Amended writing to account for version 2.0 upgrade.

(Unchanged text in blue, amended text in black)

2.1.1

- Location: The light green tab's data template was developed to process vertical casts located at a given location. Longitude and latitude must be input in cells 'B1:B2' in decimal format (degrees). Longitude can either be within the domain (-180° to 180°) or (0° to 360°) i.e., 10° 30' W can be input as -10.5° or 349.5°. The latitude domain is (-90° to 90°) i.e., 30° S would be -30°. The input of the cast coordinates is essential, as Absolute Salinity is dependent of location (Sect 3.6). If either the longitude or the latitude cells are left empty, the Salinity Anomaly is set to zero and Absolute Salinity becomes equal to Reference Salinity.
- Pressure: pressure (p) units are dbar. For seawater properties, pressure is always the pressure of the water column, i.e., absolute pressure subtracted by atmospheric pressure. Therefore, at the surface, p = 0. For the upper ocean, 10 dbar ≈ 10 m.
- Salinity: the user can toggle the input between Practical Salinity (the salinity quantity which continues to be the recommended quantity to be archived (IOC, SCOR and IAPSO, 2010)), conductivity (mS cm⁻¹) (i.e., measured by an *in situ* transducer), or the conductivity ratio (i.e., ratio between the conductivities of the sample and of Standard Sea Water, measured by a salinometer). Column 'D' of the spreadsheet ('Practical Salinity (S_P)') either copies the S_P value if this was the salinity input or calculates S_P from conductivity using function {SP_from_C(C, t, p)} or from the conductivity ratio using function {SP_from_R(R, t, p)}, depending on the radio button selected.
- Temperature: temperature (°C) may be selected to be either ITS-90 or IPTS-68 (data sets before 1990 are in the IPTS-68 standard, but recent data may still be applying this standard instead of the newer ITS-90 checking the instrument specifications and/or the metadata associated with the data is advisable). Column 'J' of the spreadsheet ('Temperature ITS-90') either copies the temperature input if ITS-90 is selected or converts the IPTS-68 values to ITS-90 (ITS-90 = IPTS-68 / 1.00024). All functions use temperature ITS-90 as input.

2.2

• Whenever the location is in the Baltic (which is checked by the {is_Baltic(lon, lat)} function), the Salinity Anomaly cells display 'Baltic'. This spreadsheet also includes a line with data from line one of the 'TEOS-10 Test Data' tab (surface data from the NW Pacific) as well as a line of data without location coordinates (e.g., a sample from an estuary). In this case, Salinity Anomaly is set to zero and Absolute Salinity becomes equal to Reference Salinity.

2.6 Info tab (green)

This tab lists all released versions of TEOS-10 EXCEL, providing detailed information on the updates included in each version.

3.VBA (Visual Basic for Applications) modules

Table 1. List of all VBA Modules and formulas included in v.2.0 of TEOS-10 Excel. Direct translations from GSW are marked with 'YES' and original or modified functions marked with 'NO'.

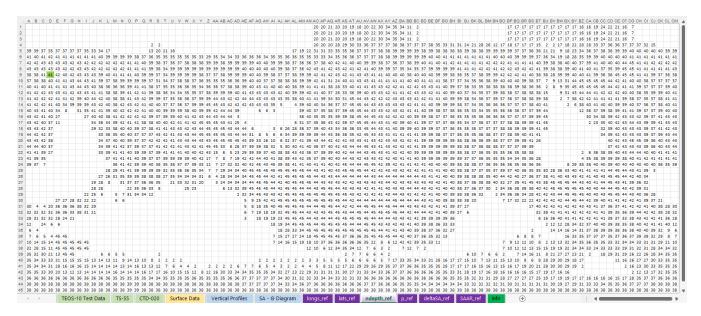
VBA Module	GSW	Description
CT_from_pt(SA, pt)	YES	Calculates Conservative Temperature of seawater from potential temperature (whose reference sea pressure is zero dbar)
Entropy_part (SA, t, p)	YES	This function calculates entropy, except that it does not evaluate any terms that are functions of Absolute Salinity alone. This function is called by {pt0_from_t}
Entropy_part_zerop (SA, pt0)	YES	This function calculates entropy at a sea pressure of zero, except that it does not evaluate any terms that are functions of Absolute Salinity alone. This function is called by {pt0_from_t}
Gibbs_pt0_pt0 (SA, pt0)	YES	This function calculates the second derivative of the specific Gibbs function with respect to temperature at zero sea pressure. This function is called by {pt0_from_t}
Hill_ratio_at_SP2(t)	YES	Calculates the Hill ratio, which is the adjustment needed to apply for Practical Salinities smaller than 2. This function is called by {SP_from_C(C,t,p)} and {SP_from_R(R,t,p)}
is_Baltic(lon, lat)	NO	Checks if a location is in the Baltic Sea. This function is original and different from the GSW counterpart. Baltic limits are taken from Figure 2 of Feistel et al. (2019: 6)
LookUp_atlas(table_name, p, lon, lat)	NO	This function builds and interrogates the Atlas database and was developed specifically for the EXCEL implementation of TEOS-10. 'table_name' can be one of the two look-up tables [deltaSA_ref] or [SAAR_ref]. Results are a 3D interpolation of the 8 vertices of the cube around the (lon, lat, p) location in the ocean
pt0_from_t(SA, t, p)	YES	Calculates potential temperature with reference pressure, p_ref = 0 dbar.
rho(SA, CT, p)	YES	Calculates in-situ density from Absolute Salinity, Conservative Temperature, and pressure
SA_Baltic(SP)	YES	Calculates Absolute Salinity in the Baltic from Practical Salinity
sigma_CT_line(SA, sigma, min_temp, max_temp)	NO	Calculates Conservative Temperature (CT) from SA at a constant sigma value (e.g., 25) between min_temp and max_temp. Function used to build potential density (sigma) lines to be plotted in the Absolute Salinity - Conservative Temperature Diagram. It calls the {sigma0(SA,CT)} function
sigma0(SA, CT)	YES	Calculates potential density anomaly with reference pressure of 0 dbar
Sound_Speed(SA, CT, p)	YES	Calculates the speed of sound in seawater from Absolute Salinity, Conservative Temperature, and pressure
SP_from_C(C,t,p)	YES	Calculates Practical Salinity from Conductivity, temperature, and pressure
SP_from_R(R,t,p)	YES	Calculates Practical Salinity from the conductivity Ratio, temperature, and pressure
Formulas used outside VBA Modules		
t = t68 / 1.00024	YES	Calculates temperature ITS-90 from temperature IPTS-68
S _R = S _P * 35.16504 / 35	YES	Calculates Reference Salinity (S _R) from Practical Salinity (S _P)
$\delta S_A = S_R * [SAAR_Atlas]$	YES	Absolute Salinity Anomaly equals the product of Reference Salinity by the interpolated Absolute Salinity Anomaly Ratio
$S_A = S_R + \delta S_A$	YES	Absolute Salinity equals Reference Salinity plus Absolute Salinity Anomaly

Table 1 lists all functions (VBA modules) and formulas included in version 2.0 of TEOS-10 EXCEL. Most modules are a direct translation...

As referred before, access to the VBA project environment can be obtained by pressing [Alt + F11] (Windows) or [Fn + Alt + F11] (Mac). All functions (alphabetically listed in table 1) are described next, following the spreadsheet's column sequence.

3.1. Practical Salinity (S_P)

 S_P is computed from conductivity using function $\{SP_from_C(C, t, p)\}$ or from the conductivity Ratio using function $\{SP_from_R(R, t, p)\}$, depending on the radio button selected. Practical Salinity is a dimensionless quantity, although PSU (Practical Salinity Units) is commonly used. For reference, the calculation algorithm is designed so that the conductivity of Reference Composition Seawater at $S_P = 35$, $t_{68} = 15$, p = 0 is 42.9140 mS cm⁻¹, which can be used to validate the conductivity function. For the conductivity Ratio function, a ratio = 1 and $t_{68} = 15$, will result in $S_P = 35$. If $S_P < 2$ both functions call the $\{Hill_ratio_at_SP2(t)\}$ function which corrects the SP value based on the Hill et al. (1986) algorithm. This algorithm is adjusted so that it is exactly equal to the PSS-78 algorithm at SP = 2.


The following figures were updated:

4 A	В		С	D	E	F	G	Н	1	J	К	L	M	N	0
Lon	gitude 162.		degrees			Longitude an	d Latitude are need	ded for estimating the	Absolute Salinity A	nomaly. If eithe	er is left blank, Absolu	ite Salinity Anomaly	is set to zero.		
La	atitude 33		degrees	User	data should be in	put in white cells o	nly. All coloured o	olums will update au	tomatically. DATA CA	N BE DELETED E	BUT NOT MOVED prior	to deletion OR THE	FORMULAS WILL LO	OOSE THEIR REFERE	NCE.
Pressure	(dbar) Salinity Practical Salin Conductivity Conductivity	mS/cm)	Temperature (°C) • ITS-90 • IPTS-68	Practical Salinity (S _P)	Reference Salinity (S _R) (g kg ⁻¹)	delta S _A Atlas (g kg ⁻¹)	SAAR Atlas	Absolute Salinity Anomaly (δS _A) (g kg ⁻¹)	Absolute Salinity (S _A) (g kg ⁻¹)	Temperature ITS-90 (°C)	Potential temperature (θ) (°C)	Conservative Temperature (⊖) (°C)	Potential Density (σ _Θ) (kg m ⁻³ - 1000)	In situ Density (PSA S. p) (kg m ⁻³)	Sound Speed (c) (m s ⁻¹)
5 5 7 8	0 10 20 30 40	34.57586 34.74774 34.67881 34.68279 34.68397	20.008300 19.133780	34.7477 34.6788 34.6828	34.9116 34.8423 34.8463	0.000327101505 0.000339231758 0.000333521900 0.000375042687 0.000389800378	0.000009410247 0.000009773386 0.000009747636 0.000010581871 0.000011376763	0.000326901616 0.000341204433 0.000339630409 0.000368739417 0.000396451974	34.7392 34.9119 34.8427 34.8467 34.8479	19.5076 20.0083 19.1338 18.8343 18.2882	19.5076 20.0065 19.1302 18.8290 18.2813	19.5130 20.0072 19.1319 18.8302 18.2817	24.5709 24.5716 24.7466 24.8264 24.9648	1024.5709 1024.6148 1024.8333 1024.9566 1025.1387	1519.5537 1521.2985 1518.9494 1518.2704 1516.8712
1 2 3	50 76 101 126 151	34.68861 34.69963 34.69791 34.71489 34.68967	16.492310 16.128460	34.6996 34.6979 34.7149	34.8633 34.8615 34.8786	0.000430311850 0.000569195077 0.000696512528 0.000843341842 0.001001694449	0.000012931657 0.000016219010 0.000019779266 0.000023960698 0.000028396145	0.000450696471 0.000565447460 0.000689535385 0.000835715273 0.000989697859	34.8526 34.8638 34.8622 34.8794 34.8542	17.8938 17.0561 16.4923 16.1285 15.6843	17.8853 17.0436 16.4761 16.1085 15.6608	17.8852 17.0423 16.4742 16.1059 15.6585	25.2778 25.2778 25.4100 25.5080 25.5905	1025.2838 1025.6097 1025.8520 1026.0600 1026.2530	1515.8962 1513.8627 1512.5741 1511.8947 1510.9066
5 6 7 8 9	176 202 252 303 353	34.65537 34.63723 34.58649 34.53391 34.44696	15.028760 14.440070 13.762160	34.6372 34.5865 34.5339	34.8006 34.7496 34.6968	0.001146533554 0.001306176088 0.001555687022 0.001918317195 0.002406799849	0.000032958859 0.000038329968 0.000045929491 0.000056693585 0.000074277399	0.001147587425 0.001333904319 0.001596030542 0.001967083277 0.002570695638	34.8199 34.8019 34.7512 34.6987 34.6120	15.2478 15.0288 14.4401 13.7622 12.5875	15.2209 14.9982 14.4029 13.7189 12.5399	15.2191 14.9967 14.4022 13.7189 12.5411	25.6623 25.6975 25.7872 25.8905 26.0606	1026.4358 1026.5858 1026.8977 1027.2291 1027.6275	1509.9149 1509.6304 1508.5164 1507.0947 1503.9112
1 1 2 3 4	404 505 606 707 808	34.37410 34.17681 34.04839 34.05378 34.13533	8.998112 6.567234 5.180429	34.1768 34.0484 34.0538	34.3380 34.2089 34.2144	0.003092026444 0.004943227283 0.007328918773 0.010134516840 0.012801564089	0.000101116678 0.000152354201 0.000217880674 0.000293431730 0.000365710401	0.003492184663 0.005231533736 0.007453467487 0.010039578297 0.012542510966	34.5397 34.3432 34.2164 34.2244 34.3088	11.6105 8.9981 6.5672 5.1804 4.4539	11.5588 8.9428 6.5115 5.1224 4.3914	11.5609 8.9471 6.5167 5.1270 4.3949	26.1915 26.4886 26.7417 26.9196 27.0677	1027.9920 1028.7658 1029.5063 1030.1657 1030.7880	1501.3222 1493.3821 1485.5902 1481.6929 1480.4628
3	909 1010 1111 1213 1314	34.21526 34.28701 34.33858 34.38449 34.42426	3.630195 3.351287 3.102174	34.2153 34.2870 34.3386 34.3845	34.3766 34.4487 34.5005 34.5466	0.014899810655 0.016512321555 0.017685037469 0.018687486637 0.019494191089	0.000425738110 0.000473242399 0.000508934903 0.000538076023 0.000561454629	0.014635428541 0.016302579738 0.017558509209 0.018588711984 0.019418798328	34.3912 34.4650 34.5181 34.5652 34.6060	4.0110 3.6302 3.3513 3.1022 2.8763	3.9430 3.5568 3.2720 3.0169 2.7851	3.9457 3.5588 3.2736 3.0181 2.7861	27.1798 27.2768 27.3463 27.4074 27.4607	1031.3704 1031.9375 1032.4752 1033.0086 1033.5292	1480.3736 1480.5196 1481.0626 1481.7362 1482.4821
2	1416 1517 1771 2025	34.45672 34.48842 34.54501 34.58881	2.694073 2.506860 2.196994 1.953304	34.4567 34.4884 34.5450 34.5888	34.6192 34.6510 34.7079 34.7519	0.020176311159 0.020753899596 0.021602210963 0.021906208811	0.000582091514 0.000599223978 0.000617441618 0.000625378399 0.000625665801	0.020151541483 0.020763738622 0.021430104714 0.021733094502	34.6393 34.6718 34.7293 34.7736	2.6941 2.5069 2.1970 1.9533	2.5966 2.4034 2.0767 1.8154	2.5974 2.4040 2.0772 1.8157	27.5037 27.5459 27.6186 27.6744	1034.0426 1034.5510 1035.7882 1037.0030	1483.423 1484.324 1487.262 1490.485
	2279 2534 2789 3045 3300	34.63526 34.64812 34.65890 34.66710	1.626311 1.566066 1.527974	34.6353 34.6481 34.6589 34.6671	34.7986 34.8115 34.8223	0.021834954336 0.021631273849 0.021385378943 0.021139155635 0.020918230176	0.000621030221 0.000614436829 0.000607589802 0.000601218243	0.021758546231 0.021610969888 0.021389468131 0.021157693528 0.020940774256	34.7984 34.8202 34.8329 34.8435 34.8515	1.8258 1.7093 1.6263 1.5661 1.5280	1.6682 1.5312 1.4264 1.3432 1.2809	1.6684 1.5314 1.4267 1.3434 1.2811	27.7053 27.7329 27.7507 27.7651 27.7759	1038.1828 1039.3583 1040.5169 1041.6695 1042.8067	1494.209 1498.012 1501.970 1506.060 1510.245
9 0	3556 3812 TEOS-10 Test Da	34.67315 34.67689 a TS-55	1.489079	34.6769		0.020701479725 0.020516621253 SA - ⊖ Diagram	0.000595069372 0.000589541645 longs_ref lats	0.020730222690 0.020539870502 ref ndepth_ref	34.8574 34.8609 p_ref deltaSA_ref	1.5039 1.4891 SAAR_ref	1.2314 1.1901 Info (+)	1.2317 1.1903	27.7841 27.7898	1043.9387 1045.0614	1514.523 1518.854

Figure 1: TEOS-10 EXCEL workbook light green data tab. Seawater properties in coloured columns are computed on the fly from user data pasted into white cells.

	Α	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	Р	Q
1					User data should be in			I for estimating the Absol III update automatically. I						HEIR REFERENCE.			
	Long egrees)	Lat (degrees)	Pressure (dbar)	Salinity Practical Salinity Conductivity (mS/cm)	Temperature (PC) ITS-90 IPTS-68	Practical Salinity (S _P)	Reference Salinity (S _R) (g kg ⁻¹)	delta S _A Atlas (g kg ⁻¹)	SAAR Atlas (g kg ⁻¹)	Absolute Salinity Anomaly (δS _A) (g kg ⁻¹)	Absolute Salinity (S _A) (g kg ⁻¹)	Temperature ITS-90 (°C)	Potential temperature (θ) (°C)	Conservative Temperature (©) (°C)	Potential Density (σ _Θ) (kg m ⁻³ - 1000)	In situ Density ($\rho_{SA, \Theta, p}$) (kg m ⁻³)	Sound Speed (c) (m s ⁻¹)
4	20.05	59.02	0	Conductivity Ratio	12.3	5.3900	5 4154 B	laltic	Baltic	Baltic	5.4890	12.3000	12.3000	12.8682	3.7047	1003.7047	1462.7763
6 7	20.1 20.15 20.2	59.02 59.02	0	5.39 5.38	12.2	5.3900 5.3800	5.4154 B 5.4054 B 5.4355 B	laltic laltic	Baltic Baltic Baltic	Baltic Baltic Baltic	5.4890 5.4790 5.5091	12.2000 12.1000	12.2000 12.1000	12.7641 12.6601	3.7177 3.7228	1003.7177 1003.7228	1462.4072 1462.0253
9	162.5	59.02	0	34.57586			34.7389	0.000327101505				12.1000 19.5076	12.1000 19.5076	12.6596 19.5130		1003.7460 1024.5709	1462.0613 1519.5537
11 12			0	0.52	12.4	0.5200	0.5225	0.000000000000	0.000000000000	0.00000000000	0.5225	12.4000	12.4000	13.0624	-0.1400	999.8600	1457.1626
14 15																	
4	F	TEOS-10	Test Data	TS-55 CTD-020	Surface Data V	ertical Profiles SA	- ⊙ Diagram lo	ings_ref lats_ref	ndepth_ref p_r	ef deltaSA_ref	SAAR_ref Inf	•			: 40		

Figure 2: TEOS-10 EXCEL workbook 'Surface data' tab. Surface data from different locations (location coordinates for each line). Four samples are from the Baltic Sea, one from the NW Pacific and the last sample (without long/lat coordinates) is from an estuary.

Figure 6: [ndepth_ref] look-up table. The table has 45 rows (latitude) by 91 columns (longitude). South is at the top (1st row is 86° S) and 1st column is 0° of longitude. The latitude x longitude grid is a 4° x 4° grid and each cell location is obtained from the [longs_ref] and [lats_ref] tables. Cell values are the number of pressure levels at the given location. The cell highlighted in green is used as a 'case study' in the text.

	F	G	H	1	J	K	L	M	N	0	P	Q	R	S	T	U
I	0.007587265	0.008216337	0.007424647	0.005630454	0.0032384	0.001121633	0.000437591	0.000283598	0.000258488	0.000306414	0.000405858	0.000582636	0.001029811	0.001527827	0.001596846	0.0016167
	0.00773597	0.008431254	0.007688479	0.005965611	0.003640463	0.001355465	0.000561454	0.000348497	0.000300451	0.000360793	0.000506601	0.000748773	0.001289316	0.001762179	0.001815071	0.0018842
	0.007899365	0.008574486	0.007861082	0.006174334	0.003904711	0.001538515	0.000673679	0.000428235	0.000349394	0.000440447	0.000638914	0.000966455	0.001557605	0.001969514	0.002013875	0.002170
	0.008029932	0.008689068	0.008024431	0.006326755	0.004174256	0.001750344	0.000803191	0.000528422	0.000404697	0.000534154	0.000817469	0.001239101	0.001850297	0.002195976	0.00223051	0.0024037
	0.008228679	0.008840657	0.008212917	0.006530541	0.004603277	0.002217398	0.001079402	0.000797616	0.000638354	0.000815376	0.001256342	0.001786972	0.002356018	0.002607539	0.002718048	0.0029102
	0.008407633	0.008955248	0.008405193	0.006768598	0.004943601	0.002678804	0.001389651	0.001082665	0.000950241	0.001160221	0.001694964	0.002345435	0.002844538	0.00303061	0.003202701	0.0034250
	0.008561275	0.009041577	0.008531257	0.006925568	0.005206232	0.00313519	0.001786091	0.001410546	0.001265549	0.001542952	0.002208032	0.00288733	0.003308174	0.003477958	0.003673256	0.003943
	0.008705422	0.009104045	0.008630769	0.00705215	0.00543289	0.003643661	0.002226118	0.001808532	0.001608471	0.002020481	0.002850164	0.003397378	0.003699129	0.003860135	0.004058415	0.004309
	0.008850281	0.009154356	0.008739148	0.007226648	0.005549866	0.004015798	0.002706156	0.002229445	0.002012965	0.002538207	0.003417199	0.003769656	0.00397721	0.004124866	0.004289072	0.0044979
	0.008943794	0.009178042	0.008815012	0.007357242	0.005661009	0.004341127	0.003197576	0.002698681	0.002470072	0.003062275	0.003825383	0.003954166	0.004113168	0.00424759	0.00436239	0.0045405
	0.009009886	0.009218692	0.008908996	0.00759247	0.005709105	0.004574747	0.003644211	0.003208049	0.003031175	0.00349246	0.003986676	0.003968637	0.004115448	0.004221737	0.004247794	0.00430
	0.009060853	0.009233077	0.008972897	0.007761753	0.005780614	0.004753488	0.004032915	0.003684931	0.003560448	0.003808101	0.003997765	0.003876938	0.003981588	0.004086016	0.004050502	0.004001
	0.009112921	0.009249478	0.009033516	0.007911187	0.005844102	0.004886662	0.004367845	0.004065591	0.00396472	0.003978199	0.003921243	0.003732477	0.003787497	0.003891735	0.00380428	0.003674
	0.009142689	0.00925642	0.009087358	0.008098981	0.005932269	0.00497313	0.004602549	0.004352101	0.004216718	0.004038171	0.003810867	0.003586259	0.00359505	0.003695226	0.003587182	0.003393
	0.009148366	0.009258621	0.009120991	0.008237284	0.006021737	0.005026371	0.004782731	0.00458536	0.004400239	0.00401516	0.003677485	0.003438529	0.003469429	0.003558143	0.00346893	0.003263
	0.009167882	0.009248313	0.009169287	0.008541587	0.006386436	0.005105027	0.004895867	0.004721168	0.004429583	0.003842076	0.003487118	0.003261295	0.003335104	0.003445678	0.003412087	0.003267
	0.009213968	0.009245437	0.009196107	0.008768696	0.006796146	0.005237766	0.004803792	0.004612022	0.004309108	0.003815922	0.003634408	0.003400565	0.003466424	0.003683605	0.003716926	0.003664
	0.009236035	0.009226827	0.009208929	0.008945121	0.007129832	0.005488165	0.004770552	0.004442442	0.004210304	0.003888642	0.003889622	0.003755912	0.0038033	0.004036041	0.004200468	0.00430
	0.009219045	0.009197872	0.009206341	0.009035997	0.007610069	0.005890486	0.004872129	0.004405444	0.004180367	0.00394193	0.004112428	0.004104743	0.004197571	0.004458189	0.004678813	0.004892
	0.009192553	0.009170239	0.009187315	0.009141968	0.007932154	0.006315794	0.005045773	0.004471019	0.004192354	0.003957406	0.00424212	0.004378315	0.004611299	0.004904119	0.005138569	0.005382
	0.009187974	0.00913718					0.005321122	0.004571465	0.004236636	0.003977235	0.004339081	0.004612237	0.004979521	0.005327388	0.005544929	0.005795
	0.009180469	0.009109314					0.005831923	0.004945996	0.004390707	0.004032286	0.004419669	0.004770676	0.005217486	0.005667592	0.005942029	0.006142
	0.009175079	0.00908662	0.009045589	0.00913435	0.008461061	0.00765709	0.00638616	0.005509364	0.004780258	0.004146816	0.004491119	0.004894749	0.005350943	0.005839766	0.006235628	0.006444
	0.009203944	0.009041758	0.008978659	0.009089345	0.008494994	0.007976087	0.007045019	0.006425593	0.005681561	0.004481928	0.004559633	0.004962076	0.005420412	0.005918021	0.006379035	0.006659
	0.00922741	0.008951321	0.008872803	0.009039996	0.008480566	0.008165775	0.007627993	0.007342053	0.006830766	0.005038608	0.004740746	0.005007445	0.005467756	0.005972721	0.006464604	0.006817
	0.009232547	0.008820467	0.008753362	0.009175537		0.008282431	0.007790812	0.007626658	0.007408762	0.005235964	0.004810099	0.005035742	0.005505476	0.006018751	0.006522191	0.006940
	0.009110624	0.008768482	0.00867393			0.008292218	0.007935395	0.007805511	0.007774958	0.005151711	0.00504291	0.005070624	0.005536356	0.006068641	0.006523674	0.007004
	0.008806209	0.008739336	0.008706534			0.008598181	0.007909775	0.007863286	0.007845305	0.00539689	0.005264025	0.005140008	0.005569826	0.006101186	0.006525859	0.00704
	0.008740361	0.008702934	0.008686641				0.007908649	0.007888701	0.007852586		0.005455169	0.005213869	0.005591903	0.006128463	0.006546572	0.00704
		0.008659186	0.008640046								0.004816461	0.00509936	0.005612582	0.006127909	0.006543907	0.007062
			0.008632253								0.00469658	0.005234804	0.005692186	0.005995642	0.006506105	0.007071
														0.005985761		0.007081
	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	

Figure 8: [deltaSA_ref] table: reference data missing for pressure levels 33 and 34 of columns 8, 9, 10 and 11.