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Abstract. Light is an important regulator of photo-chemical and photo-biological processes in coastal areas. However, under-

standing how the atmosphere-ocean interaction drives changes in the amount of light entering coastal waters and how changes

in the underwater light environment influence the biological characteristic of coastal water can be challenging due to the com-

plex oceanographic dynamics of these areas. Here, we empirically describe the seasonal relationships between meteorological

and oceanographic variables over a three year period and quantify the effect light have on the productivity of a coastal area off5

the Otago coast, New Zealand, through the application of an oceanographic-biological model. The model quantifies changes

in the production-biomass ratio (PP/B) (i.e. rate of production of organic matter from phytoplankton produced per unit of total

organic biomass) using measurements of the underwater attenuation coefficient, particulate organic carbon, chlorophyll-a and

sea temperature. The sensitivity of the model to input data was estimated by comparing the PP/B ratio predicted from Chl a

concentrations derived from field measurements of the attenuation coefficients of PAR lightKd(m−1) and Chl a concentrations10

derived from remote sensing data of Kd(m−1). The results presented here indicate a mild increment in solar radiation partially

driven by increased wind speeds and reduction of cloud cover, ultimately producing small increments in the amount of solar

radiation penetrating the water column, especially during summer. The model formulated, predict important seasonal shifts in

the PP/B ratio. These shifts are driven by the rate at which light decays and likely modulated by the frequency of wind speeds

that favour increments of the thermoclines depth and an increment of sea surface temperatures in the area.15

1 Introduction

Modelled forecast for this century shows that light and other environmental variables will undergo significant changes, likely

affecting the underwater light environment (Liley, 2009; Zepp et al., 2011; Shears and Bowen, 2017). In the open ocean, solar

radiation is the most important factor forcing atmospheric and ocean circulation and can typically produce changes at the

biological level, including shifts in primary production. However, in coastal areas shifts in productivity largely depend on the20

natural seasonality patterns and on the complexity of the coastal system (Ma et al., 2019; Gao et al., 2019). This complexity is

partially driven by changes in the concentration of both dissolved and particulate, inorganic and organic matter, and changes

on primary productivity i.e. Chlorophyll a (Chl a) and can strongly influence the depth at which light penetrates in coastal

waters. Moreover, the interactions with several meteorological variables, including temperature, wind speed, cloud cover and
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precipitation patterns (EEAP, 2019) can make it challenging to predict shifts in productivity, specially considering the rates of25

change observed in coastal ecosystems due to climate change (Bell et al., 2017).

Current climate change projections for the Otago region for the period 2013–2050 indicate a likely increase in temperature

of 0.6 – 0.9ºC by 2040, and of 0.6 – 2.8ºC by 2090 with an increase in wind speed of 2 to 5 knots (Bell et al., 2017; Law

et al., 2018). These climatic trends have the potential to produce changes in the amount of solar radiation penetrating the

water column; however, the magnitude at which temperature and wind speed or other environmental variables influence the30

penetration of light or its effects on the overall productivity of coastal area is unknown around the Otago coast, New Zealand.

Changes in the amount of light reaching specific depths of the water column can be captured by the diffuse attenuation

coefficients of downwelling irradiance, Kd(λ), defined as the rate of decay of downwelling spectral radiation for a given

wavelength λ(280− 490nm) with depth (Cao et al., 2014). Direct field measurements of attenuation coefficients (Tadetti and

Sempéré, 2006) and, more recently, high-resolution remote sensing data obtained from satellites, have been used to assess35

the impacts of chromophoric dissolved organic matter, primary productivity, cloud cover, and temperature on incident solar

radiation reaching the surface of the earth or specific depths in the ocean (Ahmad et al., 2003; de Lange et al., 2003; Johannessen

et al., 2003; Lindfors and Arola, 2008; Xiong et al., 2020; Cao et al., 2014). These measurements have also allowed the

modelling of light penetration through the water column (Taylor et al., 1997; Kim et al., 2015; Bowman et al., 2018). Current

satellite open-access products, however, do not include measurements of short ultraviolet wavelength, and the use of open-40

access remote sensing products is only possible in the visible band spectrum. For this reason, the behaviour of UV wavelengths

in the ocean has been, in most cases, interpolated and interpreted from direct reflectance products through the implementation

of complex models. (Mobley, 2001; Pan and Zimmerman, 2010; Li et al., 2018).

The main aims of this study are to evaluate the effects of light on the biological characteristics of a coastal area and describe

the seasonal atmosphere-ocean connection over a two year period. To achieve this, we use model predictions of the production45

to biomass ratio (PP/B) obtained using remote sensing data or field obtained data of Kd as model inputs, using a simple

mathematical model framework that applied data of the attenuation coefficient of PAR light, and the absorption and scattering

coefficients of ocean water to predict Chl a concentrations which, in turn, are used to estimate the primary production/biomass

ratio (PP/B). For this, we re-purpose a model based on the values of absorption aW (λ) and scattering bW (λ) coefficients of

pure sea water to calculate the water decay constant, KW . The water decay constant is, in turn, used to calculate a theoretical50

attenuationKbio. Here, we usedKbio as a secondary attenuation coefficient parameter, that is a function of in situ measurements

of Kd and KW . Kbio is then used to predict Chl a values based on a dimensionless sea water specific derived function (X)

and the coefficient (e). Once Chl a values were known, the model is used to predict the PP/B ratio as a function of water

temperature, nutrient loads and changes in underwater irradiance with depth. The approach followed in this study complements

similar studies that characterize the attenuation coefficient of optically complex waters using remote sensing data or modelling55

approaches (Modenutti et al., 2001; Cao et al., 2014; Mishra et al., 2005; Cao et al., 2014; Giddings et al, 2021) and is

intended as a method to identify the influence of light on productivity either by using open-access remote sensing products or

in-situ data of the attenuation coefficient. In summary, here we (1) describe the physical characteristics of a coastal area of the

Otago Peninsula and study the connection between meteorological and oceanographic data to (2) understand how changes in
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Kd(λ) influence the biological characteristics of the water column. Finally, we compared model predictions from two model60

approaches (3) to evaluate differences in predictions of the PP/B using free access remote sensing data with a spatial resolution

of 1.5 km, or direct in situ measurements of Kd(490). Because the model’s PP/B ratio predictions ultimately depend on Chl

a concentrations and temperature, we expected the behaviour of the predicted PP/B values not to differ in a significant way,

regardless of the type of data used. Furthermore, due to the natural seasonal complexity of the study area, we hypothesized that

PP/B ratios increase during summer to twice the values of winter, reducing the amount of light penetration the water column65

by half the values of winter.

2 Materials and Methods

2.1 Study site description

The coastal waters off the Otago Peninsula are oceanographically dynamic, dominated by the northward flowing Southland

Current, a mix of superficial Sub-Antarctic waters and Sub-Tropical waters (Murdoch, 1989; Garner, 1961). This water mass70

can be associated with warmer, higher salinity coastal waters, which are typically separated from offshore waters by the

Southland front (Sutton, 2003). This system determines local and seasonal oceanographic characteristics of the waters along the

Otago Peninsula, with inshore ocean temperatures 2 ºC warmer than offshore conditions, and with lower limits of temperature

between 10 ºC in winter and 15 ºC in summer, and salinities between 34.6 – 34.9 PSU (Jillett, 1969). The region that separates

the Southland current from the coast is considered a neritic zone, an area where the euphotic zone can reach the ocean floor.75

This neritic zone contains a water mass of varying temperatures as a result of transferring surface heat during summer and

convection transfer during winter (Jillett, 1969). Other factors, such as inputs of freshwater run-off from the Clutha River,

96 km south of the Otago Peninsula, reduce coastal salinities values to < 34.6 PSU, especially during the months preceding

winter. Additional local ocean features, such as the presence of an eddy, north of the Otago Peninsula, are known to facilitate

the retention and recruitment of planktonic organisms (Murdoch, 1989), increasing the optical complexity of the area.80

2.2 Data acquisition

Measurements of solar radiation (280 - 700 nm) were undertaken seasonally throughout two years, from December of 2016

to December of 2018, exclusively during the summer (December - February) and winter (June – August). Measurements of

underwater solar radiation were made using an underwater spectroradiometer (Licor LI–1800UW) on a grid of 13 stations,

covering and area 3.47 nm2 at the entrance of the Otago Harbour (45° 46.12’S - 170° 43.72’E) (Figure 1). Measurements85

were obtained at 1 m intervals between the sea surface and 5 m depth, exclusively during clear sky and relatively calm ocean

conditions (Beaufort scale 0 - 3). All measurements were taken within 3 hours, between 1100 hrs and 1400 hrs, when the solar
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radiation is at its daily maximum, and when the zenith angle is between 24.6 – 38.9° in summer and between 67.1 - 75.0° in

winter. For each wavelength, raw measurements from the spectroradiometer were calibrated using the following equation:

I(dz) =
acos ·ucos
I(λ)

(1)90

Where I(dz) was the calibrated irradiance at different depths expressed in Wm−2. The variables acos and ucos were the

calibration values provided by the spectroradiometer supplier for each wavelength (Table S1 in the Supplement), and I(λ) was

the raw measured irradiance values for each wavelength between 300−700nm. The calibrated underwater light data was used

to calculate Kd(λ)(m−1) and the light transmittance, T (λ)(m−1), for each wavelength between 300−700nm, at each station

between the surface and 5m using the following equations:95

Kd(λ) =
1

z(λ1)− z(λ2)
·LN I(λ1)

I(λ2)
(2)

T (λ) =
I(λ1)
I(λ2)

· 100 (3)

Where I1(λ) and I2(λ) corresponded to the irradiance values between surface and 5 m depth (Wm−2), and z1(λ) and

z2(λ) corresponded to the minimum and maximum depth (m). Kd(λ) and T (λ) were expressed as (m−1) and percentage per100

meter (m−1), respectively. In parallel to underwater light measurements, water column profiles of salinity, temperature and

density were captured using a CTD profiler (RBR–XR620; RBR ltd, Canada). This data was used to infer the depths of the

thermoclines and pycnoclines using the R package “oce” (R Core Team, 2017) to locate the depth at which differences in the

salinity and temperature were larger. This data was used to explore the association between meteorological and oceanographic

variables during summer and winter conditions.105

2.3 Meteorological data

A data set with hourly observations of atmospheric measurements from summer 2016 to summer 2018 was obtained from the

weather stations array located at the Department of Physics, University of Otago, Dunedin, New Zealand (45º52’S; 170º31’E)

and from the New Zealand meteorological service station also located in Dunedin (45°55’S; 170°11’E) (Table 1). These data-

sets were combined and used to study the correlation between the meteorological variables and underwater UVR. The data-set110

included observations of surface atmospheric temperatures, cloud cover, wind speed and direction and total UVR radiation

(Table 1).

For statistical purposes, hourly categorical observations of cloud cover data were converted into a continuous variable by

creating a cloud cover index (scale from 1 to 5, Idx), where the cloud cover description by the Dunedin branch of the New

Zealand meteorological service station (45º55‘S;170º11’E) was turned into the following numerical values: no cloud cover115

became 1; cloud cover described as "Few" (FEW) for one or two eights of the sky cover by clouds, became 2; "scatter" (SCT)
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for three or four eighths, became 3; "broken" (BKN) for five to seven eighths, became 4; and "overcast" (OVC) meaning the

total of the sky is covered by clouds, became 5. When the sky conditions changed thought the day, the daily average between

the values (1 to 5) was used as the index. Hourly observations of wind were transformed into wind pseudo-stress components

(m2s−1), Zu and Zv , for the East-West and North-South directions, respectively. Vector components were calculated from the120

wind direction and wind speeds following the equations:

Zu=W ·Cosθ (4)

Zu=W ·Sinθ (5)

where W is the wind speed (ms−1), and the corresponding wind direction was expressed in angles. A positive Zu(m2s−1)125

represented winds from the west and a negative Zu represented winds from the east. Similarly, a positive Zv value represented

winds coming from the south and a negative Zv value represented winds coming from the north (Ponds and Pickard, 1997).

2.4 Remote sensing data

We collected three years of open access remote sensing data (Table 1). SinceKd(490) is the only surface attenuation coefficient

available as free-access remote sensing data, observation of Kd(490) were compared against inferred values of Kbio obtained130

from in-situ observations of Kd(490) to confirm similarity in observations. All remote sensing data was obtained from the

national aeronautics and space administration (NASA) ocean colour website (https://oceancolor.gsfc.nasa.gov). The level–3

(derived geophysical variables) binned (1.5 km spatial resolution) data was taken by the MODIS (Moderate Resolution Imaging

Spectroradiometer) sensor that orbits the planet at an altitude of 705 km and make observations of the entire Earth’s surface

every two days. The data is acquired in 36 spectral bands or groups of wavelengths, including ocean colour, phytoplankton and135

biogeochemistry (bands 8–16) (NASA Goddard Space Flight Centre, Ocean Ecology Laboratory, Ocean Biology Processing

Group, 2014). The obtained data sets were converted to non-binned data using the software SeaDAS (version 7.5.3) and QGIS

("QGIS Development Team, 2019). Monthly and seasonal (summer and winter) averaged values of Chl a, DOM and Kd(490)

were calculated for a transect of 22.7 km located across the stations of the present study, extending offshore of the Otago

Peninsula. Data points from the region of interest were extracted, and converted into readable raster images, using the software140

R (R core team 2013) and the packages (package = “ncdf4”, package = “ocedata” and package = “raster”).

2.5 Data analysis

The general characteristics and trends of the meteorological variables were described by calculating the average and extreme

values for each variable (average value ± SD) during the studied seasons, and then the annual cycles for each data were

analysed using time series analysis. We calculated smoothed trends using the R package "openair" and compared time series145

of atmospheric data by measuring the characteristics of the time series such as: strength of seasonality, strength of trend,
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level of non-linearity, skewness, serial auto-correlation, self-similarity, and the periodicity of each time series. In addition, the

seasonal and monthly averaged relationship between meteorological and oceanographic variables were analysed using principal

component analysis (PCA) by combining remote sensing and all meteorological with the inferred values of the thermocline

and pycnoclines.150

2.6 Estimation of chlorophyll-a from attenuation coefficients

To derive Chl a concentrations fromKd(λ) values, two different attenuation coefficients,Kbio andKW (λ) were used following

a well established approach to characterize optically complex waters (Morel and Maritorena, 2001; Morel et al., 2007; Giddings

et al, 2021) (Figure 2). Kbio, includes the contribution of all biogenic components of the water column, its calculation was

approximated by using an χ(λ) coefficient that changes with wavelength and the theoretical exponent e(λ). Both, statistically155

derived functions described by Mobley (1994) and first used on a bio-optical model given by Morel (1988) to describe optically

complex waters with Chl a values < 30mgm−3. The approach described χ(λ) and e(λ) function values from 400 to 800 nm.

Thus, values for UV-wavelengths < 400nm were obtained by fitting a third order polynomial model to the regression between

χ(λ) and e(λ) (R core team, 2019)(Table B2). Together, equations (6) and (7) were used to estimate Chl a concentration

(mgm−3) from Kd(λ). However, Kbio was approximated from in situ measurements of Kd(490) following equation (6)160

thought its relationship with the water decay constant KW . Theoretically, KW represents the spectral values of the diffuse

attenuation coefficient of pure sea water. KW was best approximated by its lower values limits, which are expressed by

equation (7):

Kbio(λ) =Kd−KW (6)

165

KW (λ) = aW (λ) + (1/2)bW (λ) (7)

Where aW (λ) and bW (λ) represented the absorption and molecular scattering for optically pure sea water. The validity of

this formulation has been discussed in detail by Smith and Baker (1981), and values used in this study for KW where those

from Smith and Baker (1981) (Table B1). Using equations (6) to (8), the estimation of Chl a from Kd(λ) values was obtained

as follow:170

Kbio(λ) =KW (λ) = χ(λ)(Chla)e(λ) (8)

In this study we assume that Kd(λ) values change with wavelengths and interpretation of Chl a values were obtained from

mathematical derivation of equation (8), proposed by Morel (1988). Finally, values of transmittance, T (λ), were used as a

secondary tool to explore the extent of the relationship between Chl a and the measured values ofKd(λ). This was achieved by

implementing the log-log regression between field obtained Kd(λ) and modelled Kd(λ) coefficients, with the aim to evaluate175

if the behaviour of the T (λ) values followed the expected decay pattern with depth at different levels of Chl a.
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2.7 Biological model for PP/B estimation

A modified version of a model previously used to estimate PP/B ratios (Hernández et al., 2012; Taylor et al., 1997) was applied

to quantify variations in PP/B due to variations in light. The first models was adjusted using estimated Chl a values derived

from remote sensingKd(490) values and the second model adjusted using Chl a derived from field obtained of valuesKd(490)180

between the ocean surface and 5mt depth. Both models, however, used POC (mgCm−3) data from satellite observations to

calculate the effect of light on the PP/B ratio following the formulation listed in equations (9) to (11).

PP/B =
V mt+α+ IZ√
V mt2 +α2 + I2

Z

· [N ]
Kn + [N ]

·C : Chla (9)

V mt= a · bT (10)

[N ] = POC · (
6
5 )
b

(11)185

With PP being primary production (mgCm−3) and B the phytoplankton stock (mg Chl am−3). The terms on the right of

the equation represented the light and nutrient limitation: with V mT the temperature dependant maximum growth rate function

at light saturation, calculated using equation (10); where α is the initial slope of the production/irradiance curve; IZ(Wm˘2) at

depth z(m); [N] the nitrogen concentration for New Zealand coastal areas, calculated converting POC data using equation (11);

Kn the half saturation constant for nutrient uptake; and with C:Chl a limited to values< 20 (Taylor et al., 1997) (Table2). While190

the C:Chl a ratio depends on light and nutrient limitation, here we fixed it to values from 0.003 to 0.01 (mg Chl–a (mgC)−1)

in the two models, to level the amount of input variables between the two models and also due the lack of data for the study

area. Therefore, the fix values were based on derived values of Chl a from remote sensing and field obtained data and values

reported by other authors (Cloern et al., 1995).

The values form the dimensionless function V mT were calculated following equation (10), where "t" was the in situ temper-195

ature taken from the CTD profiles, “a” was the maximum growth rate at 0 ◦C set to 0.8 d−1, and “b” an specific phytoplankton

growth parameter set to 1.06 following (Oschilies and Garçon, 1999; Koné et al., 2005).

Because the implementation of the model followed a less complex approach, which its primary focus was to assess the capa-

bility to track changes in the PP/B ratio in time, here values of [N] were assumed constant with depth and the calculations of the

nutrient concentration were made using surface POC values obtained from remote sensing measurements. The transformation200

assumed a C:N ratio of (5:6) according to equation (11), where “b” is the molar weight of N.

3 Results

3.1 Seasonal changes in meteorologic-ocean conditions

Maximum surface levels of solar radiation between 11:00 – 14:00hrs during the austral summer were between two to three

times higher than values during the austral winter when few to no clouds were present. During summer, solar radiation and205
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cloud cover displayed larger daily temporal variability. However, the periods of peak solar radiations during winter were

longer compared to summer months (Table 3). For instance, during summer, only 26.5% of the time the sky presented NCD

conditions, while the remaining 74% of the time clouds conditions varied from FEW to OVC conditions. As a result, cloud

cover produced a significant reduction of the incident solar radiation levels (two-way ANOVA; F(4,2379) = 19.78;p < 0.05).

With OVC conditions decreasing the mean intensity of solar radiation between 34 to 37%. While, SCT produced a reduction210

21.3% and BKN cloud conditions produced an overall reduction of 34% in solar radiation reaching the surface of the ocean.

In contrast, during winter months, all cloud conditions had significant effects on the total mean values of solar radiation, with

OVC conditions reducing solar radiation levels between 55 to 66.4%, an average reduction 1.5 times higher than other clouds

conditions (Table 3).

Average atmospheric temperature during the three year period were 10 ± 4.7 ºC higher in summer than in winter and higher215

temperature were positively associated with an increment of the meridional wind velocity, that pushed important reductions in

the amount of clouds during summer months, time of the year when total wind speeds were stronger (summer = 7.68 ± 5.04

kt and winter = 5.15 ± 4.46 kt). Time series analysis of solar radiation showed a small increment of solar radiation during

summer months with a mild seasonal component (Table A1), while cloud cover time series show a mild decrease of clouds

cover in time (Fig.A1). The Lyapanuv exponent for both time series, which dictated the rate of separation, was similar between220

solar radiation (∼0.56) and cloud index (∼0.51) time series (Table A1). This suggested the existence of a similar behaviour

between cloud cover and solar radiation (Fig.A1).

The oceanographic conditions for the study area followed a trend similar to the atmospherical data, with ocean water tem-

perature higher in summer compared to winter values and salinity values ranging from 34.2–34.6 PSU in summer and 33–34.9

PSU in winter (Table 3). Observations of remote sensing data and field data showed an increment in time of ocean temperatures225

(3). However, observations of kd(490) and remote sensing and observations of kd(320) showed opposite trends (Table 3) but

a similar coast-offshore gradient with overall higher values of Kd closer to the coast (Fig.C5). This gradient was most evident

at the beginning and the end of the summer months but was less apparent during winter, when values of Chl a across the study

area remained relatively unchanged (Fig.C3).

Results from PCA analysis showed that although values of POC were significatively different during summer compared to230

winter months (ANOVA, F(1,58) = 4.401;p= 0.04)(Table 3), with concentration generally decreasing with distance from the

coast (Fig.C2), the main drivers of differences in the characteristic of the water column are seasonal (Fig.4a). With higher

Chl a and Kd(490) driving most of the variation in summer (Fig.4b) and higher kd(320) in combination with a shallower

halocline driving most of the variation in winter (Fig.4c). For instance, significant differences in mean Kd values between

summer and winter months (ANOVA, F(1,58) = 4.401;p= 0.04) were found with lower values during winter compared to235

summer (Table 3). Therefore, more light is able to reach deeper layers of the water column during winter months. Full analysis

of the Kd from 300 – 700 nm showed statistical differences between values of Kd at surface and values of Kd at 5m depth for

all stations (ANOVA, F(11,60) = 2859;p≤ 0.05) (Fig. 3) and seasonal differences in the Kd(300− 700) between summer and

winter (ANOVA, F(1,75) = 134.1;p≤ 0.05).
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3.2 Relationship between spectral values of modelled Kd, field Kd and field T240

The specific absorption (aW ) and scattering (bW ) coefficients for pure sea water proposed by Smith and Baker (1981) used in

this study followed a rapid exponential decay, with a rapid decrease of aW with increasing values of bW (Table B1) and differed

from the coefficient of pure water first proposed by Pope and Fry (1997), which follow a logistic behaviour.

Knowing the behaviour of these coefficients allowed for accurate parameterization of KW (λ). KW (λ) values calculated in

this study showed an increase with wavelength and differed substantially at wavelengths above 600 nm (Fig. B1). The water245

decay constant allowed for the calculation of Kbio that included the contribution of all the biogenic components of the sea

water, following equations (6) to (8). The behaviour of this theoretical attenuation coefficient was similar to field measured

Kd, despite the modelled Kbio and field measured Kd obtained from two independent methods. Overall, a positive significant

correlation between Kd and Kbio was found (R2 = 0.81, p ≤ 0.05), which indicated a strong wavelength dependency of the

variations of the field obtained Kd rather than observed changes caused by environmental factors (Fig.B2). Furthermore, as250

expected field obtained measurements of transmittance decayed in a logistic way with increased modelled and field obtained

Kd values (Fig.5a and Fig.5b).

3.3 Derivation of chlorophyll a

Calculated values of Chl a based on the wavelength dependent coefficient χ(λ) and exponent e, indicated similar concentrations

of Chl a during winter (1.10±0.23mgm−3) and summer (1.60±0.53mgm−3). However, Chl a obtained from remote sensing255

data were slightly higher both in winter (1.11± 0.45mgm−3) and summer (1.65± 0.50mgm−3).

The parameters used for the calculations of Chl a, aW and bW , were those of light as a function of each wavelength in

pure sea water and led to some overestimated values of Chl a. Despite the overestimation, values of Chl a followed a log-

log association with the modelled Kd(λ) (Fig. C1d and C1e), which indicated a wavelengths dependent response of Chl a to

different Kd values, with changes in Kbio at lower wavelengths (UVR 300-380 nm) occurring at a faster rate than at higher260

wavelengths (PAR 390-700 nm) and when levels of Chl a are < 10mgm−3(Fig.5c).

Statistical tests performed on the modelled Chl a, showed significant changes in Chl a between summer and winter (ANOVA,

F(1,1218) = 4.834; p= 0.028) (Table 3) and between stations (ANOVA, F(11,1208) = 3.6; p < 0.05), with values of Chl a higher

at the east-ward stations located closer to the coast (1.25 mgm−3), which is a similar pattern to the one found for the summer

MODIS-aqua Chl a estimates. However, the model was not able to reproduce statistically significant changes in Chl a associated265

with depth, as depth correction factors were not included in the formulation of the model and Chl a values were a function of aW

and bW , and measured Kd values rather than more complex dynamics. As changes with depth in Chl a could not be captured

by remote sensing, values of Chl a for the MODIS-Aqua-based model were assumed to be constant. Although the calculations

of modelled PP/B values integrated a temperature correction function V mT that could utilize values of temperature at different

depths, the approach followed using MODIS-Aqua SST to integrate changes in PP/B over time and the V mT function alone270

did not offer enough variation to capture changes on Chl a with depth.
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3.4 Field obtained model vs MODIS-Aqua PP/B model.

The first approach taken, using the slope (α parameter) of the lineal model between irradiance and derived Chl a values from

remote sensing data and nitrogen derived observations from MODIS-aqua POC, resulted in overestimated values of the PP/B

ratio (284.43 ± 91.5). However, using an α value, specific to New Zealand waters (Bouman et.al., 2018), the model yielded275

more accurate PP/B ratios (Fig. 6a). PP/B values predicted based on MODIS-aqua data were higher in winter (317.60 ± 81.2)

than in summer (258.97 ± 58.2). In contrast, mean PP/B values predicted based on field obtained data were lower, both in

summer (111.27 ± 85.0) and winter (292.56 ± 71.2) (Fig.6b). The integration of nitrogen values from POC, assuming no

changes with depth, indicated lower values in summer and higher values during winter (Fig.6c), with mean values for the

V mT function oscillating between (0.8 - 1.8) and higher values for the field-based model (1.62 ± 0.185) compared to the280

MODIS-Aqua-based model (0.87± 0.042); (t(5.512) = 9.701, p = 0.0001). However, SST values from MODIS-Aqua followed

a similar dynamic to that of the mean seasonal field temperatures obtained from the CTD profiles (Fig.6d). Overall, we found

that PP/B ratios from MODIS-Aqua and field obtained models had correlations values above ≈ 45 when compared with both

atmospheric and underwater related variables.

4 Conclusion and Discussion285

4.1 Seasonal effect of atmospheric parameters on solar radiation levels.

The atmospheric components included in this study only represent a sub-set of environmental mechanisms that control incident

UVR reaching the surface of the water. For instance, it is known that higher atmosphere aerosols play an important role in

reducing incident UVR, while water vapour and seawater aerosols in coastal areas are known to reduce UVR, changing the

reflectivity and enhancing albedo at low near-surface altitudes (Häder et al., 2003; Lovengreen et al., 2005; Thomas et al., 2012;290

Williamson et al., 2014). Broader-scale modelling of the total solar radiation reaching the ocean is not simple, considering the

range and number of variables that come into play, however, studies that incorporate only a fraction of these variables have

been successfully and extensively used in the past to study and forecast the impact that solar radiation has on ocean ecosystems

(Conde et al., 2000; Ahmad et al., 2003; McKenzie et al., 2008; Lee and Feldstein, 2013). Overall, the results presented here,

confirm that atmospherical variables such as wind speed and air temperature influence solar radiation at a local scale and can be295

used to explain synoptic variations in the amount of solar radiation reaching the earth surface. We found a positive correlation

between UVR and wind speed (≈ 0.22), that showed that in the presence of wind speeds above 10 knots, levels of solar

radiation increased by a factor of 1.1 in sunny conditions. This response is likely due to the increased movements of clouds or

the higher dispersion rate of clouds caused by the wind conditions. Other studies have found similar correlation between UVR

and atmospherical variables (Zu - UVA = 0.49; Zu - UVB = 0.43) (Hernández et al., 2012).300

Latitudinal small-scale differences in wind speed, atmospheric temperatures and clouds were expected to drive the local

differences in incident solar radiation. However, given the naturally occurring fast changes in the atmospheric condition, a

characteristic of the area of study, we were also expecting that these trends would be difficult to identify. These differences
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could have led to inaccurate conclusions if too many generalizations had been made, which is why a local understanding of

climatological dynamics is considered essential (Williamson et al., 2014). Previous studies have shown that wind speed play305

an essential role in altering the concentrations of ozone (Bais et al., 2015), affecting the consistency of the correlation between

wind speed and solar radiation. Here we founds that when wind speed is separated into its wind pseudo-stress components,

the correlation between wind and solar radiation became less clear (≈5). However, based on the wind direction predominance,

when either stronger south-westerlies blew during winter or north-westerlies during summer, levels of solar radiation were

higher, which was consistent with the cloud cover as shown in the results of time series analysis.310

We found a high degree of patchiness in cloud cover data due to daily variability, a typical condition of coastal areas in

New Zealand. However, a positive correlation between cloud cover and atmospheric temperatures was observed when different

types of clouds were present. This correlation was strongly dependent on the cloud conditions during the months of summer

and less strong during winter, possibly due to the variable atmospherical conditions present during summer. Unexpectedly, dur-

ing winter, clear sky conditions were more predominant than during summer and the presence of clouds had a more substantial315

effect on the levels of solar radiation during winter, reducing values of radiation to more than half under overcast conditions.

During summer this decrease was less apparent, most likely because the higher levels of solar radiation were less affected by

clouds, producing instead physical scattering of the solar radiation which was enough to maintain overall higher levels of solar

radiation regardless of the presence of clouds. These results fit with time series analysis of the atmospherical variables. For

instance, a similar seasonal trend, with closely related seasonality index, was found between UVR and atmospheric tempera-320

tures. This contrasted with the results found for the cloud index and wind pseudo-stress time series. It is possible this reflects

the need of more extended time series to foresee higher auto correlation values, and distinguish a more marked seasonal trend

on more variable data due to the natural stochasticity in the dynamic of wind and cloud cover. therefore if more comprehensive

forecasting is required, it is likely that longer time series would be required. Climate change projections for the Otago region

for the period 2013-2050 indicate a most likely increase in temperature and wind speed (Bell et al., 2017). Based on our results,325

these changes would increase the amount of solar radiation reaching the first meters of the water column and arguably decrease

the cloud cover. This could promote the need for developing more complex equations, such as used in radiative models first

develop by Mobley during the mid 90’s, to understand how light in the atmosphere interact with the ocean.

4.2 Atmospheric-Ocean connectivity.

Currents and ocean circulation patterns have an essential function in determining SST off the Otago coast (Jillett, 1969; Mur-330

doch, 1989; O’Driscoll and McClatchie, 1989). We found an strong connection between increases in atmospheric and sea

temperatures. However, this connection did not necessarily explain the amount of solar radiation reaching the deeper layers

of the water column, as factors such as nutrient loads and primary productivity seem to play a more pivotal role in altering

Kd values in the region. We found that the atmospheric conditions changed faster during the summer months. These rapidly

changing condition were reflected in the field measurements of ocean temperature and salinity profiles. For instance, evidence335

of a strong atmosphere-ocean connection was reflected in the higher variability of the thermocline and pycnocline depths,

which moved deeper during summer, indicating a potentially deeper mixing layer depth, which can partially explain the higher
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Kd(λ) values found in summer. The Otago coast is influenced by a high discharge of run – off from the Clutha river, bringing

more particular organic matter into the study region, potentially driven by an increase of rainfall (Murdoch, 1989). Although,

rain data was not included in this study, rainfall on a 6-month average for the Otago region is generally higher in summer (391340

mm) compared to winter (367 mm) (Macara, 2015). These differences in rainfall plus higher solar radiation levels driven by

ozone movement in the higher atmospheric levels due to wind speed have the potential to increase the productivity at a local

scale, thus maintaining higher levels of particulate matter in the first meters of the water column increasing Kd(λ) further

Additionally, complementary remote sensing data of Chl a (Fig. C3) and POC (Fig. C2 also followed the changes in SST

occurring from inshore to offshore. Moreover, higher surface levels of Chl a and POC were present in the area during summer,345

which contrast with the lower levels found in winter. Satellite measurements of theKd(490) also indicated a higher attenuation

of the light during summer, which correlated with field-obtained measurement of the sameKd(490). An important observation;

however, is that remote sensing data sets used in this study could suffer from small-scale spatial and temporal patchiness.

Therefore, for more accurate seasonal representations, it may be necessary to integrate average values over longer periods of

time to partially overcome patchiness and added robustness if forecasting models are implemented.350

4.3 Attenuation coefficients, light transmittance in the Otago coast and modelled attenuation coefficients.

We found differences in Kd(λ) inside our study area. For instance, Kd(490) from satellite data was stronger in the areas

closer to the coast than in areas further offshore, and a similar pattern was found for in situ measurements of Kd(320). These

difference in Kd(λ) were easier to visualize using remote sensing techniques, as difference were accentuated as satellites

can sample a more extensive area. We found that remote sensing attenuation coefficients Kd(490) correlated with in situ355

measurements of Kd(320). However, the process of obtaining valid measurements of in situ Kd(λ) was extensive and required

comprehensive sampling to avoid erroneous measurements. In this study, we obtained Kd(λ) values during clear sky and calm

sea conditions to minimize the effects of sea state on instrument deployment (i.e. excessive lateral boat movements), which

yielded a strong correlation between remote sensing Kd(490) and T (490). Additionally, T(λ) changed inversely proportional

to Kd(λ) at different wavelengths, and there was a logistic correlation between T and Kd that also changed with depths. At360

shallower depths (1-2 m depth), there was a steeper change, and minor increments ofKd produced a steep drop in the T values.

This was an indication that light, and more specifically short UV wavelengths, are mostly attenuated in the surface layers of

the water column. Few studies have previously shown how light behaves in coastal areas of the Otago Peninsula (Lamare et

al., 2007), nevertheless considering the oceanographic dynamics proposed by Murdoch (1989); Murdoch et al. (1990) it was

expected to observe a linear decay of light with depth and not the abrupt decay in the first meter of the water column as found in365

the present study. previous studies of phytoplankton and zooplankton in the area suggest high values of primary and secondary

productivity in the Otago coast (Jillett, 1969; O’Driscoll and McClatchie, 1989; Takagaki, 2006). These peaks of productivity

in the area could explain the higher surface Kd(λ) values found. However, to date there are no studies on vertical abundance

of phytoplankton or zooplankton in the coastal areas throughout the Otago Peninsula. The most recent study was an M.Sc.

thesis that investigated the horizontal variation of the subtropical front (Ramadyan, 2017). In summary, the coastal area off the370

Otago Peninsula have high Kd(λ) values, due to high concentrations of POM, which limits the propagation of high energy
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wavelengths into deeper waters. These high concentrations result from the predominant wind conditions that create a shallow

thermo- and pycnocline, especially during summer months. Ultimately, retaining POM influx from the Clutha river´s run-off

in shallower layers of the water column.

4.4 Modelled Chlorophyll-a values and Kd values.375

The modelling approach implemented in this study, although based on similar core equations and principles, did not require

the use of extensive computational routines, as it can be the case when using other well-established radiative transfer models

(Mobley, 2001; Emde et al., 2016). For instance, derived Chl a and modelled Kd(λ) values were a function of the absorption

and scattering coefficients of pure water, this differed from values previously reported (Barrot, 2006) and change from study

to study depending the experimental approach used, which could lead to small differences in results from the model. However,380

this remains an active area of research in optics and physics. Using these parameters plus others previously described in the

methodology section, the model has a consistent behaviour, and modelled parameters have the expected correlations with field

measurements. For instance, modelled and field Kd values displayed a positive lineal correlation and wavelength-dependent

differences in the modelled quantities. As two different approaches were followed, one calculating a Kbio, which values de-

pended either on the Chl a concentration or the dimensionless function χ; and the second one, following a theoretical Kbio385

which values were the sum of Kw and empirical measurement’s of Kd. In both cases, a linear relationship was found between

both modelled quantities and field Kd values.

A similar relationship between modelled values ofKd obtained using different parameterizations, and field values ofKd has

been described by Kim et al. (2015), who found a correlation between (≈ 0.47 to 0.70) depending on the region of the world,

and an overall correlation of (≈ 0.02) between Chl a concentrations and Kd values. The Chl a values from this study were390

derived from a function that incorporates fieldKd measurement, the χ function, and the water decay constant. The derivation of

Chl a values from this equation has been empirically proved by Morel and Maritorena (2001) and tested using remote sensing

measurements of Kd and SeaWIFS reflectance by Barrot (2006). In both cases Chl a decline with increasing attenuation

coefficients and different reflectance ratios. Here, the modelled Chl a values were below the maximum values obtained from

satellite data but fell within the range reported for the area by other authors (Murphy et al., 2001; Ramadyan, 2017). The395

approach followed in this study, from which Chl a were derived from field Kd values, adds to the evidence that within certain

boundaries, it is possible to use remote sensing data to study coastal systems. The complexities and biases involved in the use of

remote sensing data solely to this purpose has been extensively discussed in the literature (?Pan and Zimmerman, 2010; Cao et

al., 2014; Liang et al., 2019). From this perspective, integrative studies that utilise remote sensing data and field measurements

to produce a complementary model approach that fill gaps in data might be an appropriate way of dealing with issues regarding400

patchiness of remote sensing data in coastal areas.

4.5 Biological production to biomass (PP/B) model

No data of PP/B has been previously reported for coastal areas around the Otago Peninsula, which made the validation of our

model difficult. However, studies including PP/B ratio for other parts of the world, showed that values of the PP/B ratio could
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fluctuate between 20 to 400 (mg C mg Chl a-1) depending on the region, which is in line with the results presented here. For405

instance, Hernández et al. (2012) reported maximum values of 140 mg C mg Chl a-1 for the central coast of Chile; while Taylor

et al. (1997), following a similar approach as the presented here, reported maximum values close to 300 (mg C mg Chl a-1) and

recognize latitudinal differences in the PP/B rate between 150 to 250 mg C mg Chl a-1 between 35º and 45º latitude. However,

none of these studies discussed coastal ecosystems. The values obtained in this study were within the range reported by other

authors, but it is unknown to which extent general values of the PP/B ratio from coastal marine ecosystems can deviate from410

values from open ocean areas or others coastal regions within New Zealand. Herein we calculated two PP/B ratios, one derived

from satellite observations of Chl a and a second one resulting from modelled values of Chl a. In both scenarios, POC data

converted into N concentrations was assumed constant with depth. Both scenarios yielded different results, with satellite-based

PP/B ratios on average higher than ratios obtained from modelled Chl a values. From a mathematical point of view this was

likely to the use of constant values for Chl a concentrations with depth, which leaves the VmT function acting as the mayor415

source of variation in the model. Nevertheless, values of the satellite-based PP/B ratio model were similar to those of the Chl

a based PP/B ratios at surface layers of the water column and when values of Chl are lower (Winter months). This means that

if equations that allowed for the expansion in the predictability of Chl a, based on surface measurements, are incorporated in

the future, models with the capabilities to integrate changes with depth in the amount of Chl a using satellite information could

become a feasible tool to study coastal area such as the Otago Peninsula. Finally, the model implemented in this study was420

capable of interpreting seasonal changes in the PP/B ratio, in this way it would be interesting to evaluate how a more complex

model that incorporates attenuation coefficients and field measurements of nutrients and Chl a contrast with the findings of the

model proposed on this study.

Appendix A: Atmospheric data analysis

The weather in Otago NZ is highly variable, for this reason we had to first investigate if any weather patterns was observable in425

the environmental variables. We chose to use time series analysis over the three year period of hourly observations from 2016

to 2018 using the R package "Openair" that uses a non-parametric method to calculate time series trends using a Generalized

Additive Model (GAM) to find the linearity in the data. Statistical trends are presented in data table (Table S4).

Appendix B: Relationship between spectral values of Kd, field obtained values Kd and light transmittance.

We use the specific absorption (aw) and scattering (bw) coefficients for pure sea water proposed by Smith and Baker (1998)430

(Table B2). But first, we needed to know the behaviour of these coefficients in order to accurately parameterize Kw, whose

values showed an increase with wavelength and differed substantially at wavelengths above 600 nm (Fig. A3) Simultaneously,

when comparing field Kd(λ) with modelled Kd(λ) values (which is dependent on Kw values), a strong positive lineal corre-

lation was found at all wavelengths (Fig A4) (See Tables B1 to B3, Appendix B for values of (aw) and (bw), and for the values

of the functions χ(λ) and e(λ) used to calculate some of the parameters of the model).435
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Appendix C: Biological model for derivation of Chl a.

Because calculation of Chl a values also needed to depend on the biological and physical characteristic of the environment,

we choose an approach proposed by Morel and Maritorena (2001), and Morel et al. (2007). In these, Kw values are compared

against a theoretical attenuation coefficientsKbio(λ), whose values incorporate the contribution of biological components from

the water column. When inferring values of Chl a using the coefficient Kbio(λ), we found that values of Chl a related almost440

linearly to the values of Kbio(λ). Moreover, when comparing Kbio(λ) against field obtained Kd(λ) values we found a similar

linear relationship, though, with a higher degree of scatter as the function Kbio(λ), hence creating a higher degree of noise in

the correlation (Fig A.5.c). Further, we narrowed the behaviour of Kbio(λ) to a specific wavelength (320 nm) and compared it

with the values of Chl a, and found an almost linear log-log relationship, indicating that Kbio(λ) is capable of reconstructing

the shifts in Chl a levels at higher and lower levels of Kd(λ) (Fig A.5.d and Fig.A5.e).445

Appendix D: Modelling of the PP/B ratio.

With the knowledge of the behaviour of the parameters Kbio(λ), Kw and Chl a, the next step was to use these calculated

parameters to infer the PP/B ratio, from remote sensing data using the values of the Kd(490) and from field obtained values

of Kd(490), in both cases following the equation (11) listed in the main manuscript. For this, first we checked that remote

sensing data followed the expected correlation normally found between (Chla Kd), which dictates that higher levels of Chl a450

normally translate into higher values of Kd. (Fig. A.5.a and Fig.5.b). Once we establish the correlation followed the expected

lineal behaviour, we test the model setting the parameterα to general values between 0.056 to 0.093 following the approaches

previously described by Dower and Lucas, (1993) and Aalderink and Jovin (1997). However using these values lead to a slight

overestimation of the PP/B ratio (Fig. 7a1. Consequently, given to the sensitivity of the model to the parameter α, we set

the parameter to a more parsimonious values of α = 0.83 that represented coastal water within NZ, following the approach455

described by Bowman et.al., (2018). As a result, the model yielded more accurate values of PP/B ratio as shown in the main

article. The increase in the α value pushed the MODIS-Aqua PP/B model estimations higher, most likely because values in the

C:Chl a ratio calculate using remote sensing data of Chl a were higher (217.5± 174.6) than values of the C:Chl- ratio calculated

using in-situ data (205.8 ± 48.5). Furthermore, a positive increase of 0.1 in the V mt function for the MODIS-Aqua model,

increased the value of the PP/B ratio in the MODIS-Aqua model as terms at both side of equation (11) are multiplicative.460
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Figure A1. Smoothed time series using hourly observations of UVR (W m-2), cloud cover (Idx), atmospheric temperature (ºC), wind speed

(m s-1) and latitudinal wind pseudo-stress (Zv) (m-1s-2), from January 2016 to December 2018. Darker lines indicate general trend and

shaded areas represent 95% confident interval.
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Figure B1. Values of the parameter Kw as function of wavelengths between 300 to 700 nm.

Figure B2. Correlation between values of field Kd(λ) and modelled Kd(λ) based on the absorption and scattering coefficients of pure

seawater.
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Figure C1. Correlation between remote sensing data (a,b). Correlation between calculated values of Kbio(λ) and field obtained values of

Kd(λ) (c). Plots showing the log-log correlation between calculated values of Chl a and Kbio(λ) at a high and low values of Kd(320) (d,e).
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Figure C2. Remote sensing data of particulate organic carbon (POC) for the months of summer and winter (upper and lower plots), and

monthly average values for the transect illustrated with the black dashed line (middle section plots). Red dots represent the position of each

sampling stations used to collect the data.
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Figure C3. Remote sensing data of surface Chl a for the months of summer and winter (upper and lower plots), and monthly average values

of Chl a for the transect illustrated with the black dashed line (middle section plots). Red dots represent the position of each sampling stations

used to collect the data.
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Figure C4. Remote sensing data of sea surface temperature (SST) for the months of summer and winter (upper and lower plots), and monthly

average values for the transect illustrated with the black dashed line (middle section plots). Red dots represent the position of each sampling

stations used to collect the data.
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Figure C5. Remote sensing data of the attenuation coefficient of PAR light kd(490)for the months of summer and winter (upper and lower

plots), and monthly average values for the transect illustrated with the black dashed line (middle section plots). Red dots represent the position

of each sampling stations used to collect the data.
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Table A1. Results of complete and decomposed time series analysis for the different atmospherical components influencing the amount of

solar radiation penetrations the water column.

Type Measure Temperature UVR Zu Zv Cloud Index

Complete Frequency 0.149 0.149 0.06 0.09 0.049

Trend 0.76 0.317 0.235 0.166 0.549

Seasonality 0.034 0.024 0.001 0.001 0.0003

Auto-correlation 0.956 0.743 0.003 0.009 0.431

non-Linearity 0.735 0.979 0.998 0.999 1

Skewness 0.021 0.424 0.281 0.407 0.066

Kurtosis 0.1 0.26 1 1 0.001

Hurts exponent 1 0.999 0.542 0.575 0.887

Decomposed Auto-correlation 0.877 0.909 0.074 0.049 0.062

non-Linearity 0.999 1 0.954 0.667 0.777

Skewness 0.121 0.363 0.006 0.064 0.243

Kurtosis 0.226 0.277 1 1 0.221

Lyapunov exponent 0.56 0.563 0.645 0.592 0.512
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Table B1. Values of the the spectral absorption coefficients of pure sea water (aw, and values of the molecular scattering coefficient of pure

sea water (bw), as determined by Smith and Baker, (1998).

λ aw bw λ aw bw

(nm) (m−1) (m−1) (nm) (m−1) (m−1)

300 0.1410 0.0262 510 0.0357 0.0026

310 0.1050 0.0229 520 0.0477 0.0024

320 0.0844 0.0200 530 0.0507 0.0022

330 0.0678 0.0175 540 0.0558 0.0021

340 0.0561 0.0153 550 0.0638 0.0019

350 0.0464 0.0134 560 0.0708 0.0018

360 0.0379 0.0120 570 0.0799 0.0017

370 0.0300 0.0106 580 0.1080 0.0016

380 0.0220 0.0094 590 0.1570 0.0015

390 0.0191 0.0084 600 0.2440 0.0014

400 0.0171 0.0076 610 0.2890 0.0013

410 0.0162 0.0068 620 0.3090 0.0012

420 0.0153 0.0061 630 0.3190 0.0011

430 0.0144 0.0055 640 0.3290 0.0010

440 0.0145 0.0049 650 0.3490 0.0010

450 0.0145 0.0045 660 0.4000 0.0008

460 0.0156 0.0041 670 0.4300 0.0008

470 0.0156 0.0037 680 0.4500 0.0007

480 0.0176 0.0034 690 0.5000 0.0007

490 0.0196 0.0031 700 0.6500 0.0007

500 0.0257 0.0029
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Table B2. Values of the coefficients χ(λ) and e(λ) for pure sea water calculated by Morel (1988). (*) represent calculated values from fitting

a polynomial equation.

λ(nm) χ(λ) e(λ) λ χ(λ) e(λ)

*300 0.223 0.083 510 0.059 0.686

*310 0.207 0.082 520 0.053 0.680

*320 0.192 0.081 530 0.048 0.672

*330 0.179 0.080 540 0.044 0.662

*340 0.166 0.798 550 0.041 0.649

*350 0.153 0.778 560 0.039 0.640

*360 0.144 0.756 570 0.036 0.623

*370 0.136 0.720 580 0.033 0.610

*380 0.127 0.685 590 0.033 0.618

*390 0.119 0.670 600 0.034 0.626

400 0.117 0.644 610 0.036 0.634

410 0.123 0.652 620 0.039 0.642

420 0.123 0.659 630 0.042 0.653

430 0.118 0.666 640 0.044 0.663

440 0.110 0.672 650 0.045 0.672

450 0.102 0.677 660 0.048 0.682

460 0.094 0.681 670 0.052 0.695

470 0.087 0.685 680 0.051 0.693

480 0.079 0.688 690 0.039 0.640

490 0.072 0.690 700 0.03 0.60

500 0.066 0.689
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Figure 1. Grid of thirteen stations used for CTD casts and measurements of underwater solar radiation (a). Location of the Otago Harbour

in the South island of New Zealand (b).
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Figure 2. Schematic representation of the two model approaches used to predict the PP/B ratio. In the diagram yellow rectangles represent

remote-sensing data and orange rectangles represent field obtained data.
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Figure 3. Profile of average values of the attenuation coefficient (nm−1) at depths between 1 to 5 m across all sampling stations from 2016

to 2018 at the entrance of the Otago Harbour and irradiance values (Wm−2nm−1) for al wavelengths.
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Figure 4. Principal component analysis (PCA) with average values of oceanographic and meteorological conditions during summer and

winter (a). PCA analysis for each month during summer (b) and winter (c).
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Figure 5. Correlation plots, with side box-plots, indicating position of the mean values and variability outside the upper and lower quartiles

of the field-obtained transmittance T (λ) against in-situ values of Kd(λ), and for two modelled attenuation coefficient: Kbio(λ) and K(λ).

Red lines indicated the adjusted log model (a). Correlation between field-obtained attenuation coefficients and transmittance at 1 m and 5 m

depth (b). Changes in the attenuation coefficient Kbio(λ) at three different concentrations of Chl a: 0.01, 1 and 10 mg m−3 (c)
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Figure 6. Correlation between the PP/B ratio obtained from remote sensing and field data using estimated values of Chl a (a). Seasonal

changes in the PP/B ratio for both remote sensing and field obtained data-based models (b). Relationship between the integrated nitrogen

values and the PP/B ratio from the field data base model (c). Seasonal trends in the sea surface temperature values from field obtained and

remote sensing data-sets (d).
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Table 1. Summary of oceanographic and meteorological variables used for PP/B model implementation and statistical analysis.

Variables(units) Abbrev. Temporal Res. Spatial Res. Source

Meteorological

Wind speed (km h−1) Zu,Zv 1h 20km ∗a,b
Temperature (C) Temp 1h 20km ∗a,b
Cloud cover (Scale 1 to 5) Cld 1h 1km2 ∗a,b
Global radiation (Wm−2) UV R 1h 20km ∗a,b
Oceanographic

Chl a concentration(mg m−3) Chla Monthly(3 years) 1.5km2 MODIS-aqua(NASA)

Sea surface temperature(C) SST Monthly(3 years) 1.5km2 MODIS-aqua(NASA)

Particular organic matter(mg m−3) POC Monthly(3 years) 1.5km2 MODIS-aqua(NASA)

Attenuation coefficient PAR light(m−1) Kd(490) Monthly(3 years) 1.5km2 MODIS-aqua(NASA)

Thermocline (m) Thr Weekly(2 years) 1km2 CTD profiler

Pycnocline (m) Pyc Weekly(2 years) 1km2 CTD profiler

Attenuation coefficient UV light(m−1) Kd(320) Weekly(2 years) 1km2 Li-Cor LI1800UW

*a = University of Otago, Department of Physic meteorological station. VAISALA HMP45A probe; Li-Cor LI200X Pyranometer; Vector A101M

Pulse Output Anemometer *b = New Zealand Meteorological service.
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Table 2. List of symbol notation, units and constants values used for the model.

Parameter Description Units

Kd Downwelling attenuation coefficient m−1

K Theoretical attenuation coefficient m−1

Kbio Biogenic attenuation coefficient m−1

aW Absoption spectra of pure sea water m−1

bW Scattering coefficient of pure sea water m−1

χ Derived function dimensionless

α Initial slope of production irradiance curve mgC(mgChla)−1h−1(µEm−1s−1)

e Derived function dimensionless

Chl–a Chlorophyll-a concentration mgm−3

KW Water decay constant m−1

Kn Half saturation constant for nitrates mgm−3

T Light transmittance (%)m−1

IZ Light irradiance at depth Wm−2

z Water column depth m

N Nitrogen yield mgm3

V mt Temperature correction function dimensionless

a Maximum phytoplankton growth rate d−1

t Ocean water temperature °C

PP/B Production-biomass ratio mgC(mgChla)−1m−2d−1
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Table 3. Meteorological and oceanographic condition at the entrance of the Otago harbour, from 2016 to 2018.

2016 2017 2018

Summer Winter Summer Winter Summer Winter

CTD temp(F) X±Sd 13.9±0.156 9.9±0.04 14.0±0.05 10.1±0.01 14.1±0.08 10.5±0.05
◦C Max/Min 13.7/14.2 9.8/9.9 13.9/14.1 10.1/10.1 13.9/14.2 10.4/10.6

SST(M) X±Sd 14.8±1.64 10.9±0.57 14.2±0.91 10.3±0.07 16.0±0.90 10.2±0.28

C Max/Min 13.2/16.9 10.2/11.6 13.4/15.5 10.3/10.4 10.3/10.4 9.85/10.5

Thermocline(D) X±Sd 12.8±0.98 11.9±2.42 13.1±0.81 10.9±1.03 14.1±0.95 11.4±1.21

m Max/Min 14.5/11.8 19.5/10.4 14.9/11.5 12.4/10.3 15.1/12.8 13.9/10.4

Halocline(D) X±Sd 11.3±1.38 11.9±2.75 12.7±0.97 10.2±0.67 13.7±1.78 10.1±0.88

m Max/Min 13.9/10.1 17.5/10.1 13.7/10.5 11.1/10.1 14.4/10.9 11.9/10.2

Nitrate(M) X±Sd 21.7±5.61 23.0±2.91 19.1±1.89 19.9±4.38 19.3±1.87 21.6±5.0

mg m−2 Max/Min 15.9/29 20.7/27.0 16.6/21 16.1/25.9 16.8/21.1 16.8/28.2

Chl a(D) X±Sd 3.12±2.18 1.61±1.84 2.98±1.24 2.14±1.21 3.33±2.53 2.61±2.11

mg m−3 Max/Min 4.48/0.11 3.98/0.03 5.54/0.08 3.51/1.11 4.63/0.02 7.78/2.89

Kd(490)(M) X±Sd 0.21±0.09 0.09±0.04 0.30±0.01 0.14±0.03 0.33±0.07 0.11±0.05

m−1 Max/Min 0.14/0.38 0.05/0.16 0.29/0.32 0.11/0.20 0.30/0.39 0.06/0.189

Kd(320)(F) X±Sd 0.38±0.01 0.309±0.05 0.37±0.02 0.238±0.02 0.32±0.02 0.313±0.05

m−1 Max/Min 0.39/0.36 0.36/0.23 0.39/0.34 0.25/0.21 0.33/0.31 0.36/0.24

PAR(F) X±Sd 347.6±441 81.7±152 339±457 76.3±120 410±525 82.7±161

µmol m−2s−1 Max/Min 1973/1 692/1 1871/1 715/0 1984/1 866/1

Global UVR(F) X±Sd 1.26±1.07 0.37±0.48 1.26±1.12 0.39±0.53 1.28±1.14 0.33±0.43

Wm−2 Max/Min 4.15/0 2.08/0 4.26/0 2.47/0 4.09/0 1.98/0

UVA(F) X±Sd 5.85±7.54 1.37±2.21 6.10±7.54 1.21±2.07 7.39±8.78 1.41±2.30

Wm−2 Max/Min 30.7/0 7.4/0 28.9/0 9.1/0 31.5/0 9.5/0

UVB(F) X±Sd 0.487±0.66 0.07±0.10 0.494±0.54 0.06±0.09 0.63±0.8 0.07±0.11

Wm−2 Max/Min 2.77/0.01 0.49/0.01 2.57/0.01 0.49/0.01 2.93/0.01 0.51/0.01

Zv(D) X±Sd 3.89±108 2.64±86.7 5.20±105 0.58±63.2 5.80±82.3 0.77±56.3

m2s−2 Max/Min 1093/–631 599/–513 851/–816 636/–501 500/–385 545/–428

Cloud cover(D) X±Sd 2.66± 3.08± 2.67± 2.92± 2.71± 2.66±
Idx Max/Min 1/5 1/5 1/5 1/5 1/5 1/5

Temperature(F) X±Sd 16.6±4.68 6.85±5.0 16.3±4.64 6.91±4.31 17.5±4.88 6.60±4.34
◦C Max/Min 31.8/4.3 18/–6 29.3/2.5 20.2/–4.6 34.6/3.8 17.1/–6.3

(F) Average from field obtained measurements; (M) Average from the MODIS-Aqua sensor, (D) Average value derived from field measurements.
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