby waves, the Cauchy problem 95 

was solved in (Yamagata, 1976a, b) for strictly zonal and meridional currents. Continuing this 96 

direction, we will show that the integrated ray equations of Hamilton turn out to be equivalent to 97 
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the asymptotics of the solution of the Cauchy problem. However, in contrast to (Yamagata, 1976a, 98 

b), we propose an easier way to obtain explicit analytical expressions for the Rossby wave tracks. 99 

To obtain a solution, the introduction of convective coordinates, direct and inverse Fourier 100 

transforms, and the stationary phase method for the obtained two-dimensional Fourier integral is 101 

not required (Yamagata, 1976a, b). In this work, we will show that ray equations of Hamilton for 102 

Rossby waves are integrated with explicit expressions quite simply using the arctangent and 103 

logarithm functions, in contrast to the solutions of Yamagata (1976a, b), which use a more specific 104 

mathematical apparatus related to the Cauchy problem. The new solutions of the ray equations of 105 

Hamilton for Rossby waves are much simpler than the geometric method of isofrequencies and 106 

represent explicit analytical expressions for the tracks of Rossby waves in elementary functions. 107 

 108 

2. Results 109 

The ray equations of Hamilton are an effective tool for analyzing the kinematic properties 110 

of Rossby waves in a plane-parallel shear flow (LeBlond, Mysak, 1978; Salmon, 1998). In 111 

practice, this method is often successfully applied in numerical calculations (see, for example, 112 

Killworth & Blundell, 2003). We will show that for shear flows there is also an explicit analytical 113 

solution of these equations, and these solutions will be found in elementary functions. The so-114 

called equations of geometric optics are as follows: 115 

,t tk l
x y

  
= − = −

 
,        (1) 116 

,t tX Y
k l

  
= =
 

...       (2) 117 

Here x and y are the axes of the Cartesian coordinate system directed to the east and north, 118 

respectively; t is the time; (k, l) are the components of the wave vector , ω is the frequency, 119 

( , , )X X k l=  and ( , , )Y Y k l=  are the ray variables in a coordinate system rotated 120 

counterclockwise by an angle  . 121 

Let us assume that the background flow is a stationary shear flow directed at a certain angle 122 

  fixed to the parallel. For certainty, we will consider the angle the angle 0   if it is counted 123 

counterclockwise. To find a solution, we will proceed as follows. At the first stage, let us go over 124 

to the coordinate system associated with the flow. Then in the new coordinate system rotated by 125 

the angle , the background current velocity field has only one longitudinal velocity component 126 

( ) ( ),0 ( ),0U U U y= = . Further, the coordinate system is chosen so that at its origin the velocity 127 
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field is zero. Assume that U is approximately linear in y: yU U y= . Having solved the problem in 128 

a new (rotated) coordinate system, we then make a reverse rotation by an angle ( )− , and thus we 129 

get a solution in the original coordinate system tied to the parallel and the meridian, which is more 130 

convenient for a clear illustration of the result.  131 

The dispersion relation in the new coordinate system is (Gnevyshev, 2020a): 132 

( )
2 2 2

cos sin
y

k l
kU y

k l F

  


−
= − +

+ +
,      (3) 133 

where df

dy
 = , f is the Coriolis parameter, 

2
2 f

F
gH

= , g is the acceleration of gravity, H is the 134 

depth of the ocean. In the new coordinate system, there are two cyclic variables; they are the 135 

longitudinal coordinate x and time t. Consequently, the problem has two integrals of motion: the 136 

longitudinal component of the momentum (in the ray approach, this is the x-component of the 137 

wavenumber ) and the wave frequency ω. 138 

The integrated first pair of equations (1) has the form: 139 

0 0 0, c yk k const l l U k t= = = − ,        (4) 140 

where ( )0 0,k l  are the initial components of the wavenumber at t = 0. Note that the integrated first 141 

pair of the equations of Hamilton gives a result that is identical to the result obtained in the 142 

framework of the Cauchy problem (Gnevyshev et al., 2020a). 143 

 Integrating Eqs. (2), we find the coordinates of the quasi-monochromatic wave packet, at 144 

the initial moment located at the origin of coordinates: 145 

( )

0 0

0 0

2 2 2 22 2
0 00 0 0

cos sin cos siny

y y

l l
U t

k k
Y

U k F lk F l k U t


   


    
− − −    

    = −
 + ++ + −
 
  

     (5) 146 

2

0 00 0 0 0

3 2 2 2 2 2

0

12 2
0

2 2 2 2 2 2 2

0 0 0

cos cos
arctan arctan

1sin 1 1
ln

2

yc

y c c c y c c c c

y cc c
y c

y c c c c

F U t k lk l l k l
X

U k k k U k l k l k

U t l kl k
U tY

U k l k l k l k



   

 
−

     +    
= − + − − +       

+ +           

 − +
+ − + +  

+ + +   

 (6) 147 
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The subscript index   in the solution ( ),X Y   shows that this solution was found in a coordinate 148 

system rotated counterclockwise by an angle  . For simplicity, the following notation is 149 

introduced in formula (6): 150 

2 2

0 0 0,c y cl l U k t k k F= − = + .       (7) 151 

Let us turn to dimensionless variables taking into account the Rossby baroclinic radius: 152 

* * * * * *

0 0/ , / , / , / , ,c c c c c ck k F l l F k k F l l F X X F Y Y F= = = = = = , and dimensionless 153 

time for the shear of the background flow velocity:
*

yt t U= . Omitting the asterisks, we get: 154 

1 1

2 2 2 2

cos sin cos sinc

y c c c

l k l k
Y

FU k l k l


   − − − −
= − 

+ + 
     (8) 155 

3 2 2 2 2 2

2 2 1

2 2 2 2 2 2 2

cos cos
arctan arctan

1sin 1 1
ln

2

c

y c c c y c c c c

c c c

y c c c c

lk l k l t k l
X

FU k k k FU k l k l k

l k t l k
tY

FU k l k l k l k



   

  −

       + 
= − + − − +       

+ +         

  + −
+ − + +  

+ + +  

, (9) 156 

where 2 2, , 0c c yl l k t k k F U= − = +        (10) 157 

and , 0yt t U→−  .         (11) 158 

This solution can be simply represented as: 159 

1 2 1 2cos sin , cos sinX X X Y Y Y    = + = +      (12) 160 

where ( )1 1,X Y  is the packet coordinates in the case when the flow is zonal (directed along the 161 

parallel: 0 = ), and ( )2 2,X Y  is the packet coordinates in the case when the flow is meridional 162 

(directed along the meridian). It is important to note that 
2


 =  for the meridional direction and 163 

the OX1 axis is directed to the north and the OX2 is to the west. 164 

1 13 2 2 2 2 2
arctan arctanc

y c c c y c c c c

lk l k l t k l
X tY

FU k k k FU k l k l k

       +
= − + − − + +      

+ +      
 (13) 165 

1 2 2 2 2

1 1

y c c c

Y
FU k l k l

  
= − 

+ + 
,        (14) 166 
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2 2 1

2 22 2 2 2 2 2 2

11 1
ln

2

c c c

y c c c c

l k t l k
X tY

FU k l k l k l k

 −  + −
= − + +  

+ + +  
,    (15) 167 

11

2 2 2 2 2

c

y c c c

l kl k
Y

FU l k l k

 −− 
= − 

+ + 
...       (16) 168 

Then, designating the coordinates of the package in the coordinate system tied to the east and north 169 

directions (X, Y), you need to reverse the rotation of the coordinate system (counterclockwise). 170 

Finally, we get the following expressions in a matrix form: 171 

cos , sin

sin , cos

XX

Y Y





 

 

−     
=     

    
       (17) 172 

or 173 

( )2 2

1 2 1 2cos cos sin sinX X X Y Y   = + − −      (18) 174 

( )2 2

1 1 2 2cos cos sin sinY Y X Y X   = + + +      (19) 175 

3. Numerical estimation of dimensionless parameters 176 

We will take as the initial the following characteristic physical scales for the ocean: 177 

f= 10-4 s-1, β = 10-11 m-1 s-1, F = 0.5 × 10-5 m-1. Some numerical estimates give something like this: 178 

whereas we take for the scale of the background flow velocity U = 5 cm / s, and the scale of the 179 

background flow variability 50 km, then the unit of the dimensionless time scale 1

yU −  is about 11 180 

days. Therefore, the dimensionless time t = 2.86 × π is about 3 months. In this case, the 181 

dimensionless parameter
yU F


 is equal to 0.5. Whereas we take 100 km as the scale of the 182 

background flow variability, then the unit of the dimensionless time scale 1

yU − is approximately 22 183 

days. Then the dimensionless time t = 2.86 × π is about 6 months, and the dimensionless parameter 184 

yU F


 is equal to 1.0. These estimates make the results obtained physically justified and correct 185 

for practical use. 186 

4. Graph analysis 187 

Qualitatively, all plots can be divided into two cases: for zonal flow (Fig. 1) and non-zonal 188 

(Fig. 2). A common property of all graphs is that with increasing time, all rays adhere to the critical 189 

layer. However, the number of critical layers, as well as their location, is a nontrivial function of 190 
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the angle of inclination of the background flow. Qualitatively, several main scenarios can be 191 

distinguished. 192 

 Zonal flow scenario. If the flow is strictly zonal, 0 =  (Fig. 1), then one critical layer is 193 

formed, which does not depend on the initial direction of the group velocity and is determined only 194 

by the magnitude of the modulus of the initial wavenumber. The expression for the ordinate of the 195 

critical layer is determined by the following (nonzero) value: 196 

( )
1

2 2

1 0c y ct
Y FU k l

−

→
 → − +         (20) 197 

In the case of a strictly zonal flow, all waves adhering to the critical layer move strictly to 198 

the west: 1c t
X

→
→− . It is also important to note that the movement of Rossby waves at certain 199 

points in time is possible both to the east and in other directions. However, with increasing t, all 200 

rays adhere to the critical layer, moving strictly to the west. An analysis of the tracks shows that 201 

the dimensionless time values at which the movement begins to follow a strictly westerly direction 202 

is approximately t = 8, and it gives a period of about three months for the open ocean. 203 

In the case of a zonal flow, the initial component of the group velocity in the meridional 204 

direction is proportional to 0 0k l . For the zonal component of the group velocity, the sign is 205 

determined by the following expression: ( )2 2

0 0 1k l− − . To have an idea of all possible cases, it 206 

suffices to take the following set of four initial wavenumbers ( )0 0,k l . Figure 1 shows four options 207 

for the initial direction of the group velocity; the tracks are drawn for the case 0yU  . The abscissa 208 

axis is directed to the east, the ordinate is to the north. Track 1 – the initial group velocity is directed 209 

to the southwest. The initial components of the wavenumber are k0 = -1, l0 = 1. Track 2 –the initial 210 

group velocity is directed to the southeast: 0 04 2 / 17, 2 / 17k l= − =  or k0 = -1.372, l0 = 211 

0.343. Track 3 – the initial group velocity is directed to the north-east:212 

0 04 2 / 17, 2 / 17k l= − = −  or k0 = = -1.372, l0 = -0.343. Track 4 – the initial group velocity 213 

is directed to the northwest: k0 = -1, l0 = -1. The wavenumbers are specially selected so that the 214 

tracks adhere to one critical layer. For all four combinations, the relation
2 2

0 0 1 3k l+ + = . 215 
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 216 

Fig. 1. The variety of tracks of Rossby waves in their interaction with the zonal flow. 217 

Descriptions of tracks 1 - 4 are given in the text. 218 

Non-zonal flow scenario. For a strictly meridional flow 
2


 = , there are three qualitatively 219 

different cases for the implementation of the critical layer, which can be conventionally called 220 

"positive", "negative" and "zero". For the case of a strictly zonal flow, the critical layer is the 221 

boundary of the transparency region. For any non-zonal flow, additional critical layers appear that 222 

are inside the transparency region. The critical layer is "negative", for which the sign of the 223 

intrinsic frequency adhering to the critical layer is negative. Such waves with a negative intrinsic 224 

frequency are commonly called “waves of negative energy” (Fabrikant, Stepanyants, 1998). The 225 

peculiarity of the non-zonal case is that Rossby waves, starting from zero value, can change the 226 

sign of their intrinsic frequency at a certain moment in time. 227 

 The expression for the ordinate of the critical layer is determined by the following value. 228 

0
2 2 2

0 0

c t
y c

l
Y

k U F k l


→

 
 →

 +   

      (21) 229 
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Recall that the coordinate system is tied to the direction of the flow velocity, so in this case, 230 

when 
2


 = , the x-axis is directed to the north and the y-axis to the west. 231 

 Group speed signs are defined as follows: 232 

( ) ( )2 2, 1grx gryC k l C k l −  + − . 233 

Consider the case 0yU  . Provided 1 0l k−  , waves adhere to the negative critical layer:234 

( )2 0cY  . Wherein 2c t
X

→
→− , and the value of the group velocity along the x-coordinate 235 

turns out to be negative. That is, it turns out that for adhesion to the negative critical layer, the 236 

wave must start against the direction of the flow, but the flow will certainly turn the wave in the 237 

direction of the flow. The wave will cross the critical layer, change the sign of its intrinsic 238 

frequency, reflect from the higher value of the background flow velocity, and start again 239 

approaching the critical layer, but from the opposite side. This wave behavior is called 240 

overshooting (see Gnevyshev et al., 2020a); it also occurs in quantum mechanics. 241 

 For the initial values (k0 = 1, l0 = 1), the direction of the group velocity has the opposite 242 

direction with respect to the flow, and a negative critical layer is realized. Whereas for the initial 243 

values (k0 = -1, l0 = 1), the direction of the group velocity coincides with the direction of the flow, 244 

and the negative critical layer is not realized. Reflection occurs, and the wave goes to the positive 245 

critical layer. 246 

 Provided 
1

0 0 0l k −  , waves adhere to the positive critical layer, ( )2 0cY  . The situation is 247 

qualitatively similar to the purely zonal case. In this case, the critical layers have not only 248 

components of different signs and magnitude, but also tend to  by the x-coordinate, 249 

( )2cX → − . 250 

 From the analysis of these ratios, it can be seen that an additional second critical layer, 251 

which appears due to the non-zoning of the flow. is realized only for waves that initially fall strictly 252 

against the current. Whereas waves that fall in the direction of the flow have a trivial reflection 253 

from the negative critical layer. Let us also note the existence of a third scenario. At 0 0l = , the 254 

wave starts strictly perpendicular to the background current, while the critical layer ( )2 0cY =  is 255 

zero. 256 

 Let us analyze the intermediate flow direction. The asymptotics for the ordinate of the 257 

critical layer in the general case has the form: 258 
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( )
0 0

2 2
0 0 0

sin cos
t

y

l k
Y

k U F k l


  
→

 −
 →

+  

...      (22) 259 

The longitudinal component of the group velocity is proportional to 260 

( )2 2

0 0 0 01 cos 2 sink l k l − − − . 261 

The transverse component of the group velocity is proportional to 262 

( )2 2

0 0 0 02 cos 1 sink l l k − − − . 263 

It follows from expression (22) that when even weak non-zonality appears, there is not one, 264 

as in the case of a purely zonal flow, but three critical layers since the value ( )0 0sin cosl k −  265 

can be positive or negative values or zero. For zonal flow, regardless of the parameters of the 266 

wavenumber of the incident wave, any wavenumbers can be considered, however, the critical layer 267 

is always at negative velocities. For a non-zonal flow at different wavenumbers, that is, at different 268 

angles of incidence on the flow, there will be three such critical layers: one at a negative velocity 269 

value, one at a positive velocity value, and one with zero velocity. If we fix the wavenumber, then 270 

there is always one critical layer. For a zonal flow, this layer will correspond to a negative velocity 271 

value. For non-zonal flow, there are possible options: the critical layer will be located either at a 272 

positive velocity value or at a negative one or with zero velocity. In other words, some 273 

wavenumbers will stick to the positive, and others to the negative values of the background 274 

velocity. When we say "one critical layer", we do not mean a fixed value of the velocity, but only 275 

its sign. 276 

The first critical layer that is implemented for western propagation is the classic well-277 

known and well-studied critical layer for Hermitian operators. The second critical layer is realized 278 

for waves moving eastward. This critical layer does not have symmetries due to the non-Hermitian 279 

nature of the non-zonal linear operator of Rossby waves and introduces such a phenomenon as 280 

overshooting into the kinematics of Rossby waves. The third critical is zero and is inherent only 281 

in strictly non-zonal flows. In this scenario, the waves return to the initial level from which they 282 

started. 283 

For simplicity of numerical values, we take the angle 
4


 = . Then we have the following 284 

typical sets of wave tracks: track 1 – (k0 = - 0.5, l0 = 1); track 2 – (k0 = -1, l0 = 1); track 3 – (k0 = - 285 

2, l0 = -0.5); track 4 – (k0 = -1, l0 = -2); track 5 – (k0 = -1, l0 = -1). Such a variety of possible 286 

scenarios is inherent precisely in Rossby waves and is associated with the absence of symmetries 287 
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in the problem, which are a consequence of the non-Hermitian nature of the linear operator of 288 

Rossby waves for arbitrary shear flows. 289 

 290 

Fig. 2. The variety of Rossby wave tracks in their interaction with the non-zonal current. The 291 

description of tracks 1 - 4 is given in the text. 292 

 293 

Discussion and Conclusions 294 

The ray equations of Hamilton are a kind of approximate method for analyzing the 295 

kinematics of waves. Therefore, a question arises: what are the limits of applicability of these 296 

equations? 297 

To answer this question, we will proceed from the statement that, from a mathematical 298 

point of view, the solution of the Cauchy problem is more correct than the ray equations of 299 

Hamilton. The solution of the Cauchy Problem for Rossby waves on a shear plane-parallel flow, 300 

in a coordinate system associated with the flow and directed at a certain angle  to parallel, has 301 

the form (Gnevyshev et al., 2020a, b): 302 
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( )
( )

( )
2 2

2 2
( , , ) ( , ) exp ( , , , )

z

z t

k l
x y t G k l i x y k t dk dl

k l

+ +

− −

+
 =  

+
  , 303 

( )

2 2

2 2

cos sin
( , , , , ) arctan arctan ln

2

t z t

y z z z y z

y

l k ll
x y k l t

U k k k U k k l

k x U yt ly

         + 
  − + + +      

+       

 + − +
 

, (23)  304 

where the following designations are introduced: t yl l U kt= − , 
2 2

zk k F= + . We construct the 305 

phase for the solution in the form of the ray equations as follows: 306 

( , , , , )x y k l t dt = −         (24) 307 

 Let us substitute in (24) the expression for the frequency (3) and the first pair of integrated 308 

equations (4). In this case, using the free term in the form of an arbitrary function of the 309 

wavenumbers, we normalize the phase as follows: 
0

( , , , ) 0
t

y k l t
=

 = . Integrating (24) with the 310 

chosen normalization conditions, we obtain: 311 

( )0

02 2 2

0

2 2

0
02 2

0

cos sin
( , , , )

cos sin
arctan arctan ln

2

c

y

c

c c c
y

y z c c y c

l
y k l t U y dt

l F

l l l
U y t

U U l

   




   


    

− − 
 = − + = 

+ + 

      + 
= − + + −      

+       


  (25) 312 

Comparing the obtained expression (25) for the normalized phase of the WKB-solution with the 313 

expression for the phase of solution (23) of the Cauchy problem, we find the following relation: 314 

( , , , ) ( , , , , )y k l t kx ly x y k l t + + =  . 315 

Thus, the phases of the solutions coincide. On the other hand, if we assume that the scale of 316 

changes in the main flow is much larger than the characteristic scale of the solution for 317 

perturbations, then a small parameter ε will appear in the problem (Gnevyshev et al., 2019, 2021), 318 

which formally, after reduction to dimensionless form, is expressed by replacing the derivative the 319 

main flow velocity Uy by ε×Uy. Passing in the expression for the phase of solution (23) to the limit 320 

in Uy, as in a small parameter, and keeping the zero and first terms of the expansion, we obtain the 321 

following relation: 322 

( )

( )
2 2 20

cos sin
( , , , , )

yU t

l
x y k l t U t x ly t x ly

l F

   
   

→

− − 
 → + + + = + + 

+ + 
, 323 
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where 
( )

2 2 2

cos sinl
U

l F

   
 



− −
= +

+ +
. 324 

On the other hand, from (23) it is easy to obtain the following relation: 325 

( )
lim ( , , , , )

yU t
x y k l t t x l y 

→
  + +  326 

Summing up, let us emphasize the first original result obtained in this work. Solutions (5) 327 

and (6) obtained in the framework of the Cauchy problem are exact solutions of ray equations (1) 328 

and (2). Consequently, not only do the limiting values obtained within the framework of the WKB-329 

solution and the Cauchy problem in the first approximation coincide, but also the solutions 330 

themselves. In other words, the integral of the solution phase, obtained in the first order of the 331 

WKB approximation and normalized to zero at the initial moment of time, coincides with the phase 332 

of the basic solution of the Cauchy problem. In this case, the expansion of the phase of the solution 333 

of the Cauchy problem in terms of the small WKB-parameter in the first approximation gives the 334 

dispersion relation obtained in the first order of the WKB-solution. For large time intervals, the 335 

phase of the solution to the Cauchy problem does not reach the WKB-solution mode. Hence, from 336 

the point of view of the Cauchy problem, the WKB-solution cannot work up to any infinitely large 337 

times with a finite shear of the background flow velocity profile. 338 

 Otherwise, it can be explained as follows. The time t and the shear of the background 339 

current velocity Uy are included in the solution in the form of the product t × Uy. Consequently, 340 

whatever the small parameter Uy, there will come a time t such that the product t × Uy will be 341 

greater than one, and the series expansion of the solution phase will no longer be justified. 342 

 Thus, the application of the Hamiltonian formalism in a linear problem helps to build a 343 

bridge between seemingly different solutions obtained in the WKB-approximation and the 344 

framework of the Cauchy problem. In this case, the first pair of ray equations (1) is nothing but 345 

the condition of equality of the cross derivatives of the solution phase. The second pair of ray 346 

equations (2) is the equation for a stationary point. The mathematical reason for this behavior is 347 

that in the presence of non-zoning in the solution phase, a logarithm of the form appears348 

( )2 2ln 1 yU t+ . The Taylor series of the logarithm at zero has a radius of convergence equal to one. 349 

Consequently, no matter how small the value of the shear in the profile of the background flux Uy 350 

is, there will come a time at which the argument of the logarithm will exceed one and the 351 

asymptotic expansion will stop working. 352 

In this paper, using the example of Rossby waves on non-zonal shear flows, explicit 353 

analytical integration of the ray equations of Hamilton is performed for the first time. Previously, 354 
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no one paid attention to this possibility. It turned out that the obtained explicit analytical solution 355 

of ray equations of Hamilton is expressed in simple elementary functions, which turned out to be 356 

quite unexpected. The constructed typical kinematic tracks of Rossby waves on non-zonal shear 357 

currents show the relevance of such a phenomenon as the critical layers of Rossby waves. 358 

 In its simplicity and ease, this method surpasses the solution in terms of the Cauchy 359 

problem using convective coordinates, and from an analytical point of view, it is identical to the 360 

asymptotics of the two-dimensional integral of the Cauchy problem that we obtained earlier 361 

(Gnevyshev et al., 2020a). 362 

 An analytical comparison of the obtained solution with the solution of the Cauchy problem 363 

for Rossby waves is made. For small time intervals, the solutions of the ray equations strictly 364 

coincide with the asymptotics of the integral obtained in the framework of the Cauchy problem. 365 

The non-zonality of the flow leads to the appearance of a logarithm in the solution phase, which 366 

greatly complicates the convergence of the results obtained. At large time intervals, the non-367 

zonality of the flow leads to a logarithmic spreading of the solution, which requires additional 368 

analysis within the framework of the convolution of the obtained solutions over the spectrum of 369 

wavenumbers. 370 

 The obtained analytical expressions were used to construct the kinematic tracks of Rossby 371 

waves on shear flows. The solutions are anisotropic and, in the general case, do not have classical 372 

north-south symmetries. 373 

 It is shown that in the non-zonal case, a second critical layer is added to the classical critical 374 

layer of Rossby waves for the strictly zonal case, which is directly related to such concepts as 375 

negative energy waves and overshooting. 376 
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