
Appendix A: Statistical test associated with figure 2

Let m be the number of sites considered.

Let {Y1,Y2, ...Yi, ...Yn} be the annual maximum skew surges over n years at a given site. In the context of figure 2 we are

considering annual maxima simulated by our numerical model of the shelf sea, and n= 484.

Let λj be the scale parameter diagnosed by a Gumbel fit to the n annual maxima at site j, let σj be the standard deviation of225

the n annual maxima at site j, and let

dj = λj −σj
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This is the departure of a point in figure 2 panel (a) from the line x= y. Then our test metric (call it TY ) is the root-mean-square

value of {d1,d2, ...dj , ...dm}:

TY =
�
d2j230

where the overbar indicates a mean over j = 1,2, ...m sites. This test metric is a single value. To test the statistical signif-

icance of the value of TY that we find when {Y1,Y2, ...Yi, ...Yn} are the annual maximum skew surges simulated by our

numerical model of the shelf sea, we repeat the test, replacing {Y1,Y2, ...Yi, ...Yn} at each site j by {G1,G2, ...Gi, ...Gn}
where {G1,G2, ...Gi, ...Gn} is a random sample drawn from a Gumbel distibution whose scale parameter5 is λj . We do

this many times (say N = 256 times) to create a 256-element distribution of values {TG,1,TG,2, ...TG,k, ...TG,N}, each be-235

ing a value of TG that we find when {G1,G2, ...Gi, ...Gn} are “easily-made pseudo-extremes” from a Gumbel distribu-

tion, instead of ‘hard-won” simulated annual maxima of unknown distribution like {Y1,Y2, ...Yi, ...Yn}. The variation in

{TG,1,TG,2, ...TG,k, ...TG,N} arises due to sampling uncertainties.

When we compare TY with the distribution {TG,1,TG,2, ...TG,k, ...TG,N}, we find that TY departs from the mean of

{TG,1,TG,2, ...TG,k, ...TG,N} by more than six times the standard deviation of {TG,1,TG,2, ...TG,k, ...TG,N}, implying that this240

departure is not simply an artefact of sampling, but arises from the fact that the {Y1,Y2, ...Yi, ...Yn} are not Gumbel-distributed.

This large departure (more than six standard deviations) might seem surprising given that figure 2 (a) shows that most points

are within the 95-percent (approximately 2 standard deviation) uncertainty range of the x= y line. The large departure is

associated with the fact that the shape parameters of the {Y1,Y2, ...Yi, ...Yn} are predominantly negative. We can see this

expressed in figure 2 panel (a), where almost all of the scatter points lie to the right of the line x= y, whereas in panel (b)245

(which is one of the 256 examples of what happens when we replace the Yi by Gi) the scatter points lie either side of the line.

It would be interesting to apply a similar statistical test to the scatter of points in figure S1 of the supplementary material

to Woodworth et al. (2021). Assuming that, as found by Wahl et al. (2017), the shape parameters are predominantly negative,
5 We could also employ the corresponding location parameter, but there is no need because this only introduces an offset. We simply set the location

parameter to zero. Incidentally, we can generate this random sample from a uniformly-distributed random sample using the probability intergral transform,

among other possible approaches.
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one might expect to see the test statistic TY similarly outside the distribution TG,k,k = 1,2, ...N , although the shortness of the

tide-gauge records might reduce the statistical significance. The bias, dj , is another alternative test statistic.250
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