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Abstract. Decadal sea-level variability masks longer-term changes due to natural and anthropogenic drivers in short duration

records and increases uncertainty in trend and acceleration estimates. When making regional coastal management and adapta-

tion decisions, it is important to understand the drivers of these changes to account for periods of reduced or enhanced sea-level

change. The variance in decadal sea-level trends about the global-mean is quantified and mapped around the global coastlines

of the Atlantic, Pacific and Indian Oceans, from historical CMIP6 runs and a high-resolution ocean model forced by reanalysis5

data. We reconstruct coastal, sea-level trends via linear relationships with climate mode and oceanographic indices. Using this

approach, more than one-third of the variability in decadal sea-level trends can be explained by climate indices at 24.6% to

73.1% of grid cells located within 25 km of a coast in the Atlantic, Pacific and Indian Oceans. At 10.9% of the world’s coastline,

climate variability explains over two-thirds of the decadal sea-level trend. By investigating the steric, manometric and gravi-

tational components of sea-level trend independently, it is apparent that much of the coastal ocean variability is dominated by10

the manometric signal, the consequence of the open-ocean steric signal propagating on to the continental shelf. Additionally,

decadal variability in the gravitational, rotational and solid-Earth deformation (GRD) signal should not be ignored in the total.

There are locations such as the Persian Gulf and African west coast where decadal sea-level variability is historically small, that

are susceptible to future changes in hydrology and/or ice mass changes that drive intensified regional GRD sea-level change

above the global-mean. The magnitude of variance explainable by climate modes quantified in this study infers an enhanced15

uncertainty on projections of short- to mid-term regional sea-level trend.

1 Introduction

Sea-level variability at the coast is driven by a variety of global- to local-scale factors. Understanding the drivers of variability

due to decadal-scale, intrinsic climate variability in historical and contemporary observations improves our understanding of

sea-level change and enhances our ability to predict future, near-term sea-level change. By subtracting climate-driven sea20

level from observations, a more consistent global-mean sea level can be obtained from altimetry (Nerem et al., 2018) and tide

gauge data (Frederikse et al., 2018). One aim is to elucidate anthropogenically-driven sea-level change from climate variability

(Hamlington et al., 2014, 2019). When climate variability can be explained, by reducing both the magnitude and auto-regressive

nature of variability in the signal, linear-trend and acceleration standard errors can be reduced. This has been successfully

applied globally (e.g. Hamlington et al., 2013; Nerem et al., 2018; Hamlington et al., 2020c) and regionally, from climate25

variability dominated by atmosphere-ocean interactions (e.g. Zhang and Church, 2012; Pfeffer et al., 2018; Richter et al.,

1



2020; Hamlington et al., 2020b; Wang et al., 2021; Pfeffer et al., 2022) and intrinsic, oceanic variability in eddy-rich regions

(Sérazin et al., 2016). Climate model runs using historical forcing exhibit redistribution of the spatial patterns in sea-level rise

associated with climate variability and intensification of sea-level rise in some areas that may be a result of anthropogenic

forcing Fasullo and Nerem (2018). Understanding the driving mechanisms behind local, decadal sea-level change could lead30

to improved short- to medium-term forecasts of coastal sea-level change.

Regional sea level is projected to vary by 30% from the global-mean, according to climate model evaluations (IPCC, 2019).

A proportion of regional variation in sea level rise comes from patterns due to anthropogenically induced forcings, inSpatial

patterns in sea-level variability are driven by intrinsic and climate variability and anthropogenic-forcing, and their interactions,

resulting in intensified sea-level change by regions (as demonstrated by climate models with historical forcing; Fasullo and35

Nerem (2018)). In particular, changes to ocean heat content and surface winds drive changes in ocean circulation, in turn

affecting the location of fronts, and mixed layer / or thermocline depth, which induce a sea-level change (Fasullo and Nerem,

2018; Fasullo et al., 2020; Peyser et al., 2016; Richter et al., 2020, e.g.). and Also variations to the gravitational, rotational

and deformational (GRD) equipotential determining redistribute the sea surface, due to following anthropogenically-forced

mass redistribution such as ice sheet mass loss dam impoundment, groundwater extraction, or anthropogenically-driven ice40

mass loss (Wada et al., 2017; Meyssignac et al., 2017; Frederikse et al., 2020b) . The remainder of the regional variation we

describe hereafter as atmospheric and/or oceanic ‘internal’ variability. Hereafter, we will use the terms “intrinsic variability”

and “climate variability” to describe and differentiate these sources of variability. By “intrinsic variability” we mean the oceanic

variability that is not driven by atmospheric forcing but is internal. We use “climate variability” to refer to atmospheric-oceanic

variability intrinsic to the climate system, not driven by anthropogenic forcing. Local sea-level trends greater than 10 mm y−145

on 10-year timescales and over 1 mm y−1 on 30-year timescales are observed in areas of the Pacific Ocean driven by climate

variability; climate variability may potentially contribute centimetres of sea-level change over any given 10 year period, which

local planners and stakeholders need to account for (Hamlington et al., 2020a). This internal climate variability may affect the

magnitude of regional sea-level trends calculated over durations up to 50 years (Carson et al., 2015, 2019). Internal Sea-level

variability related (linearly) to climate indices shows larger correlation coefficients at coastal locations in tide gauge data than in50

open ocean altimetry (Wang et al., 2021). Statistically significant relationships between the steric and manometric components

of sea level and climate variability have been identified, from models, reanalyses and geodetic observations (Pfeffer et al.,

2018, 2022). These works validate model and reanalyses data sets for sea-level studies and identify regions of the global ocean

with explainable, climate-driven, interannual to decadal variability, masking anthropogenically-driven changes and modifying

coastal flood risk about the long-term trend on decadal periods.55

Decadal variability in global-mean sea level is dominated by the El Niño Southern Oscillation (ENSO) and Pacific Decadal

Oscillation (PDO) and their evolution in time (Hamlington et al., 2013; Nerem et al., 2018; Hamlington et al., 2020c). Because

these signals are large and affect a large proportion of the global-ocean area (being equatorial / tropical), they dominate the

global signal. But other climate processes, described by other major indices, of course also affect local sea-level variability

(Woodworth et al., 2019).60
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The Pacific Ocean decadal sea-level variability is dominated by the ENSO and PDO processes (e.g. Zhang and Church,

2012; Hamlington et al., 2019). Additionally, the Southern Annular Mode (SAM) and Indian Ocean Dipole (IOD) can also

be related to sea-level variability in the Pacific Ocean (e.g. Frankcombe et al., 2015), with. The IOD co-varies with ENSO on

interannual timescales, via atmospheric teleconnections the IOD affects equatorial wind anomalies, and Pacific Ocean sea-level

anomalies may transit through the Indonesian Throughflow. The relationship is weaker at decadal time scales, but there remains65

a significant correlation (Nidheesh et al., 2019). The IOD dominates sea-level variability in the Indian Ocean (Nidheesh et al.,

2019). In the North Atlantic Ocean and North Sea, variability can be related to the North Atlantic Oscillation (NAO) and

East-Atlantic Pattern (e.g. Frederikse et al., 2018; Kleinherenbrink et al., 2016). We extend these analyses by focusing only on

coastal sea level and we remove the global-mean sea level at each time step to investigate regional, spatial differences.

Although the spatial variability of regional, decadal-scale sea-level trends are dominated by the steric component (Richter70

et al., 2020), manometric sea-level changes dominate intrinsic variability at the coast (Penduff et al., 2019; Llovel et al.,

2018). When a steric-driven disturbance in the open-ocean sea surface height nears a coast, the density-driven change over a

shallowing water column cannot fully match that in the open ocean and a pressure gradient develops in the sea surface. The

geostrophic balance is maintained by redistribution of mass onto the shelf, such that sea-level change at the coast exhibits a

predominantly manometric signal (Landerer et al., 2007; Yin et al., 2010; Bingham and Hughes, 2012; Penduff et al., 2019).75

We therefore also investigate the components of sea-level variability at the coast.

Here we use a 53-year run of a high resolution ocean model to quantify and characterise decadal-scale sea-level trend

variability at the local, coastal scale (with the global-mean removed). A comparison is made with the CMIP6 historical run

ensemble mean and spread. Climate model runs will not, in general, mimic the timing of internal atmosphere-ocean variability

correctly but should capture much of its magnitude in the ensemble spread. Observed regional variability can be greater than80

coarse models suggest (Meyssignac et al., 2017; Carson et al., 2019), hence we compare the high-resolution run with the CMIP6

ensemble. These model runs are computationally expensive and we discuss the potential to use the relationship between sea-

level variability and climate indices. We exploit the correlation of project climate mode indices with on to the leading principal

components (PCs) of an empirical orthogonal function (EOF) decomposition to reconstruct decadal, coastal sea-level trend

associated with climate variabilityby a linear relationship. With our focus at the coast, the reconstruction is applied to satellite85

altimetry and tide gauge observations and the variability of coastal sea-level trends discussed.

2 Method

Although ENSO variability dominates the spatial pattern of sea-level variability on decadal timescales, we wish to investigate if

particular climate processes dominate sea-level trends, at the coast, over different regions, and for each component of sea-level

change.90

Climate and high-resolution ocean model runs are used to quantify the variability in decadal sea-level trends at the coast,

from each component part. A reconstruction of coastal, decadal sea-level trends using only standard climate mode indices is

attempted that can be easily replicated, by projecting climate mode indices onto principal components (PCs) of decadal, coastal
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sea-level trends. Variability of the coastal, decadal trends in sea-level components (derived from the high-resolution ocean

model sea-level components plus GRD) is characterised by an empirical orthogonal function (EOF) analysis for each major95

ocean basin. The principal components (PC) of these sea-level component modes are correlated against climate mode indices

to identify if a climate mode index co-varies with any PC (of each sea-level component and in each ocean basin). For each

sea-level PC in turn of diminishing variance explained (per component and basin), the climate index with maximum correlation

is projected onto a PC by a linear regression, until each climate index is used or the correlation is not statistically significant.

Thus, the decadal sea-level variability that can be associated with climate variability is reconstructed by one climate index100

and regression coefficient for each EOF-PC mode, with the sum over reconstructed PCs giving the total sea-level variability

associated with climate variability per component and basin. Details of the method and data follow.

Firstly, the magnitude of variance in regional sea level and its trend, as a deviation from the global-mean at each time step,

are determined from ocean models. These variance are calculated for total sea level as a sum and in its component parts of

manometric (model ocean bottom pressure) and steric contributions, plus the gravitation, rotation and solid-Earth deformation105

response (GRD) contribution, from the deviation from the global-mean at each time step not included in climate models (refer

to Gregory et al. (2019) for terminology).

We use output from a high-resolution (nominally 1/12◦), eddy-resolving ocean model (NEMO) run over 58 years at monthly

resolution from 1958–2015, in which the component steric and manometric signals sum to the sea-level signal (Marzocchi

et al., 2015; Moat et al., 2016). We use the later 53 years of data, allowing for 5 years’ of spin-up. The global-mean sea110

level is removed at each time step, since we are primarily interested in the regional variability about the mean correcting for

the Boussinesq approximation (Greatbatch 1992, Griffies and Greatbatch). The ‘zos’ variable for sea level does not include

atmospheric pressure effects and are therefore not included in this assessment. Thus the processed sea level quantifies the

direction and variability of spatial patterns and intensification in sea level caused by real observed atmospheric forcing plus

internal intrinsic, oceanic variability, excluding the inverse barometer effect. It is acknowledged that this variability will include115

influence from anthropogenic sources, because the high-resolution model is forced by reanalysis atmospheric data rather than

natural forcing. The magnitude of variability is compared against the ensemble mean and spread of variance for the same time

period from an ensemble of 43 historical forcing CMIP6 models.

The observed absolute sea-level signal as observed by altimetry includes the GRD component that is spatially varying. The

barystatic, global-ocean-mean volume change due to solid-Earth deformation is ignored in this study because we remove the120

global-mean at each time step. We add only the spatial geoid signal to the sea surface height (SSH) from the models (with a

global-ocean-mean of zero).

To quantify how much of the sea-level variability can be described by a relationship with climate indices, where the impact

of sea-level change is highest - at the coast - we investigate reconstructing sea level from climate indices over a decadal

timescale. We investigated both low-pass filtered and rolling linear trend in time for each coastal grid cell time-series and125

found the strongest relationship in the latter (not shown). We assume first-order auto-regressive (AR1) noise, appropriate for

monthly sea-level time series (e.g. Bos et al., 2013; Dangendorf et al., 2014; Haigh et al., 2014), by a generalised least-squares
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regression that solves for the annual- and semi-annual periodics as well as the trend. We apply an EOF analysis to the rolling

decadal trends from the modelled component parts and compare against decadal trends in key climate indices.

It is acknowledged that there are limitations in using EOF analysis and a linear regression to associate climate variability130

with sea-level variability. Of course, the EOF method identifies the largest variance for its leading mode, and each mode is

orthogonal from that. Therefore even when care is taken to deseason and detrend the coastal, sea-level component time series,

variability from specific physical drivers may be distributed into several EOF-PC modes. However, by reducing the spatial

dimensions using EOF analysis we limit computational effort and redundancy in the analysis because of spatial covariance,

and produce a small data set of EOF patterns and loadings with just one set of regression coefficients each.135

To focus where the impact of sea-level change is highest, and because the EOF analysis determines orthogonal bases from

the first principal component (PC) with largest variability, we only apply the analysis to coastal regions. We define coastal by

distance to the nearest coastline, selecting those model grid centres less than 25 km distance from one of the low resolution

coastlines in the global self-consistent, hierarchical, high-resolution geography (GSHHG) database (following Penduff et al.,

2019).140

Our aim is to relate climate mode indices with the sea-level variability EOFs. A multi-variate linear regression analysis

could be used. Linear regression analysis only finds the analytical least square error fit in the case of Gaussian data (no

auto-correlation in the time series), and with independent explanatory variables. Some studies have reduced the impact of

multicollinearity of the explanatory variables by low-pass and high-pass filtering correlated climate indices, giving new indices

that represent short and long time scale processes (e.g. Zhang and Church, 2012; Wang et al., 2021). Alternatively the inflation145

of regression coefficients due to multicollinearity of the explanatory variables may be reduced by the use of a penalty or

regularisation term, i.e. a ridge regression. A Least Absolute Shrinkage and Selection Operator (LASSO) regression approach

has been successfully applied to steric sea-level change (Pfeffer et al., 2018) and ocean mass change (Pfeffer et al., 2022)

associated with climate variability, on inter-annual and longer timescales. This approach relies on the user determining an

appropriate penalty term, typically by a cross-validation.150

We take a simpler approach that does not have tunable parameters. For the reconstruction, we use rank all leading EOFs

and retain those that describe at least 5% of the sea-level trend variability for each component of sea-level change. For each

leading PC in turn, a linear regression is applied to the climate index with the highest correlation coefficient The correlation of

each principal component is determined with primary climate indices and, provided the correlation is significant (by t-test with

the degrees of freedom reduced due to the auto-regressive nature of the signal; Emery and Thomson (2001)). This approach155

capitalises on the orthogonality of the sea-level trend PCs and ensures each climate mode index is only used once and only

when significant. The reconstruction sums the climate index multiplied by the regression coefficient for each climate index-PC

pair until all climate modes are used and/or the correlation is not significant against any PC. However, as the EOF analysis

may split the variability from a given physical process into more than one mode, it is likely that the relationship between a

single climate index and single PC will underestimate the total variance caused by climate variability. Thus, the reconstructed160

climate-associated sea-level trends produced should be thought of as lower limit at each location of the trend-variance about the
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mean-trend. a linear regression is performed for the leading PCs in turn with each climate index until all indices are associated

with a PC or the correlation or PC are no longer significant.

Reconstructed trends are compared against the variability of running trends from the model, giving the variance explained

by the climate index regression, calculated as the percentage ratio of trend variance at each grid cell, of the model-minus-165

reconstructed residual over the model rolling trends. The variance explained by these reconstructions of course varies by the

adequacy of a simple, linear model, and the number of leading principal component modes used in the reconstruction.

To validate our method, an example period of satellite altimetry data from 2008–2018 is taken. We compare the reconstruc-

tion for the trend from 2008–2018 is compared against observed sea level from satellite altimetryto validate our technique. The

reconstruction for running trends centred on 1968–2011 are compared against tide gauge observations at arbitrary locations,170

demonstrating locations where the variance explained appears to be good. The decadal trend variability from tide gauge ob-

servations and the reduction in variability explained by all significant PCs for manometric, GRD and steric sea-level change

combined and for each basin, using the reconstructed sea-level rolling trend at the nearest model grid cell to each tide gauge

location. The tide gauge relative sea level are corrected for glacial isostatic adjustment (GIA) but we do not correct for con-

temporary GRD-induced or other sources of contemporary vertical land movement (VLM) because of the limited number of175

tide gauges with co-located and benchmarked GNSS sites, instead removing the mean trend from tide gauge observed data.

Rolling trends from observation data are treated identically to that from model data, a seasonal signal is solved for within the

regression design matrix (an annual and a semi-annual periodic) and the noise is assumed to have an AR(1) characteristic.

3 Data

3.1 High-resolution 58-year ocean model run: NEMO180

The total sea-level signal is partitioned into steric and manometric sea level from the NEMO ORCA0083-N006 model run,

details of which can be found in Marzocchi et al. (2015); Moat et al. (2016). The model is applied to a high resolution ORCA

tri-pole grid (nominally 1/12◦) so is eddy-resolving, it incorporates a sea-ice model, and is forced by the Drakkar Surface

Forcing data set version 5.2 (Dussin et al., 2016), from 1958 to 2015 inclusive. The forcing includes reanalysed atmospheric

data, noting that a change in the data occurs in 1979, and This data set derives ocean model forcing variables from the ERA40185

and ERA-interim atmospheric data sets, and includes freshwater fluxes (precipitation and snow). Freshwater runoff is added

as seasonal cycles, and does not exhibit interannual changes. Because of deficiencies in the freshwater forcing, a moderate

relaxation of surface salinity to climatology is applied and a freshwater budget restoration is applied at time steps when a

deficit is found (and only applied to areas with precipitation).

Steric sea level is calculated using the TEOS-10 equation of state (TEOS-10, 2008) applied to temperature and salinity190

modelled values at each model depth level. The total and steric sea-level anomaly are inherently corrected for affected by the

Boussinesq approximation in this model setup (Greatbatch, 1994; Griffies and Greatbatch, 2012). This effect and the global-

ocean-mean atmospheric pressure effect are removed by subtracting because we remove the global-mean of each sea-level

anomaly at each time step.
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The manometric sea-level component is taken to be equal to the ocean bottom pressure anomaly, converted from pressure to195

mm change in height.

The ocean model has been shown to match observed variability well (Marzocchi et al., 2015). We additionally check that the

linear trend from last decade of the model run, 2005-2015, with GRD added matches the altimetry observation of absolute sea-

level trend (Supplementary Information Fig. S1 ). In this analysis, only coastal locations, within 25 km of the low resolution

GSHHG coastline, are considered.200

3.2 CMIP6 climate model historical runs

We ensure that sea-level trend variance given by the NEMO model is appropriate for our aim, by checking the variance

magnitude lies within the envelope of sea-level trend variance from historical-forced model runs from the 6th Climate Model

Intercomparison Program (CMIP6; Eyring et al. (2016)). are used to quantify the magnitude of internal ocean variability, to

compare with the NEMO high-resolution model.205

Model run data was obtained via JASMIN (UK data and storage facility, https://jasmin.ac.uk/users/access/) and may also

be obtained from the WCRP portal (ESGF, 2021). Historical forcing (esm-hist) has been run in CMIP6 from 1850 to 2014

inclusive. Here we take the ‘zos’ variable sea surface height, at monthly time stamps monthly means from January 1958 until

the end of the run in December 2014 (noting this is one year shorter than the high-resolution NEMO run). The zos variable is

interpolated onto a regular lat-lon 1/4◦ grid for each run and the global-ocean mean is removed from each time step of each210

model. Appendix A lists the 43 CMIP6 model setups analysed in this study. In this analysis, only coastal locations, within 25

km of the low resolution GSHHG coastline, are considered.

3.3 Climate mode and oceanographic indices

Major climate variability is represented by indices, derived from various atmospheric and oceanic observables, such as air pres-

sure at sea level, sea surface temperature and surface wind speed or its gradient. Here, we determine the correlation of the prin-215

cipal component time series of rolling sea-level trends with the rolling trends of 6 major climate includes: the Pacific Decadal

Oscillation (PDO; NOAA-NCEI (2020c)), El Nino Southern Oscillation (ENSO; Multivariate ENSO Index, NOAA-NCEI

(2020a)), North Atlantic Oscillation (NAO; NOAA-NCEI (2020b)), Arctic Oscillation (AO; NOAA-CPC (2020)), Southern

Annular Mode (SAM; Marshall (2020)) and Indian Ocean Dipole (IOD; GCOS (2020)).

Additionally, the effect of the Atlantic Meridional Overturning Circulation (AMOC) is investigated. The AMOC index is220

calculated here from the NEMO model runs, as an anomaly at each time step. The index is computed as the principle component

of the low-pass filtered (1-year running mean) and zonally-integrated meridional transport, in Sv, and then the rolling trend is

calculated from this index.

It is acknowledged that these indices are not independent of each other. However the EOF patternd and principal components

of coastal sea-level change are orthogonal. Therefore only one climate index is associated with each PC and not repeated in the225

reconstruction.
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3.4 Absolute sea level: Satellite altimetry

Absolute sea level is defined from a the ESA SLCCI v2 multi-mission, gridded product on a 1/4◦ grid with the most up-to-

date corrections and processing available (ESA SLCCI v2; Legeais et al. (2018); ESA (2018)). We replace the global-mean

GIA correction with a spatial correction, defined by the global-mean solid-Earth deformation response over the global-ocean230

(-0.21 mm y−1 for the ICE6G-VM_D GIA model (Peltier et al., 2015; Peltier, 2018)) plus the gridded geoid variation. The

standard global-mean trend GIA correction is applied at each grid point (-0.21 mm y−1 for the ICE6G-VM_D GIA model

(Peltier et al., 2015; Peltier, 2018)). This global-mean value represents the shift in geopotential surface of the geoid (Tamisiea,

2011). Because we are interested in the spatial distribution of sea-level trends, the spatially redistribution of the geoid by

GIA is also applied (Tamisiea, 2011), as a trend correction derived from the spherical harmonic coefficients provided by235

Peltier (2018). Contemporary GRD variability driven my mass redistribution affects the sea surface. Satellite altimetry observes

spatial changes to the geoid from a centre of mass and should be corrected for the global-mean volume change due to solid-

Earth deformation (Frederikse et al., 2017). We additionally correct the gridded satellite altimetry for solid-Earth deformation

associated with recent mass loading of the oceans, following Frederikse et al. (2020b) and using their published data (Frederikse

et al., 2020a).240

3.5 Tide gauge observations

Tide gauge observations are obtained from the Permanent Service for Mean Sea Level (Holgate et al., 2013) for revised local

reference (RLR) stations only. The relative sea level is corrected for GIA (Peltier et al., 2015; Peltier, 2018) only, and no

account is made for contemporary GRD-induced or other VLM, which may be non-linear. Because we are primarily interested

in the temporal variability of sea-level trends associated with climate variability, in the Figures we remove the time-mean trend;245

the linear trend correction does not affect the results. Non-linear solid-Earth deformation from GRD and other sources such as

ground compaction and building load are not accounted for and will present in the tide gauge trend variability. Monthly mean

time series, omitting flagged data, are used to determine rolling trends and periods where less than 50% of data are missing in

each rolling decade are omitted.

3.6 Gravitation, rotation and solid Earth deformation changes250

The ocean models do not include any GRD changes. Observations by their nature include GRD effects. The solid-Earth defor-

mation changes modify the basin-shape and therefore global volume. For absolute sea level observed by satellite altimetry does

not observe the global-ocean mean solid-Earth deformation from contemporary mass redistribution and global-mean glacial

isostatic adjustment (GIA) effects are usually subtracted as a correction. Altimetry does observes regional redistribution of

the geoid when the anomalies are taken from a mean sea surface. Relative sea level observed by tide gauges include solid-255

Earth deformation. To compare model data with observations, we add variability from a sea-level fingerprint method applied to

comprehensive data sets of land and cryospheric mass loading. The data set has been used to estimate the GRD effect on global-

mean and basin-mean sea-level trends where the time-varying vertical land movement was used to correct tide gauge relative
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sea-level records (Frederikse et al., 2020b, a). The GRD geoid fingerprints include the effect of mass changes in glaciers, the

Greenland and Antarctic Ice Sheets, including uncharted glaciers and peripheral glaciers, and from natural terrestrial water260

storage (TWS), dam retention (or reservoir impoundment) and groundwater depletion. Here, we determine decadal rolling

trends from the geoid variability of the sea-level fingerprint since 1958 and ignore the barystatic (global-mean) component

since we are interested in the spatial variability.

4 Results and Discussion

4.1 Variance of decadal sea-level trend265

Over the 58-year NEMO model run, coastal sea-level rolling trends vary in time by a mean standard deviation of 3.6 mm y−1,

with some locations displaying a standard deviation in trends over 7.5 mm y−1 (Fig. 1), which is significantly larger then the

mean trend over the modelled period of 2.2 mm y−1.

The variance of total SSH in the NEMO model run generally sits within the spread of variance in the CMIP6 ensemble. There

is increased variance in the CMIP6 ensemble mean compared with the NEMO model run in the Northern Hemisphere, partic-270

ularly in the Beaufort Straights, Hudson Bay, and the North Sea into the Baltic Sea, and to a lesser extent in the Mediterranean

and Black Seas (comparing Fig. 1a and 1b). This effect in climate models is typical in semi-enclosed seas It is well known that

many coarse-resolution climate models do not reproduce sea level in semi-enclosed seas well, because of resolution limits on

fluxes with the ocean basins (Adloff et al., 2018; Meyssignac et al., 2017) . In contract contrast the NEMO model run displays

a larger variance in sea-level trends around the coast of Greenland, in the tropical West Pacific and west coast of Australia, in275

the Caribbean Sea and around Chesapeake Bay. However most of these differences lie within the CMIP6 ensemble spread and

are therefore not significant.

This analysis confirms there is high variability in decadal sea-level trend in the Western Tropical Pacific Ocean. On the

eastern side where the coast faces the open ocean, the signal is dominated by steric changes, but through the Indonesian

Throughflow and in the marginal seas, the signal becomes manometric in nature (Fig. 2a,b). For most of the coastal locations,280

the variance in sea-level trend is dominated by manometric sea-level change; in 48.2% of coastal locations defined from the

NEMO grid the manometric sea-level change shows the largest contribution to variance, in 32.3% of locations steric sea level

is dominant and in 17.5% of locations the GRD effect is dominant.

Around the Greenland coast, in the vicinity of major ice mass loss that is variable in time, there is a large variability in

decadal trends due to the GRD effect (Fig. 2c). The GRD signal driven by glacier and ice sheet mass loss also contributes more285

than one-quarter to the variability around south Alaska, Hudson Bay and the Canadian Arctic and Iceland, and to a lesser extent

around the Patagonian ice sheet. It is noted that this analysis relates to absolute sea level equivalent, and VLM contributing

to relative sea level is not considered. There is also a notable contribution from GRD in areas around the major river basins

or other hydrology impacts (like groundwater abstraction or dam retention) where interannual variability in TWS is large, for

example around the Amazon River basin, Niger River basin and the Persian Gulf.290
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Even though in many of those regions the variability in decadal trend around the global-mean is small (around 1 mm y−1),

where the dominant contributions are GRD and/or local steric contributions from hydrology, future changes may exacerbate

the trend. For example, in the Persian Gulf, decadal sea-level trends are dominantly affected by GRD changes over direct

oceanographic changes in addition to global-mean sea-level rise. It is noted here there is a complex GRD signal from both

hydrology and glacier mass loss. On the south-east African coast, as in much of the South Atlantic, where there are very295

few long-duration tide gauge measurements, the trend variability is small (less than 1 mm y−1) in both the CMIP6 ensemble

mean and NEMO model (Fig. 1a,b). Here, sea-level variability is strongly influenced by GRD effects from the variability of

hydrology, with the Amazon, Niger, Congo and Zambezi/Okavango basins driving more than 40% of sea-level trend variability

in places (Fig. 2c). Long-term anthropogenic or climate change impacts on the hydrology in these locations are likely to

intensify the regional trend about the global-mean.300

Figure 1. Comparison of the variability in decadal, sea-level trends between NEMO and an ensemble of CMIP6 model runs. Standard

deviation of decadal trends (mm y−1) in sea surface height from the NEMO model (a), the ensemble mean EM of the CMIP6 model runs

(b), the absolute difference between NEMO and CMIP6 EM (c), which may be compared against the CMIP6 ensemble spread, ES (d).and

the model spread (c). The SSH from the NEMO model and ensemble mean of CMIP6 model runs (a,b) include GRD.

4.2 Climate index reconstruction of sea-level trends

We reconstruct decadal running sea-level trends from climate index trends by ocean basin for steric and manometric sea level

separately, and then combine the reconstructions. When compared with the NEMO model sea-level rolling trends at each

coastal grid point (from which the regression coefficients were derived), the reconstruction displays statistically significant

correlations (r > 0.32 for a two-sided t-test at 95% CI with an auto-correlation of 0.5 in the rolling trends) along much of the305

global coastal locations (Fig. 3a). There is a notably poor correlation around South-East Africa, where the interaction of the

Benguela and Agulhas currents and upwelling may interrupt far-field climate-driven sea-level variability. The proportion of

sea-level trend variance reconstructed by climate variability through our approach is small around much of the global coast
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Figure 2. Proportion of variance explained (%) by sea-level components of the rolling decadal trends in sea surface height from the NEMO

model: by steric sea level (a), manometric sea level (b) and GRD respectively (c). Fig. 1a presents the magnitude of the variability (standard

deviation).

(oranges, greys, pinks in Fig. 3). The reconstruction explains more than half of the decadal sea-level much of the variance along

the American continent’s west coast and in the Tropical Pacific Ocean and Indonesian Throughflow to the West Australian coast310

and west coast of Asia (blues in Fig. 3b). The primary mode explains more than half of the decadal trend variance in the semi-

enclosed seas of East Mediterranean, Black and Baltic Seas. Along the traditionally under-sampled West African coastline

between 10◦N and the Mediterranean outflow at Gibraltar Straits and between 5◦S and 30◦S, the reconstruction explains

11



between one-third and one-half of variability in decadal trends. The approach explains more than half of decadal trend variance

over 25.8% of the global, non-polar coastal ocean, and with greater success in the Pacific Ocean where the ENSO variability is315

dominant (Table 1). Table 1 presents the proportion of grid cells located in each basin where the reconstruction explains more

than one-third, one-half or two-thirds of the decadal sea-level trend variance (not areally averaged area-averaged). The column

‘SSH’ refers to a reconstruction using only total SSH EOFs and the column ‘DSL + steric’ refers to a reconstruction summed

from the EOFs of all sea-level components. For each major basin, the approach can explain more than one-third of the decadal

trend variance for 24.6% to 73.1% of coastal locations (Table 1).320

Figure 3. Comparison of decadal, rolling sea-level trends from the NEMO model plus GRD, and reconstruction using only climate indices:

Pearson’s correlation coefficient (a) and variance explained (b; %). Results here sum reconstructed decadal trend from manometric sea level

plus steric sea level by ocean basin. Triangles denote the locations of tide gauge observations shown in Fig. 4.

When considering the proportion of variance explained for a coastal location, the manometric sea-level signal becomes

important.High-resolution ocean models demonstrate altimetry-era sea level change is masked by oceanic intrinsic variability

over 38% of the global ocean (Llovel et al., 2018) and 17-20% of coastal areas (Penduff et al., 2019). Penduff et al. (2019) show

the variance in the steric part of the signal is reduced in coastal areas compared with the open ocean, the atmospherically forced

steric signal emerges from intrinsic variability in coastal regions far less (5% coastal area) than the manometric contribution325

(30% coastal area). The shallowing water column in the coastal region requires a manometric response to the open-ocean steric

signal (Bingham and Hughes, 2012; Dangendorf et al., 2021). This is the mechanism for the proportion of variance seen in

Fig. 2. Unfortunately satellite observations that measure mass changes through gravimetry, such as the GRACE mission, are

unlikely to be able to resolve this signal close to land, because the variability in the equivalent water height on land is orders

12



Coastal Domain > Var. Exp. SSH DSL + steric

All basins one-quarter 58.9 54.9

one-third 48.2 44.5

one-half 29.3 25.8

two-thirds 7.2 12.3

three-quarters 1.8 5.7

Atlantic one-quarter 52.4 40.8

one-third 41.2 28.7

one-half 21.4 8.7

two-thirds 4.8 0.0

three-quarters 0.1 0.0

Pacific one-quarter 78.9 82.0

one-third 66.9 73.1

one-half 46.6 54.2

two-thirds 12.7 32.8

three-quarters 4.6 15.3

Indian one-quarter 24.4 29.9

one-third 19.6 24.6

one-half 8.7 9.1

two-thirds 0.3 0.0

three-quarters 0.0 0.0
Table 1. The proportion of coastal grid cells defined from the NEMO grid with more than one-quarter (25%), one-third (33%), one-half

(50%), and two-thirds (67%) and three-qaurters (75%) of decadal trend variance explained by the reconstruction. The values shown here are

from assessment of the ‘coastal domain’ and the NEMO model runs. ‘SSH’ refers to the reconstruction using EOF and PC modes for the

full SSH signal and ‘DSL + steric’ refers to the reconstruction by components, for manometric dynamic sea level, GRD and steric sea level

associated with climate indices separately and then summed.
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of magnitude greater than the ocean signal, leading to leakage and resolution issues. Thus, using the Argo data to verify steric330

sea level variability with climate change and using climate forecasts may provide short-term (as far ahead as the forecast for

ENSO for example) indications of coastal sea level change. This has been recently demonstrated to work well for some specific

regions of the coast (Dangendorf et al., 2021). The first principal component modes from manometric and steric sea level are

very similar to that from sea surface height and have highest correlation with the same climate indices, colorred except for the

influence of AMOC in the Atlantic Ocean (Supplementary Information Table S1 and Figs. S5 and S11 ). However, by adding335

the contribution from each component separately there is a marginal improvement in the overall variance explained by this

approach (Table 1). Splitting the variance into component parts allows the EOF analysis to determine more specific spatial

patterns for each component part, whereas the total SSH is dominated by different physical processes in different areas (Fig.

2).

Oscillations in observed tide gauge decadal trends are explained well by the climate index reconstruction in some regions,340

in particular across the tropical Pacific and the coast of the Americas and on the Atlantic West coast (examples are given in

Fig. 4). Along coastlines where it is expected a coastally-trapped boundary wave transmits sea-level disturbances, it can be

seen that Where the majority of the signal is manometric, for example the West coast of Australia and the Gulf of Maine

(Fig. 4c,e), coastally-trapped waves propagate along the continental slope and shelf. . Where the continental shelf is narrow,

the reconstructed sea level is predominantly steric (Fig. 4b). In the tropical West Pacific, the dominant ENSO steric signal345

directly impacts tropical West Pacific tide gauge sites on the oceanward (eastern) coast, but the signal propagates through the

Indonesian throughflow and around the island as a manometric signal, so that by Cebu the signal is predominantly manometric

(Fig. 4a). The tide gauge data do not have contemporary VLM removed (except GIA), nor the nodal tide or inverse barometer

correction made. For visualisation we simply remove the mean trend for the whole period considered.

For those locations with large magnitude variabilityin the trend, i.e. with a standard deviation larger than the global-mean350

trend of 3.5 mm y−1 (oranges and yellow is Fig. 1a,b), much of that typically more than half of that decadal signal can be

attributed to climate forcing and reconstructed from climate indices. For 10% of the coastal locations in this study, over two-

thirds of the regional decadal sea-level trend about the global-mean can be quantified by a linear relationship with climate

index data (Table 1).

4.3 Climate effect on recent coastal sea-level trends355

The reconstructed sea-level variability due to primary climate modes can be compared against the spatially-comprehensive

satellite altimetry data, with the global-mean trend removed (to emphasise regional patterns in sea-level change).

For a recent decade of observations, 2008–2018 inclusive, the reconstruction of sea-level trends trend anomaly along the

coast associated with climate indices (Fig. 5) captures the dipole of sea-level trends trend anomaly across the Pacific Ocean

and much at least one-third of the decadal trend trend anomaly in the Caribbean Sea, South Greenland and Black Sea, and the360

sign of the trend trend anomaly in south Greenland, the Baltic Sea and North West African coast. The reconstructed signal is

not as strong as observed. The variance explained at coastal grid cell locations in the Atlantic and Indian Oceans is increased,

although the variance is decreased by the reconstruction in the Pacific. In some regions, such as the Gulf of Mexico, the
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Figure 4. Observed sea-level trends in tide gauge observed sea level (mm y−1; grey solid lines, light grey shading presents 1σ trend error

estimates, triangles on Fig. 3), and the reconstructed decadal trends from all PCs for the appropriate basin, for steric sea level (red dashed),

manometric plus GRD sea level (blue dashed) and the sum (black solid), together with a simple average coastal-global-mean (f). Note the

time-mean sea-level trend is removed from each tide gauge observed data for visualisation.

reconstructed trend associated with climate variability (Fig. 5b) displays the opposite sign to the observed trend (Fig. 5a); in

these locations in this period, the observed minus reconstructed trends have a larger magnitude trend from the global-mean. The365

histogram of trends trend anomalies for this period are markedly more Gaussian when reconstructed with climate-index-related

variability removed than the unaltered observations.

Notably in all basins, by removing the reconstructed variance by climate indices, the mean (median) coastal sea-level trend

for 2008–2018 is increased, by 0.7 (0.2) mm y−1 globally (Table 2). It is noted that we expect climate variability has affected

the global-mean sea level over the same period which we do not account for here, but we may conclude that coastal sea levels370

have been suppressed by the phase of climate variability in 2008–2018, compared with the entire-ocean mean.

4.4 Sources of decadal variability and caveats

Interannual sea-level variability can develop purely as a response to non-linear interactions in oceanic intrinsic variability, and

can evolve from seasonal forcing as strongly as from atmospheric forcing (Llovel et al., 2018). Oceanic intrinsic variability

exceeds the forced response to atmospheric forcing at some lengthscales over several years in high resolution ensembles375
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Figure 5. Comparison of 2008–2018 trend trend anomaly (mm y−1) from satellite altimetry and reconstruction. Observed decadal trend in

satellite altimetry for with the global-mean removed (a) and the reconstructed decadal trend for each basin and component combined (b),

with histogram (c) for all coastal grid cell locations for observations from satellite altimetry (grey) and the altimetry minus the reconstruction

(so-called ‘reduced’ trends, red).

Statistic Coastal Domain Obs. Reduced Diff.

Std. dev. Global 4.2 3.3 -1.0

Atlantic 2.8 3.0 0.2

Pacific 5.2 3.3 -1.9

Indian 4.6 3.7 -1.0

Mean Global 0.0 0.7 0.7

Atlantic 0.8 1.1 0.3

Pacific -0.1 0.6 0.7

Indian -3.0 -1.0 2.0
Table 2. Statistics of the global-coastal sea-level trend from 2008–2018, observed by satellite altimetry and when reduced by the reconstructed

sea level expected from climate index reconstruction for each basin (mm y−1).

(Sérazin et al., 2015, 2016; Llovel et al., 2018; Penduff et al., 2019). Thus, sea-level variability is the aggregated response, over

integrating time-scales, of both atmospheric forcing and intrinsic variability in the system. It is acknowledged that the approach

16



Atlantic Pacific Indian

Component Index beta Index beta Index beta

Steric PC1 AMOC -0.83 ENSO 1.60 ENSO -0.95

Manometric PC1 AMOC -1.01 ENSO 1.64 ENSO -1.24

GRD PC1 AMOC -0.67 AMOC -0.88 AMOC -0.84
Table 3. The linear trend coefficient between decadal trend in climate index and the first PC time series in each basin and for each omponent

of sea level.

could be improved by comparing the PCs with phase-lagged trends in the climate indices and/or with other metrics describing

the forcing.

Globally, the ENSO and PDO have been shown to dominate the decadal-scale variability of coastal sea level over other380

climate processes (e.g. Hamlington et al., 2013; Nerem et al., 2018). Because the PDO or ENSO decadal variability dominate

the power in sea-level variability, the EOF bases on a global data set are forced to be orthogonal to that mode. To investigate

other drivers, we further mask the data into three oceanic basins, the Atlantic, Pacific and Indian Oceans. By focusing on each

oceanic basin in turn, the dominant mode(s) from each region can be identified (Table 3; Supplementary Information Table S1

and Figs S4 to S18 ). Since we aim to reconstruct decadal-scale sea-level trends, it is difficult to make direct comparisons with385

previous studies of climate variability and sea-level change. The dominant influence of ENSO and PDO indices with Pacific

and Indian Ocean sea level agrees with other works (e.g. Zhang and Church, 2012; Hamlington et al., 2019; Wang et al., 2021;

Pfeffer et al., 2018, 2022). In the North Atlantic Ocean, our approach finds a stronger relationship between sea-level variability

and AMOC, followed by the AO. Previous studies that include interannual variability find strong relationships with the NAO

(Frederikse et al., 2018). Studies that separate the sea-level components have found steric sea-level variability strongly relates390

to the Atlantic Multidecadal Oscillation (AMO) (Pfeffer et al., 2018) and our approach results in a similar relationship between

manometric sea-level change and the AO as Pfeffer et al. (2022) (Supplementary Information Fig. S12).

Generally climate models display lower sea-level variability than observed (Carson et al., 2015). In particular the CMIP5

models were found to simulate sea-level variability comparable to observations but showed bias in trends (Meyssignac et al.,

2017); other authors found that the long term memory, power-law character of sea level in CMIP5 models is too small, indi-395

cating the internal sea-level variability is too short-lived (Becker et al., 2016). Here, the use of a high resolution model goes

some way to minimise that influence but we caution that the resulting reconstructed sea-level variability and its trend should

be thought of as a minimum rise or fall in sea level expected with climate index evolution.

It is acknowledged that the EOF patterns and their PCs developed here are somewhat model-dependant and because of the

linear approach taken may incorporate anthropogenic as well as internal forcing patterns. Because of the multicollinearity in400

the explanatory variables (climate mode indices) and auto-correlation in the variables, there are limitations on any type of

regression analysis that attempts to associate climate variability with sea-level variability. The EOF analysis may split the

variability from a given physical process into more than one mode, weakening the relationship with any single climate mode
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index. Therefore, the reconstructed climate-associated sea-level trends produced should be thought of as lower limits at each

location of the trend-variance about the mean-trend. A multi-variate approach with regularisation could be applied instead.405

5 Conclusions

The current temporal duration of high quality sea-level data with good spatial coverage conflates with the typical auto-

correlated, integrated, long-memory time scale of variability in major atmosphere-ocean climate modes, recently shown for

steric sea level variability particularly in the Atlantic by Pfeffer et al. (2018) and for the open Pacific Ocean by Hamlington

et al. (2020a). Therefore much of the current linear trend in steric and manometric components of sea level can be recon-410

structed from climate index data in some parts of the global-coast. This enables the possibility that observed sea level and its

components can be reduced for climate variability, as has been applied for the total sea-level signal at the global-scale (Nerem

et al., 2018; Hamlington et al., 2020c) and spatial distribution in the Pacific Ocean (Hamlington et al., 2020b, a) and globally

for time series (Wang et al., 2021).

We present an analysis of the variance in local, short-term (decadal) sea-level trends about the global-mean around the415

Atlantic, Pacific and Indian Ocean coastlines. These data are an indicative lower-bound of uncertainty in regional short-term

trend deviations from global-mean projections. The standard deviation of decadal trend exceeds the global-mean of 3.5 mm y−1

along the eastern North Pacific, western tropical Pacific, New Zealand and western Australian coastlines, eastern Indian Ocean,

parts of the Caribbean Sea coast and western Atlantic coastline including Greenland coast, and many semi-enclosed seas.

For a recent decade of observations, from 2008–2018, the global-coastal mean sea level (here defined within 25 km of420

the coast and ignoring the Arctic and Antarctic coastlines) has been suppressed by climate variance, by 0.7 mm y−1 in the

coastal-mean. In particular, this increase is greatest in the Indian Ocean basin (2.0 mm y−1 greater).

More than half of the decadal sea-level trend can be explained by a linear regression with major climate index trends at

around 25% of global coastal (within 25 km of the coast) locations, rising to 54% of grid cells around the Pacific Ocean. The

ENSO and PDO variability dominates here, and the open ocean variability observed by many previous studies extends to and425

around the coast most notably in the West Tropical Pacific and along the coast of the Americas. Our approach which has no

lag or lead time introduced finds lower and explains less than one-third of the decadal variance explained in the low latitude

East Pacific Ocean and in the mid-latitudes of the West Pacific. In the Indian Ocean, our method is most successful in the

eastern basin, where the propagation of ENSO-related sea-level disturbance dominates through the Indonesian Throughflow

and therefore dominates the first EOF mode, explaining more than 40% of decadal variance along the West Australia coast,430

but less than 20% elsewhere. In the Atlantic Ocean our approach works well in the Baltic, Black and Eastern Mediterranean

Seas and along the west coast of North Africa (Eastern Tropical Atlantic Ocean)with more than 50% variance explained in

places, but is less informative on the north eastern Atlantic margin. Notably this region of North Africa, and other regions

where the variance explained is lower but still statistically significant such as the Caribbean Seas and Bay of Bengal, have a

lack of good quality and long duration tide gauge data by which to evaluate decadal-scale variability needed to make helpful435

forecasts of sea-level trends over the mid-term. The dominant influence of ENSO and PDO on sea-level change in the Pacific
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and Indian Oceans and the influence of AO on Atlantic Ocean manometric sea-level change match previous studies (Zhang

and Church, 2012; Hamlington et al., 2019; Wang et al., 2021; Pfeffer et al., 2022). Our approach finds a strong relationship

between AMOC and decadal sea-level change in all basins.

The variability of GRD in total sea-level trend should not be ignored over timescales of the order of 10 years (Fig. 2).440

The variability in decadal-scale coastal sea-level trend over much of the coastal ocean is dominated by manometric and GRD

sea-level components rather than steric sea level. The coasts where steric sea-level trend variability dominates the signal are

mostly tropical or low latitude towards the west of ocean basins and at the oceanic extent of the continental shelf. Sea-level

disturbances that originate as steric in the open ocean propagate onto the continental shelf as a mass signal at the local scale.

Thus, sea-level trends in the open ocean that can be associated with steric forcing need to be propagated accordingly onto the445

shelf, i.e. using high-resolution models, to adequately forecast variability at the coast. Future anthropogenic or climate change

influences on hydrology and ice mass change driven GRD will disproportionately affect some regions that historically display

low decadal variance, such as the Amazon Basin, the west coast of Africa from Niger, Congo and Zambezi hydrology, and the

Persian Gulf.

Appendix A: CMIP6 models450

The CMIP6 models used in this study are given in Table A1.

Data availability. The CMIP6 model run and NEMO model run outputs are available to download from their original sources (ESGF

(2021); www.jasmin.ac.uk). Additionally, CMIP6 model runs are available from the WCRP data portal at https://esgf-index1.ceda.ac.uk/

search/cmip6-ceda/. Public archives of the NEMO ORCA0083-N006 model run are found at http://gws-access.ceda.ac.uk/public/nemo/

runs/ORCA0083-N06/means/ (Coward, 2016). The NEMO ocean model code and its documentation are available from https://www.nemo-455

ocean.eu. We use SSH data from satellite altimetry from the ESA SLCCI v2 project (ESA, 2018); GRD effect data provided by Frederikse

(Frederikse et al., 2020a); and climate mode indices as cited in the text.

The data produced in this analysis and used to create the Figures and Tables is available to download from Zenodo with DOI: 10.5281/zen-

odo.5849268 at https://zenodo.org/record/5849268#.YeFtDGjP2Uk.
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Model Name Model Centre Resolution

ACCESS-CM2 CSIRO-ARCCSS -

ACCESS-ESM1-5 CSIRO -

BCC-CSM2 BCC MR

CAMS-CSM1-0 CAMS -

CanESM5 CCCma -

CAS-ESM2-0 CAS -

CESM2 NCAR -

CESM2-FV2 NCAR -

CESM2-WACCM NCAR -

CESM2-WACCM-FV2 NCAR -

CIESM THU -

CMCC-CM2 CMCC HR4

CMCC-CM2 CMCC SR5

E3SM-1-0 USDOE -

E3SM-1-1 USDOE -

E3SM-1-1-ECA USDOE -

EC-Earth3 EC-Earth-Consortium -

EC-Earth3-AerChem EC-Earth-Consortium -

EC-Earth3-Veg EC-Earth-Consortium -

EC-Earth3-Veg EC-Earth-Consortium LR

FGOALS-f3-L CAS -

FGOALS-g3 CAS -

FIO-ESM-2-0 FIO -

GFDL-CM4 GFDL -

GFDL-ESM4 GFDL -

GISS-E2-1-G NASA-GISS -

GISS-E2-1-G-CC NASA-GISS -

GISS-E2-1-H NASA-GISS -

INM-CM4-8 INM -

INM-CM5-0 INM -

IPSL-CM6A IPSL LR

KIOST-ESM KIOST -

MIROC6 MIROC -

MPI-ESM-1-2-HAM HAMMOZ-Consortium -

MPI-ESM1-2 MPI-M LR

MPI-ESM1-2 MPI-M DWD DKRZ HR

MRI-ESM2-0 MRI -

NESM3 NUIST -

NorCPM1 NCC -

NorESM2 NCC LM

NorESM2 NCC MM

SAM0-UNICON SNU -

TaiESM1 AST -

Table A1. List of CMIP6 models used in this study.
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