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Abstract. We investigate the predictability properties of the ocean dynamics using an ensemble of short-term numerical re-

gional ocean simulations forced by prescribed atmospheric conditions. In that purpose, we developed a kilometric-scale, re-

gional model for the Western Mediterranean sea (MEDWEST60, at 1/60◦ horizontal resolution). A probabilistic approach is

then followed, where a stochastic parameterization of model uncertainties is introduced in this setup to initialize ensemble

predictability experiments. A set of three ensemble experiments (20 members and 2 months) are performed, one with the de-5

terministic model initiated with perturbed initial conditions, and two with the stochastic model, for two different amplitudes

of stochastic model perturbations. In all three experiments, the spread of the ensemble is shown to emerge from the smallest

scales (kilometric wavelength) and progressively upscales to the largest structures. After two months, the ensemble variance

saturates over most of the spectrum, and the small scales (<100 km) have become fully decorrelated across the ensemble mem-

bers. These ensemble simulations can provide a statistical description of the dependence between initial accuracy and forecast10

accuracy for time-lags between 1 and 20 days.

The predictability properties are assessed using a cross-validation algorithm (i.e. using alternatively each ensemble member

as the reference truth and the remaining 19 members as the ensemble forecast) together with a given statistical score to charac-

terize the initial and forecast accuracy. From the joint distribution of initial and final scores, it is then possible to quantify the

probability distribution of the forecast score given the initial score, or reciprocally to derive conditions on the initial accuracy15

to obtain a target forecast accuracy.The misfit between ensemble members is quantified in terms of overall accuracy (CRPS

score), geographical position of the ocean structures (location score), and spatial spectral decorrelation of the Sea Surface

Height 2-D fields (decorrelation score). With this approach, we estimate for example that, in the region and period of interest,

the initial location accuracy required (necessary condition) with a perfect model (no model uncertainty) to obtain a location

accuracy of the forecast of 10 km with a 95% confidence is about 8 km for a 1-day forecast, 4 km for a 5-day forecast, 1.5 km20

for a 10-day forecast, and this requirement cannot be met with a 15-day or longer forecast.
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1 Introduction

Operational services such as the Copernicus Marine Environment Monitoring Service (CMEMS) routinely provides analyses

and forecasts of the state of the ocean, to serve a wide range of marine scientific and operational applications. They build on

state-of-the-art representations of the various dynamical components of the ocean and aim at improving the accuracy and the25

resolution of their products. However, with the increase of the complexity and resolution of ocean models, new questions arise

regarding the predictability of the system. To what extent is it possible - and does it make sense- to forecast the very fine scales

(∼kilometric) as targeted by the future generations of these operational systems? How sensitive is such forecast to initial errors

or to possible shortcomings or approximations in the model dynamics? These questions are important for operational centers

because they can help rationalizing expectations from the future systems and thus help driving future developments.30

Historically, the question of the predictability of dynamical systems has been addressed by considering only the irreducible

sources of error, which result from intrinsic model instability combined to inevitable small initial errors. In a deterministic

framework, modelling errors can indeed be excluded from the analysis because they can be reduced by additional modelling

efforts, so that they do not represent a theoretical limitation to predictability. There is a long history of studies along this line,

starting with Lyapunov (1992), who suggested looking for the fastest-growing unstable modes (Lyapunov vectors) and their35

associated e-folding timescales (Lyapunov exponents). This was extended in meteorology to describe the largest error growth

over a finite time (with singular vectors, Lorenz, 1965; Lacarra and Talagrand, 1988; Diaconescu and Laprise, 2012), before

it was recognized that linear instability studies were quite often not sufficient to provide a correct picture of the predictability

patterns, even for quite short time lags. Nonlinear model integrations are needed to allow the fast instabilities to saturate, and

reveal the patterns that really matter over a given forecast time (e.g. Lorenz, 1982; Brasseur et al. , 1996). For this reason,40

the bred vectors (Toth and Kalnay, 1993; Kalnay, 2003) have been introduced as a practical way to identify the most relevant

perturbations to initialize ensemble forecasting systems. In the meantime, ensemble forecast simulations, explicitly performed

with the full nonlinear model, have become the standard approach to investigate predictability (e.g. Palmer and Hagedorn,

2006; Hawkins et al., 2016). Performing an ensemble forecast amounts to propagating a probability distribution in time, which

includes the possibility of a non-deterministic model. In this framework, it is thus possible to go beyond the assumption45

that predictability is mainly limited by unstable and chaotic behaviours, and to include the possibility that intrinsic model

uncertainties can be an essential limiting factor to forecast accuracy, as also recognized recently in the work of Juricke et al.

(2018). In the last two decades, indeed, more and more studies have suggested that uncertainties are intrinsic to atmosphere

and ocean models, since they cannot resolve the full diversity of processes and scales at work in the system (e.g. Palmer et al. ,

2005; Frederiksen et al., 2012; Brankart et al., 2015). Non-deterministic modelling frameworks have been shown very helpful50

to improve the accuracy of medium-range weather forecasts (Buizza et al. , 1999; Leutbecher et al., 2017), to enhance their

economical value (Palmer, 2002), to alleviate persistent biases in model simulations (Berner et al., 2012; Juricke et al. , 2013;

Brankart, 2013; Williams et al., 2016), and to account for some misfit between model and observations in data assimilation

systems (e.g. Evensen, 1994; Sakov et al., 2012; Candille et al., 2015).
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In any case, whether the system can be thought as fundamentally deterministic or not, in practice any operational system55

involves substantial modelling uncertainties. What matters to the application is then the possibility to produce a valuable

forecast with the model that is used (i.e. with its shortcomings and uncertainties), and which may be quite different from what

could be obtained by a perfect deterministic model (as would be done in traditional predictability studies).

Our objective in this study is to build on a case study with a realistic high-resolution (kilometric scale) regional model, to60

evaluate in practice the intrinsic predictability of the ocean fine scales in this model. To do so we apply a probabilistic approach,

based on ensemble simulations and on probabilistic diagnostics, from which we can assess predictability as a function of given

irreducible sources of uncertainty to consider in the system.

In our approach, both the effect of initial uncertainties and model uncertainties are considered, either separately or together.

We assume in both cases that they cannot be made arbitrarily small in a given operational system: initial uncertainties because65

observation and assimilation resources are limited, and model uncertainties because model resources are limited. However,

to simplify the problem, we only consider one generic type of model uncertainty that primarily affects the small scales of

the system. By tuning the amplitude of the perturbations, we can simulate different levels of model accuracy, and generate

ensemble initial conditions with different levels of initial spread. With this assumption, we can then quantify the accuracy of

the forecast that is obtained, for a given combination of initial and model uncertainties.70

Reciprocally, we can expect that this set of experiments can provide insight on the maximum level of initial and model

uncertainties that is required to obtain a given forecast accuracy. The objectif is to help us understand the level of initial and

model accuracy required to produce a useful forecast of the small scales, as targeted in the future kilometric-scale operational

systems. In other words, the objective of this paper is to compute an upper bound (or more generally, necessary conditions) for

the initial uncertainties, in order to obtain a targeted forecast accuracy. We do so by using different types of metrics to quantify75

the forecast accuracy, in order to emphasize that the definition of this metrics is still a subjective choice, which depends on

the goal of every particular application. The influence of one possible source of irreducible model uncertainty on this upper

bound will also be illustrated. However, it is important to keep in mind that this influence will depend on the assumption

made to simulate uncertainties in the system. Although generic, and designed to trigger perturbations in the small scales, they

are still specific and cannot be expected to account for the full diversity of uncertainties of different kinds propagating in real80

operational systems.

It should be emphasized that the goal of the present study remains to quantify the intrinsic predictability of the system

(as defined by Lorenz, 1995) and should not be confused with that of quantifying the prediction skill of any given current

operational forecasting system (Robinson et al., 2002, e.g.) , that would then incorporate all sources of error, such as extrinsic

errors that would result from coupling with the atmosphere, sea ice etc. However, deriving predictability as an upper bound85

or ’necessary conditions’, as it is proposed in the present case study, can provide useful guidance for the design of the future

generations of operational systems that will aim for such kilometric resolution. As a perspective, this approach could also be

used in the design of future observation network and the preparation for the assimilation of future high-resolution observations,

such as wide-swath altimetry.
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The paper’s structure is as follows. In section 2, we present the kilometric-scale regional model based on NEMO (Nucleus90

for European Modelling of the Ocean, Madec et al. (2002)) over the Western Mediterranean sea that we set up for this study.

We then introduce the parametrization for model uncertainties that is used to generate different levels of initial spread and

model accuracy. In section 3 we present the three ensemble experiments produced with these settings, and we assess and

compare their spread growth. Predictability diagnostics are then illustrated in section 4 by applying different types of metrics

(probability scores, location errors, spectral analysis) to characterize the dependence of the forecast accuracy to initial and95

model uncertainties. We finally summarize the outcomes of this study in section 5.

Figure 1. Bathymetry (in km) of the MEDWEST60 regional domain (x- and y- axes are model grid points). The full domain covers 883

x 803 grid points in the horizontal, representing 1200 km x 1100 km, from 35.1◦ N to 44.4◦ N in latitude and from 5.7◦ W to 9.5◦ E in

longitude. The black squares localize three subregions which are refered to in the text and used for various diagnostics or visualisations in

the following.

2 A kilometric-scale regional ocean model

2.1 Model specifications and spin-up

In this section, we first describe the kilometric-scale regional model of the ocean circulation based on NEMO that has been

developed. It covers the Western Mediterranean sea, and used boundary conditions from a larger reference simulation (covering100

the entire North Atlantic) at same resolution (eNATL60, Brodeau et al., 2020). The new regional model, MEDWEST60, covers

a domain of 1200 km × 1100 km, from 35.1◦ N to 44.4◦ N in latitude and from 5.7◦ W to 9.5◦ E in longitude (see Figure

1). This configuration includes explicit tidal motion (tidal potential), and is forced at the western and eastern boundaries

with hourly outputs from the reference simulation eNATL60 (which also includes tides). By design, all parameter choices

for MEDWEST60 were made with the idea to remain as close as possible from the reference simulation eNATL60. The105
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MEDWEST60 specifications are summarized in Table 1. We use strictly the same horizontal and vertical grids as eNATL60,

meaning that there is no need for spatial interpolation of the lateral boundary conditions. Compared to the larger-domain

simulation eNATL60, which was forced at the lateral boundaries by the daily GLORYS reanalyse (Lellouche et al., 2021) and

an additional tidal harmonic forcing from the FES2014 dataset (Lyard et al , 2020), in MEDWEST60 we add no additional

tidal forcing since it is already explicitly part of the hourly boundary forcing taken from the eNATL60 outputs. The model110

time-step in MEDWEST60 is also increased by a factor 2 compared to eNATL60 (80 seconds versus 40 seconds resp.)

By design, the MEDWEST60 model can be initialised with an instantaneous, balanced 3-D ocean state archived from the

reference simulation eNATL60 on the same horizontal and vertical grids. Our spinup protocol is thus as follows: from a

NEMO restart file archived from eNATL60 on a given date (here 25th Jan. 2010), we extract the horizontal and vertical domain

corresponding to MEDWEST60. A first regional simulation is then run for 5 days, started from the extracted restart file, and115

using the same time-step as eNATL60 (i.e., δt=40 seconds). Five more days are then run with a doubled time-step of δt=80

seconds, and a new MEDWEST60 restart file is finally archived, to be used as the starting point on the 5th Feb. 2010 for the

following ensemble forecast experiments.

2.2 Paramerization of model uncertainties

The model presented above is a deterministic model, in the sense that the future evolution of the system is fully determined by120

the specification of the initial conditions, the boundary conditions and the forcing functions. This type of model - deterministic

- is the archetype of the models that are currently mostly used in operational forecasting systems (though not yet at kilometric

scale). In a purely deterministic approach, forecast uncertainties can only be explained by initial uncertainties, boundary uncer-

tainties or forcing uncertainties, usually amplified by unstable model dynamics. However, as motivated in the introduction, the

objective of this study is to go beyond this assumption and include the possibility of model errors impairing the predictability125

of the finest scales.

We thus transform the deterministic model presented above into a stochastic model, with the ambition to emulate uncertain-

ties that primarily affect the smallest scales of the ocean flow, and let them upscale to larger scales according to the model

dynamics. These uncertainties are likely to depend on many possible sources, by embedding for instance misrepresentations of

the unresolved scales and approximations in the model numerics, but also many others. A detailed causal examination of the130

origin and interactions between these various possible sources of error being quite impossible to achieve, we propose to intro-

duce here a bulk parameterization of these effects, by assuming that one of the most important dynamical consequence of these

errors on the finest scales is to generate uncertainty in the location of the oceanic structures (currents, fronts, filaments,. . . ).

In fluid mechanics, there is an ample literature explaining that the effect of unresolved scales in a turbulent flow can be

described by uncertainties in the location of the fluid parcels (e.g., Griffa, 1996; Berloff and McWilliams, 2002; Ying et al.,135

2019). This general idea is applied for instance in the work of Mémin (2014) and Chapron et al. (2018), where the Navier-

Stokes equations are modified by adding a random component to the Lagrangian displacement dX of the fluid parcels (as in a

Brownian motion).
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Numerical code: NEMO 3.6

Horizontal resolution: 1/60◦

Grid spacing: 883 x 803 in the horizontal

(1.20 km <∆x<1.55 km)

Vertical grid: 212 levels (same as eNATL60)(1)

Timestep: 80 s

Atmospheric forcing: 3-hourly ERA-interim (ECMWF)

Tidal potential On

Lateral boundary conditions (2) 1-hourly eNATL60 simulation

(ocean): (including tides)

Lateral boundary conditions No slip

at the coast:

Table 1. Technical specifications of the MEDWEST60 model.

(1) The vertical levels are defined exactly as in eNATL60 but only 212 levels are actually

needed to include the deepest points in the Western Mediterranean region (i.e 3217 m at the

deepest), while 300 levels were used in eNATL60 to cover the depth range in the North

Atlantic basin. The following discretisation is applied to the first 20 meters below the

surface: 0.48 m, 1.56 m, 2.79 m, 4.19 m, 5.74 m, 7.45 m, 9.32 m, 11.35 m, 13.54 m, 15.89

m, 18.40 m, 21.07 m.

(2) The Flow Relaxation Scheme ("frs") is used for baroclinic velocities and active tracers

(simple relaxation of the model fields to externally-specified values over a 12 grid point zone

next to the edge of the model domain). The "Flather" radiation scheme is used for

sea-surface height and barotropic velocities (a radiation condition is applied on the normal

depth-mean transport across the open boundary).

In the present study, location uncertainties are introduced in our ocean model according to a similar idea, but it is done

differently by applying directly the random perturbations to the discrete model (rather than the mathematical equations), in the140

form of stochastic fluctuations of the horizontal numerical grid. In summary, the effect of the parameterization is to perturb the

horizontal metrics of the model (i.e. the size of the horizontal grid cells ∆x, ∆y) using a multiplicative noise with specified time

and space correlation structure. The stochastic perturbation is implemented using the stochastic module of NEMO (Brankart,

2013) and expresses a random order-2 auto-regressive process, of which we can set the amplitude (i.e. its standard deviation)

and the time and space correlations. An extensive description and justification of this parameterization is developed in appendix145

A.

The two main effects that this parameterization is expected to produce in the model are on the horizontal advection and on the

horizontal pressure gradient. In the advection scheme, the stochastic part of the displacement dX of the fluid parcels is directly
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accounted for by the displacement of the grid, and in return, the transformed grid induces modifications in the advection by the

resolved scales. In addition, location uncertainties also produce fluctuations of the horizontal pressure gradient (by shifting the150

position of the tracer fields). It is therefore expected that these stochastic fluctuations can bring a substantial limitation to the

predictability of the small-scale motions. Overall, we can see indeed that non-deterministic effects are produced in several key

components of the model, and that all of these effects consistently derive from the sole assumption that the updated location of

the fluid parcels after a model time step is not exact, but approximate.

In our application, the correlation scales of the stochastic noise have been set to 1 day and 10 grid points, to be smooth155

enough and nonetheless produce perturbations on the small-scale side of the spectrum. The standard deviation of the noise

can also be tuned, so that it is easily possible to simulate different levels of model accuracy, as required in our experiments to

generate different levels of initial ensemble spread (see section 3). This standard deviation must however remain small with

respect to the size of the model grid cells so that the perturbations do not impair the physics of the model for the resolved

scales (see section 3.2). In practice, we have used values of 1% and 5%. Given the typical size of the model grid (1.4 km in160

average) and the correlation timescale of the perturbations (1 day), the typical displacement of the grid points is thus about 14

or 70 meters per day in the two horizontal directions in the experiment with a 1% or 5% perturbation, respectively. The way

this stochastic perturbation affects the model solution will be assessed and discussed in Section 3.2.

3 A set of 3 ensemble forecast experiments

Three ensemble forecast experiments were performed with MEDWEST60, to investigate predictability as a function of both165

initial uncertainty and model uncertainty. In this section, we give a description of these three ensemble experiments, and

how they were initialized. We then assess how the spread grows with time in those ensembles, comparing the results from

the stochastic model (with model uncertainty) and from the deterministic model (no model uncertainty). The predictability

diagnostics will be presented in section 4.

3.1 Generating the ensembles170

Two experiments (ENS-1% and ENS-5%) are performed with the stochastic model (i.e. including model uncertainty) and

starting from the same perfect initial conditions on the 5th Feb. 2010. Those two ensemble experiments explore two different

amplitudes of the stochastic scheme described in section 2.2 and Appendix A. Experiments ENS-1% and ENS-5% are set for a

stochastic perturbation of standard deviation 1% and 5% of the horizontal grid spacing, respectively (see illustration in Fig. 2).

By design, the other parameters of the stochastic module are kept identical in all the experiments: the time correlation is set to175

1 day (1080 timesteps), and the laplacian filter introducing spatial correlations is applied 10 times.

The third ensemble experiment performed (ENS-CI) is the experiment with the deterministic model (i.e. no model uncer-

tainty) to study predictability under imperfect Initial Conditions (ENS-IC). It is initialized from ensemble conditions taken

from experiment ENS-1% after 1 day of simulation (i.e. on the 6th Feb, 2010) when the states of the 20 members have already

slightly diverged on the fine scales. Note that the choice is made to start experiment ENS-CI with small initial errors, but180
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(a) Deterministic model (unperturbed model grid) (b) Probabilistic model (1%-perturbed model grid)

Figure 2. Size of the model grid in the horizontal east-west dimension (∆x): (a) unperturbed, from the standard NEMO grid at 1/60◦

resolution, and (b) snapshot of the perturbed metric at a given date (stochastic perturbation set to a level of std=1%).

Experiment ENS-1% ENS-5% ENS-CI

Start date: 05-02-2010 05-02-2010 06-02-2010

Length (in days): 60 60 60

Ensembe size: 20 20 20

Initial cond.: identical identical perturbed(1)

Restart from: spinup spinup day 1 of ENS-1%

Model type: stochastic stochastic deterministic

Stochastic param.: ∆x,∆y ∆x,∆y none

& amplitude: std=1% std=5% -

Table 2. Characteristics of the three ensemble forecast experiments ENS-1%, ENS-5%, ENS-CI. (1) The "perturbed" ensemble initial con-

ditions of experiment ENS-CI are taken from the restart files of experiment ENS-1% after 1 day of simulation (see text).

this experiment also virtually gives access to forecasts initialized with larger errors by considering day 1, day 2, (...) day 10,

etc, of ENS-CI as many different start times. This approach will be applied in the predictability diagnostics proposed in the

next section (section 4). Following the same idea, experiments ENS-1% and ENS-5% also virtually give access to forecasts

accounting both for model error and some initial error by considering day 1, day 2, day 10, etc, of the experiments as many

different virtual start times with increasing initial error.185

Table 2 offers a summary of the three ensemble forecast experiments and their characteristics.
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3.2 Impact of the location uncertainty on the model solution

In this section, we assess how the spread grows with time in those three ensembles and how the stochastic perturbation affects

the model solutions.

Note that in our approach, the stochastic perturbation is applied on the model horizontal metrics, while the location of the190

grid points themselves is assumed to be the same for all members (see discussion in Appendix A). In other words, the field

itself is still considered to be located on the reference grid, for instance with respect to the bathymetry and the external forcing,

and the effect of the perturbation is only taken into account in the model operator (e.g. for the differential operations), and is

neglected everywhere else. It implies that ensemble statistics (mean, standard deviation, covariance matrix,...) can be computed

as usual on the reference grid, while the perturbed metrics must be used to compute any diagnostics involving a differential195

operator. In the following, for instance, the perturbed metrics were used to compute relative vorticity from the velocity fields,

to be consistent with the perturbed model dynamics, which is specific to each member. For that purpose, the perturbed metrics

were archived with time, at the hourly frequency, in each ensemble member.

3.2.1 Wave-number power spectrum

The stochastic scheme used in this work is designed to introduce uncertainty at model-grid scale, with a correlation length scale200

of 10 grid points, i.e. about 14 km. Uncertainty is thus introduced within the 10-18 km range of the Rossby radius of deforma-

tion in the region (Escudier, 2016), those scales being here resolved by ∼ 7 to 13 model grid cells. . The introduced uncertainty

is then expected to develop and cascade spontaneously toward larger scales through the model dynamics. The design should be

such that the introduced perturbation alters as less as possible the behaviour of the physical quantities simulated by the model.

Figure 3 illustrates that indeed the simulated fields in the perturbed model remain nearly unaltered and indistinguishable from205

the same fields in the unperturbed model. Only in the zoomed snapshot of relative vorticity (i.e. taking the Laplacian of Sea

Surface Height, thus emphasising gradients) from the strongest perturbation experiment, some visual alterations starts to appear

on the smallest scales ( ENS-5%, Fig. 3f). Note that this is why we did not propose any additional experiment with a stronger

perturbation than 5% in our study.

Figure 4 also confirms that the stochastic perturbation does not alter the spectral characteristics of the physical quantities210

in the model. It compares the wavenumber power spectrum (Power Spectral Density, PSD) of SSH hourly snapshots from the

different experiments, with or without stochastic perturbations and also from the eNATL60 model (from which the boundary

conditions were taken). In average, over the 2 months of the experiments, the figure shows very consistent SSH spectra from

the perturbed and unperturbed models, giving us confidence in our designed perturbation.

Note that the spread of the PSD around the ensemble mean of each experiment is also shown in very thin lines in Figure 4:215

the members all have a PSD very consistent with their ensemble mean (the spread is smaller than the thickness of the ensemble

mean line) on all scales up to ∼150 km. For larger scales, some spread is seen between the members and it provides an idea of

the sensitivity (significance) of such a spectral analysis on the last few point of the spectrum (aliasing effects). The spectra are

computed here over a squared box of L∼490 km (box (a) in Fig.1), and does not resolve well the spectral scales larger than
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(a) ENS-CI SST (b) ENS-1% SST (c) ENS-5% SST

(d) ENS-CI ζ/f (e) ENS-1% ζ/f (f) ENS-5% ζ/f

Figure 3. Hourly snapshots of Sea Surface Temperature (top panels) and Relative vorticity (bottom panels) from one example member after

60 days in the ensemble experiments ENS-CI, ENS-1% and ENS-5% focusing on a 250x250 grid point subregion south-east of the Balearic

Islands (box (b) in Fig. 1).
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.

Figure 4. Wavenumber spectrum (Power Spectral Density, PSD) of hourly SSH snapshots in the MEDWEST60 ensemble experiments, in

a box of 350 × 350 gridpoints (cf box (a) in Fig. 1), corresponding to a size L∼ 490 km. Comparison is also made with the eNATL60

simulation. The PSD of SSH [m2/cpkm] is averaged in time over 241 hourly snapshots of SSH, one hourly spectrum every 6h, over the

2 months of simulation and over all members of the given ensemble (thick lines). The PSD of all individual members are also shown in

thin lines, in the same color as their ensemble mean. The grey shading indicates where the spatial scales are not fully resolved within the

considered region (scales larger than L/2∼ 250 km).

L/2∼ 250 km (grey shading on the figure). The ensemble spread interval appearing in the figure thus provides some guidance220

as to interpret the significance of the PSD variations in this scale range, and over this time period (a 2-month average here).

3.2.2 Growth of the ensemble spread

Figure 5 illustrates the evolution with time of the ensemble spread in the three ensemble experiments performed. The spread

is computed here as the ensemble standard deviation of the hourly SSH, then spatially averaged over the entire MEDWEST60

domain, for each of the ensemble experiments. As expected, the ensemble spread initially grows faster in the perturbed exper-225

iment with the large model error (ENS-5%) than with the smaller model error (ENS-1%) and in the unperturbed experiment

(ENS-CI). But after about 50 days of simulation, the ensemble spread of all three experiments (ENS-CI, ENS-1% and ENS-

5%) have converged to a similar value. The spread is still growing at the end of the 60-day experiments but the curves have

started to flatten, suggesting that our experimental protocol was successful at initiating divergent-enough ensembles on the

targeted time-range (2 months). The saturation of the spread was further verified by extending one of the experiments by 2230
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(a) Over the 60-day experiments

(b) Focus on the first 5 days

Figure 5. Time-evolution of the ensemble standard deviation of the hourly SSH, then spatially-averaged over the entire MEDWEST60

domain for the three ensemble experiments (ENS-1%, ENS-5%, ENS-1%-S, ENS-CI): (a) over 60 days, (b) focus on the first 5 days of

simulation.

more months (not shown here). Note also that similar characteristics of the spread growth have been seen in the other surface

variables (SST, SSS, relative vorticity, not shown here).

After 2 months, the three experiments have reached an ensemble spread in SSH of about 2.5 cm in average over the domain,

but local maxima of spread values are found around 10 cm (not shown). Those values are close to typical deviation values of

hourly SSH over time in the Mediterranean region found in the CMEMS Mediterranean Forecasting System (Clementi et al. ,235

2021) at same period of year (not shown). Further investigations discussed in the following subsection (cf spatial decorrelation),

also confirm that the spatial decorrelation of the submeso- and meso- scale features has been reached by the end of the 2-month

experiments.

After the first ∼10 days of simulation, the ensemble spread in the three ensembles evolves in a similar manner, at more or

less the same rate, and almost linearly, until day 40-50, where the curves then start to flatten and converge. Only in the first240

few days, the presence of model uncertainty makes a difference in the growth rate, ENS-5% clearly showing a faster growth

than ENS-1% (the latter being slightly faster than ENS-CI in the very first few days). This result suggests that in the context of

short-range forecasting (1-5 days), model uncertainties might play a role as much as uncertain initial conditions, and should be

taken into account in operational systems.
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From the figure, it appears that the presence of model uncertainty is associated with some oscillatory behavior in the ensem-245

ble spread evolution, at a period close to half a day, and with amplitude growing with the amplitude of the model error (barely

visible in ENS-1% but appearing more clearly in ENS-5%). These oscillations might reflect some slight spurious numerical

effects due to the horizontal grid distortions imposed in these experiments with the parametrization. The period close to tidal

or inertial period, might suggest some effect related to partial wave reflexion in the buffer zone at the lateral boundaries of the

domain, but further investigation would be needed to be able to conclude.250

Note also that these experiments are initiated in the winter time (February) when mesoscale activity is expected to be the

largest in the region. We have also performed an additional test experiment (not shown), identical to ENS-1% except for the start

date, taken in August, when mesoscale activity is expected to be low. We found that the growth of the ensemble spread in this

case is significantly slower than with winter initial conditions. It is consistent with the idea that the seasonal level of mesoscale

turbulence plays a significant role in the in ensemble spread of the forecast and thus in the quantification of predictability. In255

this paper we do not investigate the dependence to seasonality, as our main objective is to propose a methodology to quantify

predictability as a function of both initial uncertainty and model uncertainty. We thus choose to focus on the winter season

where the dynamics of the system is expected to maximize the growth of the ensemble spread for a given initial uncertainty.

3.2.3 Spatial decorrelation

Figure 6 illustrates how the relative vorticity fields diverge with time in hourly snapshots from two different members of260

experiment ENS-CI. The focus is made here on a 250x250 grid-point subregion in order to better emphasize the smallest

simulated ocean features. At short time-lag (+1 day), the ocean states in the two example members are barely distinguishable

from each other. With a +20 day time-lag, differences start to appear on the exact location of the small features and their shape.

After 60 days, the differences have become more obvious even on larger features and eddies, and many features do not even

have their corresponding feature in the other member. At the end of the experiment, the ocean state of the two members appear265

clearly distinct from each other.

In order to investigate more systematically the evolution with time of the spread between the members of an ensemble, and

its wavenumber spectral characteristics, we now consider the forecast "error", which we assess here as the difference in SSH

hourly snapshots taken between all pairs of members in the ensemble, and at each time-lag. In other words, each member

is alternatively taken as the truth, and compared to the 19 remaining members, taken as the ensemble forecast for that given270

truth. We then compute the power spectral density (PSD) of each pair difference at each time-lag, and then average over the

20 × 19 permuted pairs to obtain the systematic error. Figure 7 presents this mean PSD, characherizing the systematic forecast

error, as a function of forecast time-lag, in all three ensemble experiments. For reference, on the same figure is also plotted the

ensemble-mean PSD of the full-field SSH at time-lag +60 days.

After just one hour of simulation starting from perfect initial conditions with the stochastic model in ENS-1% (yellow curve275

in Fig.7.b), the wavenumber spectrum of the forecast error peaks in the small scales around λ= 15 km and is still two orders of

magnitude smaller than the level of spectral power in the full-field SSH (shown as reference in thick black line on the figure).

The same behaviour is observed for ENS-5% (Fig.7.c), except that the level of spectral power is one order of magnitude larger
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Member 1: (a) +1 day (b) +20 days (c) +60 days

Member 2: (d) +1 day (e) +20 days (f) +60 days

Figure 6. Hourly snapshots of relative vorticity from two example members (top and bottom, resp.) after 1, 20, 60 days (from left to right,

resp.) in the ensemble experiment ENS-CI, focusing on a 250x250 gridpoint subregion south-east of the Balearic Islands (box (b) in Fig. 1).

than in ENS-1% (since the spread grows faster in ENS-5% than in ENS-1%). With increasing time-lag, the shape of the PSD

becomes more "red", with more spectral power cascading to the larger scales. By the end of all three experiments (+60-day280

time-lag), the PSD of the forecast error has almost converged to the reference full-field SSH PSD, suggesting that the members

of each ensemble have become decorrelated on the spatial scale range considered here, i.e. 10-200 km. Note that we do not

necessarily expect a full spatial decorrelation between the members in this type of experiment since all members see the same

surface forcing and lateral boundary conditions. From Figure 7 it is also noteworthy that the evolution in time of the forecast-

error spectrum in ENS-CI (Fig. 7.a) and ENS-1% (Fig. 7.b) is very similar in amplitude and shape, except for the first time-lag285

(+1 hour), where the curve in ENS-CI is already smoother than in ENS-1% and does not show the λ= 15 km peak as in the

latter. This is because ENS-CI is by design started from initial conditions from day +1 of ENS-1% (see section 3). In any case,

14



by a time-lag of 5 days, both ENS-CI and ENS-1% have converged to a very similar forecast-error spectrum and evolve in the

same manner.

Overall, we thus find that after two months, the ensemble variance saturates over most of the spectrum, and the small scales290

(<100 km) have become fully decorrelated between the ensemble members. This set of ensemble simulations is thus confirmed

to be appropriate to provide a statistical description of the dependence between initial accuracy and forecast accuracy for

time-lags between 1 and 20 days, consistently with the diagnostics proposed in the following.

4 Predictability diagnostics

In this section, we present predictability diagnostics where we quantify predictability, based on a given forecast score measuring295

both the initial and forecast accuracy. Although any specific score of practical significance could have been used, we focus

here on a few simple and generic scores characterizing the misfit between ensemble members, in terms of (1) overall accuracy

(section 4.1: CRPS score), in terms of (2) geographical position of the ocean structures (section 4.2: location score) and in

terms of (3) spatial decorrelation of the small-scale structures (section 4.3: Decorrelation score).

4.1 Probabilistic score300

A standard approach to evaluate the accuracy of an ensemble forecast using reference data (Candille and Talagrand, 2005;

Candille et al., 2007) is to compute probabilistic scores characterizing the statistical consistency with the reference (reliability

of the ensemble) and the amount of reliable information it provides (resolution of the ensemble). For instance, in meteorology,

ensemble forecasts can be evaluated a posteriori using the analysis as a reference. In the framework proposed in this study, a

consistent approach to assess predictability is thus to compute the probabilistic scores that can be expected for given initial and305

model uncertainty. In this case, we can use one of the ensemble members as a reference, by assuming that it corresponds to the

true evolution of the system, and then compute the score using the remaining ensemble members as the ensemble forecast to

be tested. Furthermore, by repeating the same computation with each ensemble member as a reference, as in a cross-validation

algorithm, we can obtain a sample of the probability distribution for the score. All members of the ensemble are thus used

successively as a possible truth, for which the other members provide an ensemble forecast. This procedure is very similar to310

the ensemble approach introduced in Germineaud et al. (2019) to evaluate the relative benefit of observation scenarios in a

biogeochemical analysis system. In this framework, the probabilistic score can be viewed as a measure of the resulting skill of

a given observation scenario.

4.1.1 CRPS score

A common measure of the misfit between two probability distributions of a one-dimensional random variable x is the area315

between their respective Cumulative Distribution Functions (CDF) F (x) and Fref(x):
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(a) MEDWEST60-ENS-CI

(b) MEDWEST60-ENS-1%

(c) MEDWEST60-ENS-5%

Figure 7. Ensemble-mean wavenumber power spectrum density (PSD) of the hourly SSH at day 60 (black thick line), compared to the mean

PSD of the forecast error in experiments (a) ENS-CI, (b) ENS-1%, (c) ENS-5%. The forecast error is assessed as the difference of the hourly

SSH fields between all pairs of members in the given ensemble, and the mean is taken of the PSDs of all the 20x19 permuted pairs at each

time (time increasing from yellow to blue colors), see text in section 4.3 for more details. The time-lag labeled "Day 0" is taken after 1 hour

of the experiment. The grey shading indicates where the spatial scales are not fully resolved within the considered region (scales larger than

L/2∼ 250 km).
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∆=

∞∫
−∞

∣∣F (x)−Fref(x)
∣∣ dx (1)

In our application, the reference CDF Fref(x) is a Heaviside function increasing by 1 at the true value of the variable, and

the ensemble CDF F (x) is a stepwise function increasing by 1/m at each of the ensemble values (where m is the size of the

ensemble). Thus the further the ensemble values from the reference, the larger ∆, and the unit of ∆ is the same as the unit of x.320

The continuous rank probability score (CRPS) is then defined (Hersbach, 2000; Candille et al., 2015) as the expected value

of ∆ over a set of possibilities. In practical applications, the expected value is usually replaced by an average of ∆ in space

and time. In our application, the cross-validation algorithm would give the opportunity to make an ensemble average and thus

be closer to the theoretical definition of CRPS. However, the ensemble size is here too small to provide an accurate local

value of CRPS, so that we prefer computing a spatial average as would be done in a real system, and compute an ensemble of325

spatially-averaged CRPS scores. In the following, CRPS scores will be computed by averaging over a subregion of the domain

basin south-east of the Balearic Islands (100x100 gridpoint region labelled as (c) in Fig. 1).

4.1.2 Evolution in time

We first investigate the ensemble experiment peformed with the deterministic model and uncertain (i.e. perturbed) initial

conditions (ENS-CI). The additional effect of model uncertainties will be diagnosed in a second step.330

(a) SSH CRPS (b) SST CRPS (c) SSS CRPS

Figure 8. Time evolution of the CRPS score (y-axis) for SSH (meters), SST (degree Celsius) and SSS (psu) from experiment ENS-CI. The

score is computed for each of the 20 permuted cases (thin lines) taking an ensemble member as the reference truth and the rest of the members

as the ensemble forecast. The blue shading represents the min-to-max envelop of the 20 scores computed for the experiments. Two example

lines are plotted thicker (solid and dotted lines) in each panel to illustrate how individual scores can evolve with time.

Figure 8 shows the time evolution of the CRPS score for SSH, SST and SSS as obtained in experiment ENS-CI. It is

computed for each of the 20 permuted cases taking an ensemble member as the reference truth and the rest of the members as

the ensemble forecast. The CRPS score starts from zero and the initial increase is about exponential, with a doubling time of
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about 4 days. After typically 20 days, the evolution of the score becomes more irregular, globally increasing, but also sometimes

decreasing in time, depending on the particular situation of the system. During the initial exponential increase, the diversity of335

possible evolutions of the score remains moderate: the score only increases a bit faster or a bit slower according to the member

that is used as a reference. In the second period, however, the evolution becomes very diverse, with the score sometimes

increasing with time for a given reference member and decreasing for another reference member. This shows the importance

of accounting for the diversity of possible situations in the description of predictability. With time, anomalous situations

can emerge, which can produce different predictability patterns. Predictability thus needs to be described as a probability340

distribution of the score for given conditions of initial uncertainty (and/or of model uncertainty).

4.1.3 Predictability diagrams

Using the time evolution of the ensemble CRPS score obtained in the previous section, it is then possible to describe predictabil-

ity for a given time lag ∆t by the joint distribution of the initial and final score CRPS(t) and CRPS(t+∆t), respectively. From

this distribution, we can indeed obtain the conditional distribution of the final score given the initial score, and reciprocally the345

conditional distribution of the initial score required to obtain a given final score.

Figure 9 describes predictability for 3 time lags ∆t= 2, 5, and 10 days, for SSH, SST and SSS, by plotting the forecast

CRPS score (y-axis) conditioned on the initial CRPS score (x-axis) of the same variable. The figure is plotted for experiment

ENS-CI, i.e.without model uncertainty. It is in fact just a reshuffling of the data from Figure 8, gathering all couples of scores

with time lag ∆t. It must be kept in mind that the figure mixes forecasts starting at a different initial time (in the range of the350

2-month experiment), which can correspond to various situations of the system, in particular to different atmospheric forcings.

The resulting probability distribution thus encompasses this set of possibilities, the only conditions being on the time lag ∆t

and the initial CRPS score. To put a condition on the initial time would have required performing a large number of ensemble

forecasts from that initial time with various levels of initial error, and would have been far too expensive.

The first thing to note from Figure 9 is that for a given initial score, there can be a large variety of final scores after a ∆t355

forecast, which again shows the importance of a probabilistic approach. What we obtain is a description of the probability

distribution of the final score given the initial score, or reciprocally, the probability distribution of the initial score to obtain

a required final accuracy. These are just two different cuts (along the y-axis or along the x-axis) in the two-dimensional

probability distribution displayed in the figure. From this probability distribution, it is then possible to compute the initial score

required to have a 95% probability that the final score is below a given value (with imperfect accuracy where the spread is360

large, as a result of the limited size of the ensemble). This result, corresponding to the green curve in the figure, can be viewed

as one possible answer to the question raised in the introduction about the initial accuracy required to obtain a given forecast

accuracy.

4.1.4 Effect of model uncertainties

To explore the potential additional effect of model uncertainties (as represented by the stochastic scheme described in sec-365

tion 2.2) on predictability, we can compare the CRPS diagnostics described above for the three ensemble experiments per-
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Lag +2 days: (a) SSH (b) SST (c) SSS

Lag +5 days: (d) SSH (e) SST (f) SSS

Lag +10 days: (g) SSH (h) SST (i) SSS

Figure 9. Final CRPS score (y-axis) as a function of the initial CRPS score (x-axis), for 3 time lags ∆t= 2, 5, and 10 days (from top

to bottom), for SSH (meters), SST (degree Celsius) and SSS (psu). The green line corresponds to the initial score required to have a 95%

probability that the final score is below a given value.
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(a) SSH CRPS (b) SST CRPS (c) SSS CRPS

Figure 10. CRPS score as a function of time for (a) SSH (meters), (b) SST (degree Celsius) and (c) SSS (psu), compared for the three

simulations: ENS-CI (no model uncertainty, in blue shading), ENS-5% (larger model uncertainty, in orange shading), and ENS-1% (small

model uncertainty, in grey lines). Only the min-to-max envelop of all the 20 individual CRPS scores is represented for each experiment (the

20 individual scores are omitted).

(a) ENS-CI (b) ENS-1% (c) ENS-5%

Figure 11. Forecast CRPS score (y-axis) as a function of the initial CRPS score (x-axis) for SSH (meters) at time lag ∆t= 2 days. The green

line corresponds to the initial score required to have a 95% probability that the final score is below a given value. The figure compares the

three simulations (a) ENS-CI (no model uncertainty), (b) ENS-1% (small model uncertainty), and (c) ENS-5% (larger model uncertainty)

for the small CRPS scores (smaller than 0.01 m).

formed: ENS-CI (no model uncertainty), ENS-1% (moderate model uncertainty), and ENS-5% (larger model uncertainty). In

that purpose, Figure 10 shows the time evolution of the CRPS score for these three experiments. We observe that forecast

uncertainty increase faster with model uncertainty included in the system (especially in ENS-5%), although the asymptotic

behaviour of the score is very similar in all three simulations. Model uncertainty mainly matters for a short-range forecast370

(less than ∼15 days) when the initial condition is very accurate. Of course, this conclusion only holds for the kind of location

uncertainty that we have introduced in NEMO here, with short-range time and space correlation. A long standing effect of

model uncertainty on predictability would be expected for large-scale perturbations, as in the atmospheric forcing, for example
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(in this study though, we do not consider atmospheric forcing uncertainty, as the ocean model is forced by a prescribed and

presumably "true" atmosphere).375

The consequence of this specific impact of model uncertainty is that the predictability diagrams displayed in Figure 9

remain very similar for all three experiments, only becoming a bit more fuzzy when model uncertainty is included. To see the

difference, we need to focus on the short time lag (∆t= 2 days) and on the small initial and final scores (which correspond to

the beginning of the experiments). Figure 11 compares the results obtained for SSH in ENS-CI, ENS-1% and ENS-5%, and

we can observe that with larger model uncertainty, a smaller initial score (i.e. a more accurate initialization from observations)380

is generally needed to obtain a given final score (i.e. a given target of the forecasting system). If this model uncertainty

is irreducible (as argued in section 2.2 if it represents the effect of unresolved scales), they can thus represent an intrinsic

limitation to predictability (at that resolution), at least in the specific case of a short time lag and a small initial error.

4.2 Location score

In the previous section, a probabilistic score has been used to describe the accuracy of the initial condition that can be associated385

to any given observation/assimilation system. However, in many applications, what matters is not so much the accuracy of the

value of the ocean variables, but the location of the ocean structures (fronts, eddies, filaments,. . . ). Moreover, the acuteness

of the positioning of ocean structures that can be obtained in the initial condition of the forecast can be thought to be rather

directly related to the resolution of the observation system that is available for the operational forecast (in situ network or

satellite imagery).390

For these reasons, in this section, we will introduce a simple measure of location uncertainties in an ensemble forecast,

which will be used in the same way as the CRPS score in the previous section. The same type of diagnostics will be computed

to provide a similar description of predictability, but from a different perspective.

4.2.1 Misfit in field locations

To obtain a simple quantification of the position misfit between two ocean fields (one ensemble member and a reference truth),395

we are looking for an algorithm to compute at what distance the true value of the field can be found. Ideally, what we would

like is to find the minimum displacement that would be needed to transform a given ensemble member into the reference truth.

However, it is important to remark that this does not amount to computing the distance between corresponding structures in

the two fields. This would indeed require an automatic tool to identify coherent structures in the two fields and would be much

more difficult to achieve in practice. In general, if the two fields are not close enough to each other, such identification would400

even be impossible, since ocean structures can merge, appear, disappear or be transformed to such extent that no one-to-one

correspondence can be found.

In addition, to further simplify the problem, we do not consider the original continuous fields, but modified fields that have

been quantized on a finite set of values. Figure 12 shows for instance the salinity field from two example members of the

ENS-CI simulation (after 15 days), together with their quantized version. The quantized version is obtained by computing the405

quantiles of the reference truth, for instance 19 quantiles here (from the distribution of all values in the map), and then by
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(a) Continuous SSS snapshot (Member1) (b) Continuous SSS snapshot (Member 2)

(c) Quantized SSS snapshot (Member 1) (d) Quantized SSS snapshot (Member 2)

Figure 12. Surface sea salinity (SSS) hourly snapshots from two example members of experiment ENS-CI after 15 days, focusing on a

100x100 subregion south-east of the Balearic Islands: zoom (c) in Fig. 1. The original continuous fields are shown in the top row (a,b) and

their quantized version (c,d) in the bottom row.

replacing the value of the continuous field by the index of the quantile interval to which it belongs (between 1 and 20). In this

case, a value of 1 means that the field is below the 5% quantile and a value of 20 means that the field is above the 95% quantile.

From these quantized fields, it is then easy to find the closest point where the index is equal to that of the reference truth, and

thus where the field itself is close to the truth (to a degree that can be tuned by changing the number of quantiles).410

Figure 13 shows the resulting maps of location misfit, in kilometers, for salinity in ENS-CI after 5, 10 and 15 days. We

see that the location misfit increases with time as the two ensemble members diverge from each other. At +10 days, misfit
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(a) +5 days (b)+10 days (c) +15 days

Figure 13. Location misfit (in km) between the surface salinity fields of two example members in the ensemble experiment ENS-CI after 5,

10 and 15 days (from left to right), focusing on a subregion south-east of the Balearic Islands: zoom (c) in Fig. 1.

(a) SST (b) SSS
(a) SST (b) SSS

Figure 14. Time evolution of the location score (y-axis, in km) for (a) SST and (b) SSS in experiment ENS-CI. The score is computed

for each of the 20x19 permutted pairs (blue lines) considering one ensemble member as the reference truth and each of the 19 remaining

ensemble members as a forecast. The blue shading represents the min-to-max envelop of all the 20x19 scores computed for the experiment.

Two example lines are plotted thicker (solid and dotted lines) in each panel to illustrate how individual scores can evolve with time.

values of 5-10 km are sparsely seen in the SSS field, featuring a thin elongated pattern that likely illustrates the arising misfit

in the location of a NW-SE front (sharp gradient in the SSS field, as seen in Fig. 12.c-d). At +15 days, the location misfit has

increased in amplitude and now covers most of the subregion, with maximum values of 15-20 kilometers. From such maps, it415

is then possible to define a single score from the distribution of distances. For the purpose of this study, we simply define our
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location score as the 95% quantile of this distribution, which means that location error has a 95% probability to be below the

distance given by the score.

4.2.2 Evolution in time

We start by analyzing the time evolution of the location score in ensemble experiment ENS-CI, where the only source of420

uncertainty comes from the initial conditions (no model uncertainty; the model is deterministic). Figure 14 shows the evolution

in time of the location score for SST and SSS, considering each pair of members in the ensemble, which amounts to a total

of m(m− 1) = 20× 19 = 380 curves displayed in the figure. The two panels, for (a) SST and (b) SSS, both show a similar

distribution of the time evolutions, confirming that our quantification of location uncertainty is consistent for these two tracers.

Figure 14 also shows that during about the first half of the experiment (the first 30 days), the location score increases towards425

saturation, with a spread that also increases with time, whereas in the second half of the experiment, the score has reached the

asymptotic distribution, which is characterized by a large location uncertainty and a large spread of the score. It means that

there is no more information about the location of the ocean structures in the forecast and that the score can be either moderate

(down to 20 km) or very large (up to 80 km and more) depending on chance. In the following, we thus mostly focus on the

range of scores, between 0 and 20 km, where a valuable forecast accuracy can be expected (for the small-scale tracer structures430

that are resolved by the model).

4.2.3 Predictability diagrams

From the time evolution of the score described in the previous section, we can then deduce predictability diagrams, following

exactly the same approach as for CRPS in section 4.1.3. Figure 15 describes predictability (computed from SST fields) for

6 time lags (∆t= 1, 2, 5, 10, 15 and 20 days), by showing the final location score (y-axis) as a function of the initial location435

score (x-axis). Again, this figure is just a reshuffling of the data from Figure 14, gathering all couples of scores with time

lag ∆t, using the same assumption already discussed in section 4.1.3. Note that the longest time-lags considered here (>10

days) are relevant only in the present context of forced ocean experiments (as a forecasted atmosphere would also become a

major source of uncertainty for ocean predictability in a real operational forecast context at those time lags).

The interpretation of Figure 15 follows the same logic as the previously discussed predictability diagrams for CRPS. But440

the structure of the diagrams is here even more directly understandable, and the loss of predictability with time appears more

clearly. For instance, if one seeks a forecast accuracy of 10 km with a 95% confidence (i.e. a y-value of the green curve

equal to 10 km), then Figure 15 tells that the initial location accuracy required (necessary condition, but not sufficient, see

the conclusion section) is about 8 km for a 1-day forecast, 6 km for a 2-day forecast, 4 km for a 5-day forecast, 2 km for a

10-day forecast, and that this target is impossible to achieve in a 15-day and 20-day forecast. In the two latter cases however,445

the impossibility to achieve the targeted accuracy might just be due to the absence of small-enough initial errors in our sample

(since ENS-CI was initialized using ENS-1% after 1 day). But this should not make any practical difference since such small

initial errors would anyway be impossible to obtain in a real system.
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(a) +1 day (b) +2 days (c) +5 days

(d) +10 days (e) +15 days (f) +20 days

Figure 15. Final SST location score (y-axis, in km) as a function of the initial SST location score (x-axis, in km) for experiment ENS-CI, for

6 time lags ∆t= 1, 2, 5, 10, 15 and 20 days (from top left to bottom right). The green line corresponds to the initial score required to have a

95% probability that the final score is below a given value.

4.2.4 Effect of model uncertainties

As for the CRPS score, we then explore the possible additional effect of model uncertainty, by comparing the results from450

experiment ENS-CI (no model uncertainties) with those from ENS-1% (small model uncertainties) and ENS-5% (larger model

uncertainties). Figure 16 compares first the time evolution of the location score for ENS-CI (in blue) and ENS-5% (in orange),

and we observe again that model uncertainty mainly matters at the beginning of the simulation by a faster increase of the

forecast uncertainty, towards a similar asymptotic behaviour for the two simulations.

As for the CRPS score, the predictability diagrams are only substantially different between the experiments for short time455

lags and small initial and final scores. This is illustrated in Fig. 17 by comparing the predictability diagrams obtained for SST

in (a) ENS-CI, (b) ENS-1% and (c) ENS-5% for ∆t= 5 days and scores below 20 km. Again, we can detect here a moderate

effect of model uncertainty (as simulated here) on predictability. For instance, if one seeks a forecast accuracy of 10 km with a

95% confidence, the initial location accuracy required decreases from about 4 km in ENS-CI to about 3 km in ENS-5%.

As expected, our results show that the initial location accuracy plays a major role in driving the forecast location accuracy,460

but irreducible model uncertainties can also play a role for short time lags and accurate initial conditions.
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(a) SST (b) SSS

Figure 16. Time evolution of the location score (y-axis, in km) for (a) SST and (b) SSS, from two of the experiments: ENS-CI (no model

uncertainty, in blue) and ENS-5% (larger model uncertainty, in orange). Only the min-to-max envelop of all the 20x19 individual location

scores is represented for experiment ENS-CI as the individual 20x19 individual scores are already plotted in Fig. 14. The individual scores

and the min-to-max envelopp are superposed here for experiment ENS-5%.

(a) ENS-CI (b) ENS-1% (c) ENS-5%

Figure 17. Final location score (y-axis, in km) as a function of the initial location score (x-axis, in km) for SST and time lag ∆t= 5 days.

The green line corresponds to the initial score required to have a 95% probability that the final score is below a given value. The figure

compares the three simulations ENS-CI (no model uncertainty, left panel), ENS-1% (small model uncertainty, middle), and ENS-5% (larger

model uncertainty, right panel) for the small location scores (smaller than 20 km).

4.3 Decorrelation score

To complement the information provided by the location score above on the "misfit" of the ocean structures, we also investigate

the decorrelation of the ensemble members in spectral space.
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4.3.1 Decorrelation as a function of spatial scale465

The idea behind this additional score is to compare the spectral content of the forecast error to the spectral content of the

reference field (here considering SSH). The forecast error is assessed as the difference of SSH maps (hourly averaged) between

a given member taken as the truth and another member considered as the forecast. All the 20x19 combinations of pairs are

alternatively considered, following the same cross-validation algorithm as described in the previous sections. The "misfit" of

the ocean structures is here quantified in spectral space with a ratio R of decorrelation, computed for each time-lag as:470

R= 1− < PSDdiffssh >

2×< PSDssh >
, (2)

where PSDssh is the Power Spectral Density of the full-field SSH at that given time-lag, and PSDdiffssh is the PSD of the

forecast error on SSH at that given-time-lag. The brackets <...> denote the ensemble mean operation over the 20 members or

over the 20×19 combinations of pairs. The PSDs are computed in the squared box of L∼450 km shown as box (a) in Fig.1. By

design, R is expected to tend to zero when the ensemble members are fully decorrelated, and to be close to 1 when the members475

are fully correlated. The factor 2 in the definition of R comes from the fact that we compare here the PSD of a difference of two

given fields with the PSD of the reference field. For example, if the ensemble members are strictly independent and uncorrelated

in space on all scales, then for all combinations of a pair of members (t, f ) where t would be considered the truth and f the

forecast, the space variance (var) of the difference f − t can be expressed as :

< var(f − t)>=< var(f)+var(t)− 2covar(f,t)>, (3)480

< var(f − t)>=< var(f)>+< var(t)>, (4)

< var(f − t)>= 2< var(f)>, (5)

where the factor 2 appears.

4.3.2 Evolution in time

In section 3.2, we have already discussed the evolution with time of the spatial spectral content of the forecast error (Figure485

7). Now Figure 18 shows the evolution in time of the ratio R, computed at different time-lags from experiment ENS-CI in

the top panel. By design, values of R are close to 1 when the members are strongly correlated: this is indeed the case on the

figure, at very short time lags (<5 days, yellow line). With time increasing, R decreases (the members are less and less spatially

correlated), starting from small scales and cascading to larger scales. At the end of the 2-month experiment, R has decreased

to zero for scales in the range 10-60 km, consistently with what we had already deduced from Figure 7. Full decorrelation is490

not yet reached for larger scales, but we do not necessarily expect a full spatial decorrelation between the members in this type

of experiment since all members see the same surface forcing and lateral boundary conditions. Also, note that the size of the

box on which the spatial spectral analysis is performed is about 350 km square, so the left part of the spectrum is not expected

to be much significant for scales larger than ∼150 km (aliasing effect, also see Fig.4 and associated text).

On the right side of the spectrum, on very small scales (<6 km), it is noteworthy that R remains larger than 0.5 after 2495

months of simulation. This behavior is consistent in the three experiments (see panels a,b,c in Fig.18), so it cannot just result
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(a) MEDWEST60-ENS-CI

(b) MEDWEST60-ENS-1%

(c) MEDWEST60-ENS-5%

Figure 18. Mean coherence ratio R (see text for definition) from experiments ENS-CI, ENS-1% and ENS-5%. The ratio is computed at

different time-lags: time increasing from yellow to blue colors. The grey shading indicates where the spatial scales are not fully resolved

within the considered region (scales larger than L/2∼ 250 km).
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(a) λ in 10-30 km (a) λ in 60-100 km

Figure 19. Mean wavenumber spectral coherence ratio R of the ensemble forecast as a function of the coherence of the ensemble initial

conditions, for different forecast time-lags (+2,5,10,15,20 days), computed from hourly SSH in experiment ENS-CI. The mean ratio R is

taken over scales of (a) 10-30 km and (b) 60-100 km in (b). A grey horizontal line marks the value of the coherence ratio R at 0.5, at which

we consider the decorrelation of the ensemble members as effective. The R0 =Rforecast line is also marked in grey.

from a spurious effect of the stochastic perturbation (which is not present in experiment ENS-CI). Specific investigations would

be needed to understand better the reasons for this behavior, but note that it might just result from numerical noise (such as

truncation errors, etc), given the small amplitude of the signal (see Fig. 7) on the range of scales considered here (<6 km).

4.3.3 Evolution in time and predictability diagrams500

To provide an example of predictability diagram based on this spectral analysis, we finally consider the mean ratio R, averaged

over two given ranges of scales (10-30 km and 60-100 km) from experiment ENS-CI in Figure 19, following the same method-

ology as for the CRPS and location scores. The value of R after a given forecast time-lag, R(t+∆), where ∆ is the time-lag,

is plotted as a function of the initial value R(t). The figure thus provides, for each given scale range ((a) 10-30 km and (b)

60-100 km), some objective information about the spatial decorrelation between the members (here in the case with no model505

uncertainty).

In the 10-30 km scale range for example, it appears that even with very small initial errors (initial R close to 1), the members

become nearly decorrelated after a time-lag of ∼10 days (i.e. R(t+∆)<0.5) on these scales. For the larger-scale range, 60-100

km, the threshold of R(t+∆)<0.5 is reached for time lags above ∼15 days. Note however that only the uncertainty on initial

conditions is taken into account here. A faster decorrelation would be expected if other types of uncertainties in the forecast510

system were taken into account, such as uncertainty on the atmospheric forcing.

The kind of predictability diagrams proposed in Figure 19 might also be relevant in the context of preparing for the assimi-

lation of wide-swath high-resolution satellite altimetry such as expected from the future SWOT mission (Morrow, 2019). This

mission is expected to measure sea surface height (SSH) with high-precision and resolve short mesoscale structures as small
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as 15 km on a wide swath of 120 km. However the time interval between revisits will be within 11 to 22 days, depending on515

the location. Our results above tend to show that, for time-lags longer than 10 days, the forecasting system considered in the

present study will have lost most of the information in the initial condition regarding SSH structures in the smallest scale range

(10-30 km). With a perfect model and a very good assimilation system that would ensure an initial ratio R0 close to 1 (say 0.9

for the sake of the numerical application here) the spectral coherence ratio R of the forecast after 5 days drops down to 0.5

for scales in the range 10-30 km, while it remains above 0.8 for scales in the range 60-100 km at same time-lag. Or to put it520

differently, if the target for the spectral decorrelation was to remain above R=0.5 for all scales in the range 10-100 km, then a

revisit time of the satellite between 5 and 10 days would be necessary (and even shorter with current imperfect models). This

is why nadir altimeter data will remain a key component of the satellite constellation complementing the wide-swath SWOT

measurements in space and time.

5 Summary and conclusions525

The general objective of this study was to propose an approach to quantify how much of the information in the initial condition

a high-resolution NEMO modelling system is able to retain and propagate correctly during a short and medium range forecast.

For that purpose, a kilometric-scale, NEMO-based regional model for the Western Mediterranean (MEDWEST60, at 1/60◦

horizontal resolution) has been developed. It has been defined as a subregion of a larger North Atlantic model (eNATL60),

which provides the boundary conditions at hourly frequency at the same resolution. This deterministic model has then been530

transformed into a probabilistic model by introducing an innovative stochastic parameterization of location uncertainties in the

horizontal displacements of the fluid parcels. The purpose is primarily to generate ensemble of initial conditions to be used in

the predictability studies, and it has also been applied to assess the possible impact of irreducible model uncertainties on the

accuracy of the forecast.

With this regional model, 20-member and 2-month ensemble experiments have been performed, first with the stochastic535

model for two levels of model uncertainty, and then with the deterministic model from perturbed initial conditions. In all

experiments, the spread of the ensemble emerges from the smallest model scales (i.e. kilometric) to progressively develop and

cascade upscale to the largest structures. After two months, the ensemble variance has saturated over most of the spectrum

(10-100 km) and the ensemble members have become decorrelated in this scale range. These ensemble simulations are thus

appropriate to provide a statistical description of the dependence between initial accuracy and forecast accuracy over the540

full range of potentially useful forecast time lags (typically, between 1 and 20 days). Of course, the ensemble size can be a

limitation of the accuracy of the conclusions. In our case, with N=20 members, we can expect a ∼16% accuracy (1/
√
2N) on

the ensemble standard deviation as an approximation to the true standard deviation, which is not perfect, but sufficient to draw

meaningful conclusions.

From these experiments, predictability has then been quantified statistically, using a cross-validation algorithm (i.e. using545

alternatively each ensemble member as a reference truth and the remaining 19 members as forecast ensemble) together with

a few example scores to characterize the initial and forecast accuracy. From the joint distribution of initial and final scores, it
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Target forecast score (◦C) 2 days 5 days 10 days

0.025◦C 0.016 0.006 0.001

0.05◦C 0.037 0.027 0.010

0.075◦C 0.056 0.039 0.023

0.1◦C 0.077 0.059 0.033
Table 3. Initial SST accuracy required (CRPS score, in ◦C) to obtain the target final accuracy (CRPS score, in ◦C, left column) with a 95%

confidence for different forecast time lags: 2 days, 5 days and 10 days.

Target forecast score 1 day 2 days 5 days 10 days 15 days 20 days

2 km 1.6 km 1.4 km — — — —

5 km 3.9 km 3.1 km 1.4 km — — —

10 km 7.9 km 6.2 km 4.4 km 1.4 km — —

15 km 11.7 km 10.4 km 6.3 km 3.1 km 1.4 km —

20 km 16.2 km 14.9 km 10.5 km 5.4 km 2.3 km 1.4 km
Table 4. Initial location accuracy required (location score, in km) to obtain the target final location accuracy (location score in km, left

column) with a 95% confidence for different forecast time lags between 1 day and 20 days.

was then possible to diagnose the probability distribution of the forecast score given the initial score, or reciprocally to derive

conditions on the initial accuracy to obtain a target forecast accuracy. Although any specific score of practical significance

could have been used, we focused here on simple and generic scores describing the misfit between ensemble members in terms550

of overall accuracy (CRPS score), geographical position of the ocean structures (location score), and spatial decorrelation.

Tables 3 and 4 give a quantitative illustration of the conditions obtained on the initial accuracy to obtain a given forecast

accuracy if the model is assumed perfect (as in experiment ENS-CI), using the CRPS score and the location score. For example,

Table 4 shows that, for our particular region and period of interest, the initial location accuracy required with a perfect model

(deterministic operator) to obtain a forecast location accuracy of 10 km with a 95% confidence is about 8 km for a 1-day555

forecast, 6 km for a 2-day forecast, 4 km for a 5-day forecast, 1.5 km for a 10-day forecast, and that this target is unreachable

for a 15-day and a 20-day forecast (more precisely, in these two cases, the required initial accuracy would be irrealistically small

and was not included in our sample). With model uncertainties (stochastic operator, as in experiment ENS-1% or ENS-5%),

the requirement on the initial condition can be even more stringent, especially for a short-range and high-accuracy forecast.

However, it is important to remember that this only provides necessary conditions but not a sufficient conditions on the initial560

model state. The reason for that is that the condition is put on one single score for one single variable, whereas the quality of

the forecast obviously depends on the accuracy of all variables in the model state vector. In the examples given in the tables, we

used the same model variable for both target score and the condition score, but we could have looked as well for a necessary

condition on another variable (for instance velocity) to obtain a given forecast accuracy for SST or any other model diagnostic.
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In this way, for any forecast target, we could have accumulated many necessary conditions on various key properties of the565

initial conditions, especially observed properties, but this would never become a sufficient condition.

Furthermore, these necessary conditions on observed quantities can then be translated into conditions on the design of ocean

observing systems, in terms of accuracy and resolution, if a given forecast accuracy is to be expected (e.g. on the wide-swath

altimetry mission SWOT, as discussed in section 4.3).

But, again, these conditions are only necessary conditions, as the accuracy of the initial model state also depends on the570

ability of the assimilation system to interpret properly the observed information and to produce an appropriate initial condition

for the forecast. Checking this ability would have required performing observation system simulation experiments (OSSE)

using the operational assimilation system, which lied beyond the scope of the present work.

More generally, however, what this study suggests is that an ensemble forecasting framework should become an important

component of operational systems to provide a systematic statistical quantification of the relation between the system opera-575

tional target (a useful forecast accuracy) and the available assets: the observation systems, with their expected resolution and

accuracy, and the modelling tools, with their target resolution and associated irreducible uncertainties.

Code and data availability. The source codes of the MEDWEST60 NEMO-based model and some of the diagnostics tools developed in this

study are shared in an open github repository dedicated to MEDWEST60: https://github.com/ocean-next/MEDWEST60. The model outputs

are available upon request (∼50 To for the three ensemble simulations). The CDFTOOLS (https://github.com/meom-group/CDFTOOLS)580

were used for some of the pre- and post-processing of the model outputs. The Power Spectral Density computation in sections 3.2 and

4.3 were all performed using A. Ajayi’s python module PowerSpec (https://github.com/adeajayi-kunle/powerspec) and the predictability

diagnostics based on CRPS score and location score were made with the SESAM (https://github.com/brankart/sesam) and EnsDAM (https:

//github.com/brankart/ensdam) softwares.

Appendix A: Location uncertainties585

The purpose of this appendix is to describe the stochastic parameterization that has been used in this paper to simulate model

uncertainties in experiments ENS-1% and ENS-5%. Uncertainties are assumed to occur on the location of the fluid parcels as

explained in section A1. The further assumptions that are made to implement the resulting stochastic formulation in NEMO

are presented in section A2.

A1 Stochastic formulation590

Location errors in a field φ(x, t), function of the spatial coordinates x and time t, occur if the field φ displays the correct values

but not at the right location. More precisely, this means that the field φ(x, t) can be related to the true field φt(x, t) by the

transformation:
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φt(x, t) = φ
[
xt(x, t), t

]
(A1)

where xt(x, t) is a transformation of the coordinates (anamorphosis) defining the location where to find the true value of φ(x, t).595

With respect to the true field φt, the values of φ are thus shifted by:

δx(x, t) = xt(x, t)− x (A2)

which defines the location error.

If the field φ(x, t) is evolved in time, over one time step ∆t, with the model M:

φ(x, t+∆t) =M [φ(x, t), t] (A3)600

we can make the assumption that one of the effect of the model is to generate location uncertainties. In an advection-dominated

regime, this means for example that the displacement of the fluid parcels can be different from what the deterministic model

predicts. With this assumption, the model transforms to:

φ[x+ δx(x, t+∆t), t+∆t] =M{φ[x+ δx(x, t), t], t} (A4)

where the location error δx(x, t) can be simulated for instance by a stochastic process P:605

δx(x, t+∆t) = P [δx(x, t),φ(x, t), t] (A5)

where an explicit dependence to φ and t has here been included to keep the formulation general.

In ocean numerical models, the coordinates x are usually discretized on a constant grid. To implement the stochastic model of

Eq. (A4) and Eq. (A5) on this numerical grid, one possibility would be to remap the updated field φ[x+δx(x, t+∆t), t+∆t] on

this constant grid at each model time step. This remapping would correspond to a stochastic shift of the model field accounting610

for the presence of location uncertainties. However, this solution may be computationally ineffective, and it is much easier to

keep track of the modified location of the grid points (described by δx), and use this modified grid to implement the model

operator M. In practice, to avoid deteriorating the model numerics, this solution requires that location errors remain small with

respect to the size of the grid cells, and that their variations over one time step ∆t are kept small enough to avoid undesirable

numerical effects.615

This simple approach to simulate location uncertainties in ocean models has a close similarity to the work of Mémin (2014);

Chapron et al. (2018), where it is argued that the effect of unresolved processes in a turbulent flow can be simulated by adding

a random component to the Lagrangian displacement dX of the fluid parcels (as in a Brownian motion):
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dX = v(x, t)dt+σ(x, t)dB (A6)

where v(x, t) is the velocity (as resolved by the model). σ(x, t)dB is a stochastic process uncorrelated in time, but correlated in620

space, with a general formulation of the spatial correlation structure. σ(x, t) defines the amplitude of the random displacement.

The purpose of their study is then to examine the effect of this modified material derivative (with the stochastic displacement

added) when transformed into an Eulerian framework (i.e. in a constant coordinate system). In a nutshell, from this assumption,

the authors manage to derive modified Navier-Stokes equations, with additional deterministic and stochastic terms depending

on σ.625

A2 Implementation in NEMO

To implement location uncertainties in NEMO, we explicitly make the assumption that the location errors δx remain small with

respect to the size of the grid cells, so that the nodes of the modified grid just follow a small random walk around the nodes

of the original grid. Consistently with this assumption, we make the approximation that the model input data (bathymetry,

atmospheric forcing, open-sea boundary conditions, river runoffs,. . . ) keep the same location with respect to the model grid,630

which means that these data are not remapped on the moving grid. Such a tiny shift of the data (much smaller than the grid

resolution) would indeed represent a substantial computational burden, with many possible technical complications, and would

only produce small additional perturbations to the model solution, which do not correspond to the main effect that we want to

simulate.

Since the model grid is assumed fixed with respect to the outside world, we need only represent the displacement of each635

model grid point relative to its neighbours. In NEMO, this relative displacement of the model grid points can easily be obtained

by transforming the metrics of the grid, which is numerically represented by the distance between the neighbour grid points. A

stochastic metrics, describing relative location uncertainties in the model operator M, corresponds to the main effects that we

want to simulate, because it can represent both physical and numerical uncertainties. On the one hand, the stochastic metrics is

an explicitly Lagrangian transcription of Eq. (A6) in the model dynamics, which describes physical uncertainties that upscale640

from unresolved processes. On the other hand, since the metrics is used everywhere in the model to evaluate differential

and integral operators, making it stochastic can also be viewed as a simple approach to simulate numerical uncertainties

simultaneously in all model components.

In practice, to obtain a stochastic metrics in NEMO, we must transform the arrays describing the horizontal size of the grid

cells into time-dependent stochastic processes. Thus, if ∆xi(t) = [∆xi(t),∆yi(t)] is the size of grid cell number i at time t,645

we must define stochastic processes Pi such that:

∆xi(t+∆t) = Pi [∆x1(t), . . . ,∆xj(t), . . .] (A7)

A very simple approach to define the Pi is then to use first-order autoregressive processes ξi(t) as a multiplicative noise applied

to the reference model grid ∆x0
i :
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∆xi(t) = ∆x0i ◦ [1+ ξi(t)] (A8)650

with

ξi(t+∆t) = a ◦ ξi(t)+b ◦w (A9)

where ◦ is the Hadamard product, w is a vector of independent Gaussian white noises, and a and b are constant coefficients

governing the standard deviation and the correlation length scale of the ξi. The components of ξi are thus assumed independent,

which means that the grid is deformed independently along the two horizontal dimensions.655

The use of autoregressive processes ξi(t) to simulate the stochastic distortion of the model grid makes the implementation

of the scheme straightforward in NEMO, since we can directly apply the tools developed by Brankart et al. (2015) to generate

the ξi. This tool was indeed meant to be generic enough to trigger various sorts of stochastic parameterizations in NEMO,

and has already been used to simulate various sources of uncertainty, including the effect of unresolved scales in the seawater

equation of state (Brankart, 2013; Bessières et al., 2017; Zanna et al., 2019) and in the biogeochemichal equations (Garnier et660

al., 2016), or the effect of parameter uncertainties in the sea ice model (Brankart et al., 2015). This tool only requires specifying

a few parameters to characterize the stochastic processes ξi(t): the standard deviation (σ), the correlation time scale (τ ), the

number of passes (P ) of a Laplacian filter applied to the ξi, and the order (n) of the autoregressive processes. The two last

parameters go beyond the formulation of Eq. (A9), which describes first order processes (AR1) uncorrelated in space. The

application of a Laplacian filter (with a correction factor to restore the original standard deviation) introduces space correlation665

and makes the distortion of the grid smoother in space, and the use of ARn rather than AR1 processes modifies the time

correlation structure and makes the distortion of the grid smoother in time. It must also be noted that the use of ARn processes

is also more general than Eq. (A7) by making the processes Pi depend on the n previous time steps, rather than just the previous

time step.

In the present study, the distortion of the grid has been limited to horizontal displacements of the model grid points, with670

the same displacements applied to all model fields and along the vertical. This reduces the number of stochastic fields to

generate to two two-dimensional fields, one for each of the horizontal coordinates ∆xi(t) and ∆yi(t). However, since the

NEMO fields are shifted according to the rules of the Arakawa C-grid, the stochastic metrics is first computed for the T-grid

and then transformed to the other grids (by linear interpolation) to be consistent with the shifted position of the grid points. In

the application, the standard deviation is set to a relatively small value σ =1% or 5%, to be consistent with the assumption of675

small location errors, and the correlation time scale is set to 1080 time steps (1 day) to be consistent with the assumption of a

small variation of the grid over one time step. Some effort is also made to keep the perturbation smooth in space and time by

applying P = 10 passes of a Laplacian filter and by using second order autoregressive processes (n= 2).
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