
Tracer and observationally-derived constraints on diapycnal
diffusivities in an ocean state estimate
David S. Trossman1,2, Caitlin B. Whalen3, Thomas W. N. Haine4, Amy F. Waterhouse5, An T. Nguyen6,
Arash Bigdeli7, Matthew Mazloff5, and Patrick Heimbach6,8

1Department of Oceanography & Coastal Sciences, Louisiana State University, Baton Rouge, USA
2Center for Computation & Technology, Louisiana State University, Baton Rouge, USA
3Applied Physics Laboratory, University of Washington, Seattle, USA
4Department of Earth & Planetary Sciences, Johns Hopkins University, Baltimore, USA
5Scripps Institution of Oceanography, University of California, San Diego, USA
6Oden Institute for Computational Engineering & Sciences, University of Texas, Austin, USA
7EP Analytics, Inc., Austin, USA
8Jackson School of Geosciences & Institute for Geophysics, University of Texas, Austin, USA

Correspondence: David S. Trossman (dtrossman@lsu.edu)

Abstract. Use of an ocean parameter and state estimation framework–such as the Estimating the Circulation & Climate of

the Ocean (ECCO) framework–could provide an opportunity to learn about the spatial distribution of the diapycnal diffusivity

parameter (κρ) that observations alone cannot due to gaps in coverage. However, we show that the assimilation of existing in

situ temperature, salinity, and pressure observations is not sufficient to constrain κρ estimated with ECCO, as κρ from ECCO

does not agree closely with observations–specifically, κρ inferred from microstructure measurements. We investigate whether5

there are observations with more global coverage and well-understood measurement uncertainties that can be assimilated by

ECCO to improve its representation of κρ. Argo-derived κρ using a strain-based parameterization of finescale hydrographic

structure is one potential source of information. Argo-derived κρ agrees well with microstructure. However, because Argo-

derived κρ has both measurement and structural uncertainties, we propose dissolved oxygen concentrations as a candidate for

future data assimilation with ECCO. We perform sensitivity analyses with ECCO to test whether oxygen concentrations provide10

information about κρ. We compare two adjoint sensitivity calculations: one that uses misfits to Argo-derived κρ and the other

uses misfits to dissolved oxygen concentrations. We show that adjoint sensitivities of dissolved oxygen concentration misfits to

the state estimate’s control space typically direct κρ to improve relative to the Argo-derived and microstructure-inferred values.

However, assimilation of dissolved oxygen concentrations would likely not serve as a substitute for assimilating accurately

measured κρ.15

1 Introduction

In this paper, we consider the challenges with using observational data products to better inform a data assimilation framework–

and, ultimately, better inform us–about the global distribution of ocean mixing. Ocean models must parameterize the unre-

solved, turbulent diffusion of oceanic tracers because they are unable to resolve the scales of the processes responsible for
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mixing. Ocean mixing is typically conceptualized in terms of diffusion along and across isopycnal surfaces, and is associ-20

ated with the transport of isopycnal thickness (or bolus). Ocean models often represent mixing with three parameters: the

across-isopycnal mixing parameter (diapycnal diffusivity; Munk and Wunsch (1998)), the along-isopycnal mixing parameter

(Redi coefficient; Redi (1982)), and the eddy isopycnal thickness transport parameter (Gent-McWilliams coefficient; Gent and

McWilliams (1990)). Diapycnal mixing is an essential component in explaining the observed oceanic stratification (Munk and

Wunsch, 1998; Gnanadesikan, 1999; Scott and Marotzke, 2002). Changes in the background diapycnal diffusivity (Dalan et al.,25

2005; Krasting et al., 2018; Hieronymus et al., 2019; Sinha et al., 2020), Redi coefficient (Gnanadesikan et al., 2015; Ehlert et

al., 2017), and Gent-McWilliams coefficient (Danabasoglu and McWilliams, 1995) are known to have a profound influence on

climate simulations through alterations in the response to surface flux perturbations and changes in ventilation rates. However,

the spatiotemporal variabilities found in previous studies of the Redi coefficient (Abernathey et al., 2013; Bates et al., 2014;

Forget et al., 2015b; Cole et al., 2015; Busecke and Abernathey, 2019; Groeskamp et al., 2020) and Gent-McWilliams coeffi-30

cient (Forget et al., 2015b; Katsumata, 2016; Bachman et al., 2020) fields are virtually absent in ocean models. There is also

a dearth of independent observations with which to assess their observationally-derived values (Cole et al., 2015; Katsumata,

2016; Roach et al., 2018; Groeskamp et al., 2020), and these values cannot be easily compared with those in models. For

instance, it is unclear how to compare Redi coefficients derived from observations with those from models because they are

expected to vary with horizontal resolution. Also, the rotational component of eddy transport is not treated the same in many35

models as in the observationally-derived Gent-McWilliams coefficient product. For these reasons, we focus on the diapycnal

diffusivity field–κρ hereafter–in this study.

Parameterizations for κρ (Gaspar et al., 1990; Large et al., 1994) have allowed for a spatiotemporally-varying κρ field,

but assessing the performance of these parameterizations has been challenging due to a profound lack of observations. Until

recently, the only available observational information about κρ came from tracer release experiments (Ledwell and Watson,40

1991; Polzin et al., 1997; Messias et al., 2008) and microstructure (i.e., the scales over which molecular viscosity and diffusion

are important) measurements of velocity shear (e.g., Waterhouse et al. (2014)) or temperature variability (e.g., Gregg (1987)).

These data are infrequently sampled and cover a relatively small portion of the ocean, but are independent observations with

which to compare the more recent global mixing data products. While our understanding of the global distribution of κρ has

been transformed by the use of theories to derive κρ from limited observations (MacKinnon et al., 2017; Whalen et al., 2020),45

none of these observations have been assimilated by existing ocean modeling systems to constrain the κρ field because they are

not direct measurements. Currently, the only information about κρ comes from temperature, salinity, and pressure observations

in ocean data assimilation systems. If these observations were collected at every location and depth of the ocean, there could

be sufficient information to constrain κρ (Groeskamp et al., 2017), but historically, there are spatiotemporal gaps–the reason

why we need a data assimilation framework in the first place.50

We use the Estimating the Circulation & Climate of the Ocean (ECCO) parameter and state estimation framework to eval-

uate how near-global, observationally-derived κρ can be used to inform ocean models. The aim of the ECCO framework is to

reconstruct the recent history of the ocean (the “state estimate”) by filling in the gaps between incomplete observations, which

are often sparse and aliased, through data assimilation techniques. The state estimate is much like a reanalysis product (Heim-
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bach et al., 2019), but the state estimation framework overcomes some shortcomings by requiring dynamical and kinematical55

consistency (Stammer et al., 2016). The version 4, release 3 of ECCO (ECCOv4r3; Fukumori et al. (2017) ) state estimate in

our case is achieved by fitting a general circulation model to available observations in a weighted least squares sense (Wunsch,

2006; Forget et al., 2015a). The model-data misfit (objective or “cost function”) is minimized by varying (i.e., inverting for) a

set of uncertain control variables, all of which are independent inputs to the model equations being solved. Importantly for our

goal of parameter estimation, the set of control variables may consist not only of initial and boundary conditions, but also of60

(spatially-varying) model parameters, such as the three used to represent ocean mixing (Liu et al., 2012; Forget et al., 2015a).

Since it remains under-explored how well κρ, in particular, is constrained in ECCOv4r3 and how we can provide additional

information about κρ, this is the subject of the current study.

To assess whether observations other than temperature, salinity, and pressure can provide useful constraints on the κρ field

in ECCOv4r3, we must first perform comparisons of κρ from ECCOv4r3 with κρ from observations, which has not previously65

been done. We use κρ inferred from microstructure (Waterhouse et al., 2014) and derived from Argo floats (Whalen et al., 2015)

to determine whether the ECCO framework needs to improve its κρ using observational constraints (Sections 3.1 and 3.2). It

would be possible to assimilate values for κρ derived from theories, which have been shown to agree well with microstructure

observations (Whalen et al., 2015). However, because κρ is derived and not measured, an ocean data assimilation system would

need to account for both their structural and measurement errors, and their structural uncertainties are not yet well-understood.70

An alternative approach to constraining κρ is to find a quantity measured with in situ observations (e.g., a transient tracer, as

proposed here) that provides information about κρ. Thus, we perform model experiments in forward plus backward (“adjoint”)

mode to determine whether transient tracer data and observationally-derived κρ provide similar information about how to

adjust κρ (Section 3.3). This will help determine whether κρ could be improved by assimilating transient tracer data in a future

optimization of an ocean state estimation framework.75

2 Methods

2.1 Observationally-derived data products and measured data

2.1.1 Diapycnal Diffusivities

We make use of multiple data sets for κρ derived from observations. (We distinguish between “observations” that are measured

quantities using in situ instruments and observationally-derived values, which use measured quantities and a theory to derive80

values. The former data have only measurement uncertainties, while the latter data have both measurement and structural

uncertainties.) These data sets–listed in Table 1–contain values equatorwards of 75oS and 75oN, and deeper than about about

250 meters because the method does not yield accurate results in the presence of strong upper-ocean density variability (e.g.,

D’Asaro (2014)).

κρ is routinely inferred from the velocity shear measured using microstructure profilers (Waterhouse et al., 2014). We use85

microstructure-inferred κρ–referred to as κρ,micro hereafter– (Osborn, 1980; Lueck et al., 1997; Gregg, 1989; Moum et al.,

3

https://doi.org/10.5194/os-2021-87
Preprint. Discussion started: 28 September 2021
c© Author(s) 2021. CC BY 4.0 License.



2002; Waterhouse et al., 2014) to evaluate a model’s κρ. (We further distinguish “observationally-inferred” values, which are

from the currently accepted method of observing a quantity such as κρ but are not measured, and “observationally-derived”

values because the latter data depend on a method that requires additional assumptions.) κρ,micro are based on an expression

for the isotropic turbulence field, which is proportional to the viscosity of water and the velocity shear resolved to dissipative90

scales (Thorpe (2007); and references therein). The depth ranges of the data collected by Waterhouse et al. (2014) go from the

upper several hundred meters to the full water column. The profiles are seasonally biased at higher latitudes and span decades.

There are thousands of vertical profiles that comprise this data set, with samples being taken in North Pacific Ocean, North

Atlantic Ocean, tropical Pacific, near Drake Passage, near the Kerguelen Plateau, and in the South Atlantic Ocean. Many of

the profiles were taken in regions with both smooth and rough bottom topography. To compare the microstructure profiles with95

model output, the nearest neighbors to each model’s grid are selected, which reduces the data set to 42 profiles.

κρ values are derived from finestructure observations of temperature, salinity, and pressure using a strain-based finescale

parameterization, which has been developed and implemented in different ways (Henyey et al., 1986; Gregg, 1989; Polzin

et al., 1995, 2014), but typically assumes a mixing efficiency of 0.2 (St. Laurent and Schmitt, 1999; Gregg et al., 2018).

The finescale parameterization assumes that 1) the production of turbulent energy at small scales is due to an energy transfer100

driven by wave-wave interactions down to a wave breaking scale; 2) nonlinearities in the equation of state, double diffusion,

downscale energy transports, and mixing associated with boundary layer physics and hydraulic jumps are neglected; and 3)

stationary turbulent energy balance exists where production is matched by dissipation and a buoyancy flux in fixed proportions

(Polzin et al., 2014). The implementation by Whalen et al. (2015) uses Argo data, assumes a shear-to-strain variance ratio of 3

and a flux Richardson number of Rf = 0.17, and determines the fraction of turbulent production that goes into the buoyancy105

flux (and the rest for dissipation). The finestructure method is not expected to be valid in equatorial regions of the ocean, but

nevertheless, the κρ product compares well with microstructure near the equator (Whalen et al., 2015). We use the 2006-2014

climatology of Whalen et al. (2015)–referred to as κρ,W15 hereafter–which is a gridded product on an approximately 1o× 1o

horizontal grid and has three vertical levels: 250-500 meters, 500-1000 meters, and 1000-2000 meters depth. Whalen et al.

(2015) found that 81% (96%) of their κρ,W15 product is within a factor of 2 (3) of the microstructure measurements. We use110

this as the basis for the factor of 2-3 uncertainty we cite hereafter.

In addition to the Argo-derived κρ,W15 product, there is ship-based Conductivity, Temperature, and Depth (CTD) hydrography-

derived κρ (Kunze, 2017)–referred to as κρ,K17 hereafter–that uses the same finestructure parameterization as in the calculation

of the κρ,W15 product (see Section 2.2). The vertical resolution of the κρ,K17 product is 256 meters and the horizontal resolu-

tion is the spacing between each CTD profile. Data are only included in the κρ,K17 product when the square of the buoyancy115

frequency is greater than 10−7 rad2 s−2 and greater than the square of the Coriolis frequency, κρ,K17 < 3× 10−3 m2 s−1 is

positive, and the depth is deeper than 400 meters.

2.1.2 Dissolved oxygen

In addition to the κρ products, we prepare a tracer for use as a potential constraint on κρ. Dissolved oxygen has vertical

gradients that can be resolved by ocean models and has future changes projected to be dependent upon mixing (Palter and120
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Trossman, 2018; Couespel et al., 2019). Oxygen utilization rates within subtropical mode water in the North Atlantic Ocean

strongly depend upon vertical mixing (Billheimer et al., 2021). Thus, we choose to include the oxygen climatology from the

World Ocean Atlas (2013) in our simulations.

The vertical gradients of these oxygen concentrations, ∂O2/∂z, are shown in Fig. 1 for the three depth-averaged bins that

Whalen et al. (2015) used for their κρ,W15 product. ∂O2/∂z is generally smaller in polar regions, and relatively larger and125

positive landward of the Gulf Stream, in the Norwegian Sea, off the southern coasts of Mexico and India, near the equator in

the Atlantic Ocean, and in the Southern Hemisphere’s subtropical gyres of the Pacific and Indian Oceans between 250-500

meters depth (Fig. 1a). The largest positive ∂O2/∂z fill in the gaps between the subpolar regions and the equator at deeper

depths (Figs. 1b,c).

Co-location of ∂O2/∂z and the dissipation rates calculated by Whalen et al. (2015) (see their Fig. 3 compared to Fig. 1130

of the present study) suggests there may be information about ocean diapycnal mixing–at least through the Osborn (1980)

relationship–in oxygen concentrations. The spatial correlation between ∂O2/∂z and the dissipation rates is about −0.2 and

increases in magnitude on coarser grids. This indicates a possibly non-local relationship between ∂O2/∂z and dissipation rates.

The spatial correlation between ∂O2/∂z and the κρ,W15 is smaller in magnitude–about−0.1. In general, large dissipation rates

and κρ values correspond to smaller or more negative ∂O2/∂z.135

2.2 Modeling system

We use the Estimating the Circulation & Climate of the Ocean (ECCO) framework in our analysis. We use this modeling

framework for two purposes: 1) to test whether κρ from ECCO agrees with Argo-derived and microstructure-inferred κρ,

given incomplete temperature, salinity, and pressure observations; and 2) to assess whether dissolved oxygen concentrations

and observationally-derived κρ provide similar information about how to improve the agreement between κρ from ECCO140

and observationally-derived data products. ECCO uses a time-invariant but spatially varying κρ field, estimated with an opti-

mization procedure, where κρ associated with temperature and salinity are assumed to be identical. Details about the model

simulations we perform are summarized in Table 2.

2.2.1 ECCO

The modeling system used here is ECCOv4r3 (Fukumori et al., 2017). The underlying ocean-sea ice model is based on the145

Massachusetts Institute of Technology general circulation model (MITgcm), which is a global finite volume model. The EC-

COv4r3 global configuration uses curvilinear Cartesian coordinates (Forget et al. (2015a) - see their Figs. 1-3) at a nominal 1o

(0.4o at equator) resolution and rescaled height coordinates (Adcroft and Campin, 2004) with 50 vertical levels and a partial

cell representation of bottom topography (Adcroft et al., 1997). The MITgcm uses a dynamic/thermodynamic sea ice compo-

nent (Menemenlis et al., 2005; Losch et al., 2010; Heimbach et al., 2010) and a nonlinear free surface with freshwater flux150

boundary conditions (Campin et al., 2004). The wind speed and wind stress are specified as 6-hourly varying input fields over

24 years (1992-2015). There are 14-day adjustments to the wind stress, wind speed, specific humidity, shortwave downwelling

radiation, and surface air temperature. These adjustments are based on estimated prior uncertainties for the chosen atmospheric
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reanalysis (Chaudhuri et al., 2013), which is ERA-Interim (Dee et al., 2011). The net heat flux is then computed via a bulk for-

mula (Large and Yeager, 2009). A parameterization of the effects of geostrophic eddies (Gent and McWilliams, 1990) is used.155

Mixing along isopycnals is accounted for according to the framework provided by Redi (1982). Vertical mixing–diapycnal

plus the vertical component of the along-isopycnal tensor–is determined according to the Gaspar et al. (1990) mixed layer

turbulence closure and simple convective adjustment.

Initial conditions and model parameters for the runs performed here are from ECCOv4r3. The least squares problem solved

by the ECCO model uses the method of Lagrange multipliers through iterative improvement, which relies upon a quasi-Newton160

gradient search (Nocedal, 1980; Gilbert and Lemarechal, 1989). Algorithmic (or automatic) differentiation tools (Griewank,

1992; Giering and Kaminski, 1998) have allowed for the practical use of Lagrange multipliers in a time-varying non-linear

inverse problem such as ocean modeling, eliminating the need for discretized adjoint equations to be explicitly hand-coded.

Contributions of observations to the model-data misfit function are weighted by best-available estimated data and model rep-

resentation error variance (Wunsch and Heimbach, 2007). The observational data assimilated into the ECCO state estimate are165

discussed in Forget et al. (2015a) and Fukumori et al. (2017). These data include satellite-derived ocean bottom pressures, sea

ice concentrations, sea surface temperatures, sea surface salinities, sea surface height anomalies, and mean dynamic topogra-

phy, as well as profiler- and mooring-derived temperatures and salinities (Fukumori et al., 2017). No ocean mixing parameter or

biogeochemical tracer data are assimilated during the ECCO optimization. The control variables that are inverted and optimized

for by ECCO include the initial condition of the sea surface heights, ocean velocities, temperatures, and salinities; time-mean170

three-dimensional distribution of Redi coefficients (Redi, 1982), Gent-McWilliams coefficients (Gent and McWilliams, 1990),

and κρ (Gaspar et al., 1990); and time-varying two-dimensional surface forcing fields. Fifty-nine iterations in the optimization

run of ECCO were performed to arrive at the ECCOv4r3 solution we start from for our adjoint sensitivity experiments. The

resulting κρ field in the ECCOv4r3 solution will be referred to as κρ,ECCO hereafter. While we are presenting some shortcom-

ings of the ECCO framework in terms of κρ here, sequential data assimilation systems also have problems with κρ, as shown175

in the Appendix.

We run ECCO in two configurations: 1) a “re-run,” where all control variables are set to be their estimated values from

ECCOv4r3 in forward mode, and 2) an “adjoint sensitivity” run of the optimized state estimate in forward plus adjoint modes,

where data are included in the cost function but not technically “assimilated” because the model input parameters do not

change. An adjoint sensitivity is essentially the sensitivity of one variable to another, computed by making use of the model’s180

adjoint. Formally, an adjoint sensitivity is ∂J/∂X , where the cost function J is a sum of weighted misfits to observations and a

control variableX is a variable that the model estimates by making use of its adjoint and observations–see Section 2.2.1.1. The

adjoint sensitivities provide information about which directions the model should change X in order to minimize J . (Masuda

and Osafune, 2021) showed some examples of adjoint sensitivities of several model parameters in their ocean state estimate to

a vertical mixing parameter (slightly different from κρ). We also compute adjoint sensitivities in the present study, but using185

ECCO with respect to X = κρ.

In order to simulate oxygen and phosphate concentrations, several tracers are carried using Biogeochemistry with Light, Iron,

Nutrients and Gases (BLING) model (Galbraith et al., 2015). BLING is an intermediate complexity biogeochemistry model
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that uses several prognostic tracers and parameterized, implicit representations of iron, macronutrients, and light limitation and

photoadaptation. BLING has been shown to compare well with the Geophysical Fluid Dynamics Laboratory’s full-complexity190

biogeochemical model, TOPAZ (Galbraith et al., 2015), and has been adapted for use in the MITgcm with its adjoint (Verdy

and Mazloff , 2017).

The following is a summary of the ECCO experiments we run (Table 2):

– E-CTRL - a forward ECCOv4 simulation that uses the parameters from ECCOv4r3; this simulation can be referred to

as a “re-run”195

– Eκ - an adjoint sensitivity (with respect to X = κρ) experiment in which only the base-10 logarithm of the κρ,W15 and

κρ,K17 products are included in the misfit function J

– EO - an adjoint sensitivity (with respect to X = κρ) experiment in which only oxygen concentrations from the World

Ocean Atlas (2013) climatology are included in the misfit function J

– Eε - an adjoint sensitivity (with respect to X = ε) experiment in which only the base-10 logarithm of the εW15 =200

κρ,W15N
2/0.2 and εK17 = κρ,K17N

2/0.2 products are included in the misfit function J , where the stratification N2 is

from the World Ocean Atlas (2013) climatology

Note that the initial guess for κρ,ECCO is 10−5 m2 s−1 and in the absence of observation-driven adjustments, κρ,ECCO remains

at or is close to its initial value. Lastly, we analyze the adjoint sensitivities with dissipation rates in the cost function (Eε in

Table 2.2) in order to assess whether the stratification–a multiplying factor between κρ and the dissipation rates according to205

Osborn (1980)–provides information about κρ.

We take the ECCOv4r3 solution as initial conditions and, with the exception of E-CTRL, we perform an adjoint calculation

for each of the experiments. The adjoint sensitivities are accumulated and averaged over the full integration period. Only one

year was run for each of the adjoint simulations because we are using time-invariant climatologies, and one year suffices to

demonstrate the point that the assimilation of a biogeochemical tracer may reduce the bias in κρ. Our results are not qualitatively210

sensitive to the run length. The adjoint sensitivities from Eκ are not sensitive to their run length due to the lack of time-

dependence of κρ, but are sensitive to their initial conditions as determined by the ECCOv4r3 solution.

We begin EO from a previously-derived product that has been spun-up from an initial climatology (Dutkiewicz et al.,

2005) because observations do not exist for every grid cell and beginning from this product minimizes model drift. If we

were to start from different initial conditions, the model’s drift would confound the interpretation of our adjoint sensitivities.215

The depth-averaged differences between the uninterpolated World Ocean Atlas (2013) product and the initial conditions for

oxygen concentrations in our ECCO run using BLING are shown in Fig. 2. The differences are largest in the Arctic Ocean,

northeastern Pacific Ocean, and near the coasts, particularly on the eastern side of the American continent, the southwestern

side of the African continent, around the Kuroshio/Sea of Japan region, along almost every coastline of Oceania, and in the

Mediterranean Sea (Fig. 2a). These differences are likely due to the deficiencies in model resolution, the sparse observations220

in regions such as the Arctic Ocean, the locations of sea ice (Bigdeli et al., 2017), and the parameterization of the tracer air-sea
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fluxes (e.g., Atamanchuk et al. (2020)). We need to consider the spatial patterns shown in Fig. 2 when interpreting the signs of

the adjoint sensitivities.

2.2.2 ECCO adjoint sensitivity analyses

In order to understand whether κρ could be estimated more accurately through data assimilation of oxygen concentrations,225

we need to further explain the details of our adjoint sensitivity experiments with ECCO. We define the objective (or cost)

function here to more formally explain what the adjoint sensitivity is. ECCO calculates the cost function to be minimized, J ,

as (Stammer et al., 2002):

J =
tf∑

t=1

[y(t)−Sx̃(t)]TW(t)[y(t)−Sx̃(t)] (1)

where tf is the final time step, x̃ is the model-based estimate of the state vector x, S is the observation matrix that relates230

the model state vector to observed variables (such that Sx̃ is the model-based estimate of the observables y), and W is the

weight (inverse square of the uncertainty) of the observations. In each of our adjoint sensitivity experiments, the data vector y

only contains the data set specific to the experiment (see Table 2.2) so we emphasize here that J is different for each of our

experiments. The uncertainties in κρ,ECCO in Eκ are set to be three times the values of the observationally-derived κρ because

of the level of agreement between the κρ,W15 and κρ,micro (Whalen et al., 2015). The uncertainties in oxygen concentrations235

in EO are set to be 2% of the values of the measured dissolved oxygen concentrations because those are the measurement

errors associated with most instruments.

The adjoint sensitivities computed in this study are the derivatives of J in Eq. 1 with respect to κρ. While the adjoint

sensitivities of J to the controls space in experiment EO must be computed online, those in Eκ can either be computed online

or offline using an analytical equation (see below). The adjoint sensitivity run with κρ included in the misfit calculation of240

experiment Eκ can be calculated offline using output from the E-CTRL run instead of being calculated online as follows:

∂J

∂X
=−2

(Xobs−Xmodel)
σ2
X

. (2)

Here, X = κρ is the control variable, y =Xobs is the observationally-derived value of X described in the previous section,

Xmodel = Sx̃ is the value that ECCO estimates for X , and σ2
X (entries of W) is taken to be 3Xobs (or the base-10 logarithm

of this in the case of κρ) due to the factor of 2-3 uncertainty. The offline Eq. 2 and online sensitivities have been verified to be245

in agreement. For Xmodel, we use the offline values calculated from the E-CTRL run following Eq. 2.

Short of assimilating a particular data set (e.g., dissolved oxygen concentrations) in a new optimization run of ECCO, we

assess whether the assimilation of a particular data set could lead to a more accurate estimate of a control variable that can be

observed (e.g., κρ). Because the observations of κρ here are not direct measurements, we first need to show that observationally-

derived κρ has a smaller bias with respect to independent observations than the model’s estimate of κρ. We devote the first250

portion of our study to determining whether |κρ,W15−κρ,micro|< |κρ,ECCO −κρ,micro| (and, by extension, κρ,K17 in place

of κρ,W15) is true. We do this because κρ,micro is limited in its spatial coverage compared to κρ,W15. However, we don’t

want to assimilate κρ,W15 (or κρ,K17) because of their observational uncertainties and still limited spatial coverage relative to
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dissolved oxygen concentrations. The data product with higher accuracy (dissolved oxygen concentrations) will have larger

weights (W in Eq. 1) and thus will exert more influence in constraining κρ,ECCO–bringing it closer to microstructure values.255

So if we can show that the adjustments to κρ in ECCO are similar, whether we provide information from observationally-

derived κρ or a directly measured tracer (dissolved oxygen concentrations), then we would assimilate the tracer. The problem

with doing a direct comparison of the adjustments is that the uncertainties in observationally-derived κρ products are large.

The significance of the correlations between the adjoint sensitivities in Eκ and EO are difficult to determine with such large

uncertainties. Thus, we first quantify the extent to which the adjoint sensitivities from two runs (here, Eκ and EO) have the260

same sign. Specifically, we inspect whether ∂J/∂κρ has the same sign inEκ andEO where |κρ,W15−κρ,ECCO| is significantly

different from zero (i.e., κρ,W15 is more than a factor of three greater or less than a factor of three smaller than κρ,ECCO).

We perform these comparisons in regions where the difference between the observationally-derived κρ products and κρ,ECCO

exceeds three times the observational products’ magnitudes (i.e., statistically distinguishable from zero). In the same regions,

we then calculate the correlations between the adjoint sensitivities from Eκ and EO. Because model errors unrelated to κρ265

can confound these correlations, we additionally look at regions where the difference between oxygen concentrations from

the model and the World Ocean Atlas (2013) is relatively small to determine whether oxygen concentrations guide the state

estimate’s control space to improve the magnitude of κρ.

3 Results

In this study, our first goals are to quantify the biases between κρ from ECCO and κρ from observations. Then we analyze270

results from two adjoint sensitivity runs: one with misfits to observed κρ derived from the finescale parameterization and the

other with misfits to observed O2. We use these results to investigate the potential to use O2 as a constraint for improving

κρ,ECCO in a future optimization.

3.1 Model-inverted vs microstructure-inferred κρ comparisons

Here, we compare the average κρ,micro profile that is comprised of 24 campaigns’ worth of data (Waterhouse et al., 2014) (see275

their Fig. 6; black curve in Fig. 3) with the average κρ,ECCO profiles and the κρ,W15 product. A geometric average is taken

for each profile because this is more representative than an arithmetic average for a small sample size and when the data are

not normally distributed (Manikandan, 2011), like the log-normal distribution of κρ.

The average κρ profile in the first iteration of ECCO’s optimization–i.e., the initial guess of κρ,ECCO–is typically smaller

than the microstructure profile, particularly at 1000 m where the difference is approximately an order of magnitude (Fig. 3). At280

iteration 59 (which is the ECCOv4r3 solution), the difference between κρ,ECCO and κρ,micro decreases. However, agreement

between the average profiles of κρ,ECCO and κρ,micro is still worse than the agreement between κρ,W15 and κρ,micro. The

agreement between κrho,W15 and κρ,micro at each of the three depth bins is well within a factor of three (not shown here).
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3.2 Model-inverted vs finescale parameterization-derived κρ comparisons

We next show κρ,W15 and differences between κρ,W15 and κρ,ECCO because this highlights the spatial patterns of the adjoint285

sensitivities in Eκ (see later). The ratio between the κρ,W15 product (Figs. 4a,c,e) and κρ,ECCO varies throughout the globe

(Figs. 4b,d,f). The percent of volume where κρ,ECCO is at least an order of magnitude different from κρ,W15 is 43.8%. The

values of κρ,ECCO are smaller than those in the observational product in the Kursoshio Extension (500-1000 meters depth),

subpolar North Atlantic (500-1000 meters depth), Southern Ocean, equatorial regions in the Atlantic, and shallow (250-500

meters depth) Indian and eastern Pacific Oceans (Figs. 4b,d,f). The κρ,ECCO field is comparatively large in the model’s near-290

equatorial regions, where the intermittency of strong mixing events is likely not captured–even in a time-mean sense–by a

time-invariant κρ,ECCO. However, the fidelity of κρ,W15 supplemented with κρ,K17 is unknown near the equator. The fact

that κρ,ECCO and κρ,W15 disagree within the deep mixed layers at high latitudes is not consequential for tracer transport.

The errors in κρ,ECCO could be partially compensating for errors in the vertical component of the along-isopycnal diffusivity

tensor and/or numerical diffusion.295

The incomplete historical observations of temperature, salinity, and pressure are not sufficient to constrain κρ,ECCO. Values

of κρ,ECCO do not agree well with the observationally-derived κρ (κρ,micro and κρ,W15), possibly for this reason. While there

is an abundance of Argo data in the upper 2000 meters, these data are insufficient to constrain the κρ,ECCO in a realistic

manner. The sparsity of the observations below 2000 meters depth, in high latitude regions, and in some near-coastal areas–

where internal wave-induced mixing can be important–is relevant because complete observational coverage of the ocean’s300

temperature, salinity, and pressure could, in principle, better constrain κρ using inverse modeling (Groeskamp et al., 2017).

However, the lack of time-dependence of κρ,ECCO, the presence of numerical mixing, and joint estimation of many under-

determined parameters in ECCO could also lead to erroneous κρ,ECCO.

3.3 Adjoint sensitivities in ECCO

Because the data that get assimilated into ECCO are insufficient to constrain κρ,ECCO well enough to match κρ,W15 or305

κρ,micro, assimilating additional variables controlled by mixing may assist in further improving the modeled mixing param-

eters. Oxygen is a prime candidate since its distribution is, in part, determined by the local κρ. To test this, we run multiple

adjoint sensitivity experiments in which either observationally-derived κρ or oxygen is included in the misfit calculation to

guide constraints on κρ.

We now show the adjoint sensitivity calculations using Eq. 2 for κρ misfits (experiment Eκ in Table 2.2) in Fig. 5; these310

are later compared with the sensitivities for oxygen concentration misfits in experiment EO. A positive adjoint sensitivity

implies that the misfit can be reduced by decreasing κρ,ECCO. The signs of ∂J/∂ κρ (Fig. 5a) are consistent with the signs of

disagreement shown in Fig. 4b,e,h, by construction, and with the disagreements with microstructure shown in Fig. 3. Because

κρ,ECCO tends to be very large inside mixed layers, ∂J/∂ κρ tends to be positive and larger at many locations in the subpolar

latitudes where there are deep mixed layers in the model but possibly not in the real ocean; conversely, ∂J/∂ κρ can be negative315

where the mixed layer depth is too shallow in ECCO, but this isn’t the only reason for ∂J/∂ κρ < 0. The large positive values
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of ∂J/∂ κρ within the mixed layer and some other regions overwhelms the zonal averages in favor of positive values (Fig.

5c). κρ,ECCO needs to be decreased in many regions at depths shallower than 500 meters to agree better with κρ,W15 and

κρ,K17 (red regions in Figs. 4b,d,f), but microstructure measurements (X’s in Figs. 4b,d,f) were often taken in locations where

κρ,ECCO should be increased (blue regions in Figs. 4b,d,f) or stay the same. These are regions where there are prominent320

topographic features and where the centers of subtropical gyres are found.

We next compare ∂J/∂ κρ from Eκ with ∂J/∂ κρ from EO. In EO, ∂J/∂ κρ is generally negative in subtropical regions

(Figs. 5b,d). Overall, the locations of the positive/negative signs of ∂J/∂ κρ are not the same everywhere between the Eκ and

the EO experiments, but they agree in many regions (Figs. 5a,c and Figs. 5b,d), which account for nearly two-thirds (three-

fourths) of the ocean’s volume where they can be compared (in the subtropics, between 20o-50oN/S, non-white regions in325

Fig. 6; Table 4). The ocean basin with the highest percent volume of agreement in adjoint sensitivity signs between Eκ and

EO is the subtropical North Atlantic Ocean, with nearly 85% volume agreement. The subtropical South Atlantic Ocean is the

only subtropical basin with less than half of its volume in agreement in adjoint sensitivity sign. In general, the tropical regions

(between 20oS and 20oN) have adjoint sensitivity signs in lesser agreement than the subtropical regions and the subpolar

regions (poleward of 50oN/S) are the regions with the lowest percent volume agreements in adjoint sensitivity signs.330

Even with general agreement in signs of sensitivities between Eκ and EO, we need to address whether this agreement is

random–as their correlation is due to the large uncertainties in κρ,W15 and κρ,K17–or underpinned by physical reasons. We

first focus on the locations with detectable errors in κρ,ECCO. The regions where the signs of ∂J/∂ κρ agree from the two

experiments (Figs. 6) and have large differences between κρ,ECCO and the combined κρ,W15 and κρ,K17 product, tend to have

relatively small oxygen concentration misfits (Fig. 2). For example, when only regions with less than one standard deviations335

above the average oxygen concentration misfits are selected, the signs of the adjoint sensitivities agree between EO and Eκ

over 60.8% of the volume with sufficient data. However, the larger the oxygen concentration misfits, the more often the signs

of the sensitivities agree. When only regions with more than three standard deviations above the average oxygen concentration

misfits are selected, the signs of the sensitivities always agree (yellow regions in Fig. 6). Given the good agreement in signs of

the sensitivities in regions with large κρ misfits, we next inspect the sensitivity sign patterns in regions with small κρ misfits.340

The vast majority of the locations where disagreements occur in sensitivity signs are in places with statistically indistin-

guishable differences between κρ,ECCO and κρ,W15 supplemented with κρ,K17 (white regions in Fig. 6 that are non-white

in Fig. 5). The regions with statistically indistinguishable differences in κρ account for 56.2% of the volume of the ocean

where the adjoint sensitivities from EO and Eκ can be compared. Within these regions, there are differences in the signs of the

sensitivities in locations where κρ is not expected to dominate the variability in oxygen. These regions include, for example,345

the equatorial Pacific and Atlantic Oceans, where Palter and Trossman (2018) and Brandt et al. (2021) point out that ocean

circulation changes significantly influence long-term changes in oxygen. Another example is in the open subpolar North At-

lantic Ocean (the blue region in the Labrador Sea in Fig. 6a), where Atamanchuk et al. (2020) present observational evidence

that air-sea fluxes mediated by bubble injection–not represented by ECCO–dominate the variability in oxygen down to 1000

meters depth. When these tropical and subpolar regions (outside of the 20o− 50oN/S bands) are excluded, the percent volume350

of the ocean where the signs of the adjoint sensitivities agree between Eκ and EO increases. Given that there are known phys-
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ical processes not dominated by κρ causing variations in oxygen concentrations in regions outside of the (sub)tropics where

there are statistically insignificant differences between κρ,ECCO and the observationally-derived κρ, our interpretation of the

patterns shown in Figs. 5 and 6 is that κρ controls much of the variability in oxygen concentrations in the (sub)tropical regions.

This is one indication that dissolved oxygen concentrations could provide information about κρ.355

We further address whether the potential information dissolved oxygen concentrations provide about κρ is due to the in-

formation oxygen contains about stratification. We do this by using the adjoint sensitivity results obtained from experiment

Eε with observationally-derived dissipation rates, ε=N2κρ/0.2–where N2 is the stratification–instead of κρ, in the misfit

function via Eq (2) and multiply the adjoint sensitivity of EO by 0.2/N2 so that their sensitivities are each taken with respect

to ε (parentheses in Table 4). We find approximately equal agreement between the signs of the adjoint sensitivities from EO360

(scaled by 0.2/N2) and Eε as we do between those from EO and Eκ in every region. Because ε is related to κρ through the

stratification, we suggest that the information oxygen concentrations provide about κρ is likely independent of the stratification

field.

Lastly, in order to examine whether there is a statistically significant relationship between the adjoint sensitivities from Eκ

and EO. We again focus on the regions where the difference between κρ,ECCO and observational κρ products (from Argo365

and microstructure) is statistically significant (greater than a factor of three), but also filter out the adjoint sensitivities where

the differences between oxygen concentrations from ECCO and those from the World Ocean Atlas (2013) are statistically

significant. The correlations tend to be small but positive (Fig. 7). However, if we perform Monte Carlo simulations where

we sample κρ values within its uncertainty and recompute the adjoint sensitivity for Eκ and then its correlation with that for

EO, the maximum correlatons we find are larger, particularly where the adjoint sensitivities are both negative (Figs. 7a,c). This370

suggests that κρ,ECCO may be at least partially constrained by the information provided by oxygen concentrations. That is,

oxygen concentrations inform adjoint sensitivities that typically direct κρ,ECCO to improve relative to observationally-derived

κρ. Constraints that the assimilation of oxygen concentrations may have on κρ,ECCO may be beneficial, but not a perfect

substitute for the assimilation of accurately measured κρ itself.

4 Discussion and Concluding Remarks375

4.1 Discussion

This study evaluated the potential to improve the diapycnal diffusivities (κρ) in the ECCOv4 ocean parameter and state esti-

mation framework. We assessed the fidelity of the inverted field of κρ,ECCO by first comparing the average observed vertical

profiles of κρ,ECCO with those inferred from microstructure. The comparison was not favorable. κρ,ECCO is inverted for

within the ECCO framework through constraints of vertical profiles of temperature and salinity–e.g., from Argo profiles. The380

low fidelity suggests that these hydrographic data alone are not sufficient to constrain κρ,ECCO, but there may be some model

errors that would lead to errors in κρ,ECCO even in the presence of globally complete hydrographic observations (see Section

4.2).
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We then investigated which additional observations can be used as new constraints to improve the fidelity of the inverted

κρ,ECCO. The products we used were observationally-derived κρ based on Argo (the W15 product) and ship-based CTD (the385

K17 product) hydrographic data and oxygen concentration (WOA, 2013). To justify the use of the observationally-derived κρ

products, we also evaluated them by comparing them with the microstructure-inferred product. κρ,W15 and κρ,W17 have better

agreement with the microstructure-inferred data than κρ,ECCO does.

We inspected the misfit of the model parameter κρ,ECCO with respect to κρ,W15 and κρ,K17 and motivated use of dissolved

oxygen concentration data as a potential constraint in ECCO. One drawback of the observationally-derived data products390

for κρ is that they have large uncertainties (here, approximated by a factor of three). Observed oxygen concentrations, on

the other hand, has smaller relatively uncertainty. More importantly, we showed that vertical oxygen gradients have similar

geographical patterns to energy dissipation rates. We therefore performed an additional adjoint sensitivity experiment with

oxygen concentration data as the only data in the misfit function. Adjoint sensitivities results were compared between the

experiment with measured oxygen in the misfit function and observationally-derived κρ in the misfit function. Regions where395

the sensitivities agree in signs between the two experiments are locations where we believve adjustments in κρ, as informed by

these data, can help improve κρ,ECCO. These regions include nearly three-quarters of the volume of comparable seawater in the

subtropics. Correlations between adjoint sensitivities from each experiment are positive where differences between the oxygen

concentrations in the model and observations are relatively small. These findings suggest that dissolved oxygen concentrations

could be used to more accurately estimate κρ in a newly optimized ECCO solution. However, given the magnitudes of the400

correlations between the adjoint sensitivities, assimilation of observationally-derived κρ could (additionally) be necessary,

especially if their uncertainties are better quantified.

4.2 Caveats and future directions

Many factors–including a significant absence of independent observations for assessment, a combination of measurement and

structural errors, numerical diffusion in our simulations, and unconstrained parameters in the biogeochemical modules–have405

stymied progress in state estimation of ocean mixing parameters. First, only one ocean mixing parameter–namely, κρ–has been

compared with independent observational data–specifically, microstructure. This is the primary reason why we focused on κρ

in our study. Second, the ECCO-estimated κρ accounts for other model errors (e.g., structural ones suggested by Polzin et al.

(2014)), which explains some of the model biases relative to microstructure observations. For instance, the ECCO-estimated κρ

should be time-dependent as well as spatially-varying, but it is only spatially-varying. In the presence of other estimated model410

parameters and initial conditions, some parameters could be compensating for errors in κρ. Additionally, there is numerical

diffusion in the model, which could confound some physical inferences about the model (e.g., regarding how sensitive the

model’s state is to κρ relative to along-isopycnal diffusion). Numerical errors could remain and result in the primary source

of error in the ocean state estimate if sufficient constraints are placed on κρ in ECCO. Lastly, there are several unconstrained

parameters in biogeochemical modules used to calculate biogeochemical tracers (Verdy and Mazloff , 2017), so some of the415

disagreements in signs of the adjoint sensitivities found here could be associated with other inaccurate parameters.
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These challenges can continue to be overcome by allowing models and observations to inform each other. First, the observationally-

derived κρ from the finescale parameterization could be further scrutinized using ship-based CTD data taken concurrently with

microstructure velocity shear data. A preliminary analysis suggests that the percent difference between the full depth-averaged

microstructure CTD-derived κρ from the finescale parameterization and the microstructure-inferred κρ is indistinguishable420

from zero (1.68%), but the quality of the the microstructure CTD data has not been fully assessed. Second, we would need

to account for the time-dependence of κρ in a future ocean state estimate. The under-determined nature of the parameter es-

timation procedure makes this difficult. These efforts would also benefit from minimizing spurious mixing due to numerical

diffusion (e.g., Holmes et al. (2021)) through choosing a different advection scheme, but this would add computational expense.

The effective proxy potential framework of Loose and Heimbach (2021) could be used to indicate whether measurements of425

oxygen concentrations in particular locations are more informative of κρ than in other locations. We did not pursue this in the

present study because our adjoint runs use a global misfit; if we perform an ensemble of adjoint sensitivity runs with a single

observation in each run, then we could calculate the effective proxy potential at each of these observation locations. Third,

unconstrained parameters in the biogeochemical modules could potentially be circumvented. One potential way to do this is

by assimilating preformed oxygen (i.e., oxygen without any biological influence, making it a passive tracer) instead of oxygen430

concentrations. Observationally-derived transit-time distributions with a maximum entropy-based method from previous stud-

ies (e.g., Khatiwala et al. (2009); Zanna et al. (2019)) or from a tracer-informed ocean state estimate (DeVries and Holzer,

2019) can help derive preformed oxygen from oxygen concentration observations. Lastly, the (imperfectly-known) initial con-

ditions of each biogeochemical tracer will also need to be included in the input control vector during optimization of the ocean

state estimate. Our results suggest that the assimilation of biogeochemical tracers will help build a more complete representa-435

tion and understanding of κρ, and the next step is to perform another optimization of the ocean state estimate including these

tracer observations.
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Appendix A: Model with a sequential data assimilation framework

A1 GEOS-5 and the GMAO S2S Ocean Analysis

To demonstrate a problem with κρ in a sequential data assimilation framework, we present example output from a reanalysis440

product and output from an identical ocean model hindcast without any data assimilation. GEOS-5 includes a global, finite

volume atmospheric general circulation model that is used for numerical weather prediction, seasonal-to-decadal forecasts,

and as the background field for atmospheric reanalyses (Molod et al., 2015). The ocean is represented by the GFDL Modular

Ocean Model (Griffies et al., 2015), version 5 (MOM5) and the Los Alamos Community Ice CodE sea ice model (Hunke et al.,

2013), version 4.1 (CICE4.1). We use a configuration of the GEOS-5 modeling system with a 1o (0.5o at equator) resolution445

on a tripolar (Murray, 1996) staggered Arakawa B-grid (Mesinger and Arakawa, 1976) and 50 geopotential levels for MOM5,

2o resolution and 24 pressure levels for the atmospheric model, and 1o resolution and 3 layers for CICE4.1. Historical aerosols

(sulfate, dust, and sea salt) and biomass burning emissions (black and organic carbon) updated from the Goddard Chemistry

Aerosol Radiation and Transport (GOCART) model (Chin et al., 2002) are used over the time period 1992 through 2016. Initial

conditions are based on a long spin-up that used MOM4 coupled to one version of the GEOS-5 atmosphere model (Molod et450

al., 2012) and hundreds of additional years of spin-up that used MOM4 coupled to a slightly different version of the GEOS-5

atmosphere model. The differences between the two versions of the GEOS-5 atmospheric model used in the two phases of

spin-up include developments in cloud microphysics and atmospheric chemistry.

κρ, Redi coefficients, and Gent-McWilliams coefficients are determined in MOM5 as follows. κρ in MOM5–κρ,GEOS5

hereafter–is represented by the K-Profile Parameterization (KPP; Large et al., 1994) and a parameterization for mixing due455

to internal tides (Simmons et al., 2004). Shear-driven mixing, gravitational instabilities that can cause vertical convection,

and double-diffusive processes, which can cause the temperature diffusivity to be different from the salinity diffusivity, are

accounted for in the interior (Large et al., 1994). The resulting κρ,GEOS5 field spatio-temporally varies. However, this combi-

nation of parameterizations does not make use of an explicit energy budget that accounts for conversion between kinetic and

potential energy when determining κρ,GEOS5. The Redi coefficients (Redi, 1982) and Gent-McWilliams coefficients of the460

(Gent and McWilliams, 1990) parameterization for mesoscale eddies are, by default, prescribed to be 600 m2 s−1 everywhere,

except for some variation in western boundary current regions for the Gent-McWilliams coefficients. The Redi coefficients

and Gent-McWilliams coefficients are, thus, constant in time and in most locations. A mixed layer instability scheme for the

submesoscale transport by (Fox-Kemper et al., 2011) is used.

We use a reanalysis product, which uses the same underlying modeling system as the GEOS-5 coupled earth system model,465

called the Global Modeling and Assimilation Office sub-seasonal to seasonal (GMAO S2S) Ocean Analysis. The output of the

GMAO S2S Ocean Analysis highlights how κρ can behave due to the disruption of dynamical balance that can be the result of

the use of a sequential data assimilation system (Stammer et al., 2016; Pilo et al., 2018). The GMAO S2S Ocean Analysis only

assimilates hydrographic information to constrain κρ and relies on the same parameterizations as GEOS-5’s ocean component

to calculate κρ.470
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The NASA GMAO has recently updated their GEOS-5 sub-seasonal to seasonal forecast system (S2S-v2.1;

https://gmao.gsfc.nasa.gov/cgi-bin/products/climateforecasts/geos5/S2S_2/index.cgi). This new system is the current contri-

bution of the GMAO to the North American Multi-Model project

(http://www.cpc.ncep.noaa.gov/products/NMME/about.html) and NOAA’s experimental sub-seasonal ensemble project

(http://cola.gmu.edu/kpegion/subx/index.html). A configuration of the modeling system is used that is nominally 0.5o reso-475

lution on a tripolar (Murray, 1996) staggered Arakawa B-grid (Mesinger and Arakawa, 1976) and 40 geopotential levels for

MOM5, and 0.5o resolution and 5 layers for CICE4.1 with atmospheric forcing from MERRA-2 (Modern-Era Retrospective

analysis for Research and Applications, Version 2) reanalysis (Gelaro et al., 2017). The GMAO S2S Ocean Analysis (Molod

et al., 2020) is a reanalysis product that uses a system similar to the Local Ensemble Transform Kalman Filter (LETKF) data

assimilation procedure described by (Penny et al., 2013), but where the background error is calculated offline using ensem-480

ble members of freely coupled simulations. The background error does not explicitly account for uncertainties in the ocean

mixing parameters, as it is only a function of the observed and background temperatures and salinities. The temperature and

salinity would change and so would the calculated covariances if the mixing parameterizations were changed, but each of the

21 background free-running simulations have the same mixing parameterization, as they only differ in their initialization.

The following datasets were used by the GMAO S2S data assimilation modeling system. A relaxation procedure, or update,485

is applied towards the MERRA-2 sea surface temperatures and sea ice fraction from the NASA TEAM-2 product (Markus

et al., 2009) at a 5-day assimilation cycle. No ocean mixing parameter data are assimilated. Assimilated in situ observational

data that provide temperatures and salinities come from TAO, PIRATA, RAMA, XBT, CTD, and Argo instruments. Satellite

altimetry data that provide sea level anomalies come from TOPEX, ERS-1+2, Geosat FO, Jason-1, Jason-2, Jason-3, Envisat,

Cryosat-2, Saral, HY-2A, and Sentinel 3A. The absolute dynamic topography is calculated as the sum of the sea level anomaly490

and the mean dynamic topography, which is estimated using GOCE and GRACE data, all available altimetry, and in situ

data. Absolute dynamic topography data are assimilated into the model system using the same method as for the in situ data,

except these data are thinned along-track and a Gaussian weighted mean using a decorrelation scale of 1000 km is calculated

prior to assimilation. In addition, the global trend was removed from the absolute dynamic topography before assimilation and

zero net input of water was applied. Precipitation is corrected using the Global Precipitation Climatology Project version 2.1495

(GPCPv2.1, provided by the NASA/Goddard Space Flight Center’s Laboratory for Atmospheres, which calculates the dataset

as a contribution to the GEWEX Global Precipitation Climatology Project) and Climate Prediction Center (CPC) Merged

Analysis of Precipitation (CMAP, provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their website at

http://www.esrl.noaa.gov/psd/), as described by (Reichle et al., 2011) except for MERRA-2 instead of MERRA data. All other

atmospheric forcing fields used in the construction of the reanalysis came from MERRA-2. The GMAO S2S modeling system500

is an update to the one described in (Borovikov et al., 2017). As such, the model only ran for the period: May of 2012 to March

of 2019.
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A2 Steric sea level budget framework

In order to examine whether the analysis increments can dynamically impact κρ, we analyze a model’s buoyancy budget, which

is broken down into heat and salt budgets and used to calculate the steric sea level budget. The tracer tendency equation terms505

required for the heat and salt budgets were computed online and saved as the reanalysis was running. The tracer equations can

be broken down into individual contributions (Palter et al., 2014),

ρ
dΘ
dt

+ ρAΘ =−∇ ·JΘ + ρQΘ (A1)

ρ
dS

dt
+ ρAS =−∇ ·JS + ρQS ,

where d/dt= ∂/∂t+ (v + v∗) · ∇ is the material derivative, v is the resolved velocity field, v∗ is the eddy-induced or quasi-510

Stokes velocity field that represents parameterized motions, Θ is the potential temperature, S is the salinity, ρ is the locally

referenced potential density, JΘ and JS are the parameterized along-isopycnal and diapycnal mixing fluxes associated with

potential temperature and salinity, QΘ and QS are the sums of sources and sinks of potential temperature and salinity, and

AΘ and AS are the analysis increments for potential temperature and salinity due to the assimilation of data by a sequential

filter-based data assimilation ocean modeling system. The analysis increments in a sequential filter-based data assimilation515

system can obscure the physics.

The heat and salt budget terms summarized by Equation (A1) are computed as follows. The resolved, mesoscale, and

submesoscale transports are accounted for in the material derivatives Θ and S, the neutral and diapycnal diffusion of Θ and

S are accounted for by JΘ and JS , and the analysis increments of Θ and S are accounted for by AΘ and AS . The neutral

diffusion term includes cabbeling, thermobaricity, and a dianeutral contribution that mixes properties by providing for the520

exponential transition to horizontal diffusion in regions of steep isoneutral slopes according to (Treguier, 1992) and (Ferrari

et al., 2008, 2010) where the surface boundary layer is encountered and following (Gerdes et al., 1990) next to solid walls.

The diapycnal diffusion term is not added to the vertical component of the along-isopycnal diffusion term, but because of

convention (e.g., Palter et al., 2014) is nevertheless referred to as the vertical diffusion term hereafter. The vertical diffusion

term also includes penetrating shortwave radiation flux. The sources and sinks of Θ and S accounted for byQΘ andQS include525

nonlocal convection (the transport where turbulent fluxes don’t depend upon local gradients in Θ or S because buoyant water

gets entrained into the mixed layer when the surface buoyancy forcing drives convection above a stratified water column);

surface buoyancy fluxes (latent, sensible, shortwave, longwave, and frazil heat fluxes); precipitation minus evaporation; runoff

mixing (mixes properties associated with river outflows); downslope mixing (mixes properties downslope to represent the

overflow dense waters from marginal seas); sigma-diffusion (mixing properties along terrain-following coordinates in regions530

with partial bottom cells); numerical smoothing of the free surface (intended to reduce B-grid checkerboard noise); numerical

sponge (intended to absorb the Kelvin waves set off by the assimilation of some data); calving of land ice; and frazil ice

formation. The runoff mixing, downslope mixing, and sigma-diffusion terms are considered sources or sinks here because they

are associated with numerical schemes that aim to resolve problems created by coarse model resolution, the vertical coordinate

system used near boundary layers, and imperfect bathymetry. There is no geothermal heating included in the GMAO S2S535
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Ocean Analysis. The vertical diffusion term includes a subsurface shortwave heating contribution to a function of the κρ field,

the mesoscale transport term assumes constant Gent-McWilliams coefficients, and the neutral diffusion term assumes constant

Redi coefficients.

At each time step, the model evaluates a tendency term for every process that contributes to (A1) from their parameterized

or dynamically calculated values, their units are converted to W m−2 and kg m−2 s−1 for Θ and S, and their monthly averages540

are saved to the output files used in this analysis. Implicit in these output tendency terms is that each term is weighted by the

thicknesses of each layer as the model runs and writes the output to file. The heat and salt budget terms saved to file are used

to calculate the steric sea level budget as follows. The steric sea level budget terms are computed by scaling the heat tendency

terms by α/Cp and the salt tendency terms by −1000β, where Cp (units in J kg−1 K−1) is the specific heat of seawater,

α=−[1/ρ](∂ρ/∂T ) (units in K−1 ) is the thermal expansion coefficient, and β = [1/ρ](∂ρ/∂S) (units in kg g−1) is the haline545

contraction coefficient. In order to get a longitude-latitude map of the terms that depend upon depth shown here, we integrate

over depth by summing over the depth dimension. We analyze part of the steric sea level budget of the GMAO S2S Ocean

Analysis to examine the relationships between different terms.

Appendix B: Results for the sequential data assimilation framework

B1 Assessments of κρ from models550

First, we compare the average κρ,micro profile that is comprised of 24 campaigns worth of data (Waterhouse et al., 2014) (see

their Fig. 6; black curve in Fig. A1a) with the average model-calculated κρ profiles and κρ,W15. A geometric average is taken

for each profile because a geometric average is more representative than an arithmetic average for a small sample size and

when the data are not normally distributed (Manikandan, 2011), like the log-normal distribution of κρ.

We compare microstructure (black curve in Fig. A1a) with GEOS-5 (red curve in Fig. A1a). κρ,GEOS5, on average, is in555

close agreement with microstructure over the upper 250-2000 meters. On average, the disagreement with microstructure and

Argo is approximately the same as the disagreement between microstructure and GEOS-5. All three κρ are well within the

uncertainty of the Argo product. The profiles are also within the temporal variability in κρ,GEOS5 below the mixed layer

depths (Fig. A1b; also see Fig. 9 in (Whalen et al., 2015)). The temporal variability in κρ is only large near regions with

active deep convection (e.g., between 40-50oN in the North Atlantic, as shown in Fig. A1b). The blue and green diamonds560

in Fig. 1c of (Waterhouse et al., 2014) show that there are only a few microstructure profiles are within the 40-50oN band

in the North Atlantic. These are all near the east coast of North America, not in regions that experience deep convection so

the temporal variability in microstructure is not expected to be large enough that the disagreements in κρ can be explain by

temporal sampling/aliasing.

While the average κρ,GEOS5 profile is fairly accurate, particularly below 500 meters depth (red curve in Fig. A1), κρ,GMAO565

is in much worse agreement with microstructure (green curves in Fig. A1). The large values of κρ,GMAO are not due to a few

isolated locations. κρ,GMAO is too large below about 250 meters depth (solid green curve in Fig. A1). The average profile of

κρ,GMAO is generally constant or decreases with depth, as opposed to the average profiles of κρ,GEOS5 and microstructure,
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which generally increase with depth. Potential reasons for the large disagreements between κρ,GMAO and microstructure

include dynamical adjustments due to the GMAO S2S Ocean Analysis’ analysis increments, inconsistencies between the570

model’s atmosphere and ocean due to the strong relaxation to sea surface temperatures, fixed zero net water input for global

sea level, and numerics such as the techniques applied to damp the waves created from assimilating some observations.

B2 Model- vs finescale parameterization-derived κρ comparisons

While comparisons with microstructure reveal general agreement with the average profile of κρ,GEOS5–except near the surface

and at deep depths–we also want to assess whether there are deficiencies in the average geographic distribution of κρ,GEOS5575

by comparing the output of GEOS-5 with the κρ,W15 product. Comparing the κρ,GEOS5 field with the κρ,W15 results in

better agreement than the similar comparisons between κρ,GMAO and κρ,W15. For example, κρ,GEOS5 only disagrees with

κρ,W15 by more than a factor of 3 over 36.6% of grid points with available data (Fig. A2b), while the disagreement doubles

in percentage (79.1%) for κρ,GMAO (Fig. A2a). The errors in κρ,GEOS5 are smaller than κρ,GMAO. Thus, when the objective

of the GMAO S2S Ocean Analysis is to minimize the misfit between the model and observations of temperature, salinity, and580

some surface characteristics, κρ can be better represented without any observational constraints; i.e., the GMAO S2S Ocean

Analysis improves temperature and salinity misfits for the wrong reasons.

The regions with the largest disagreement between κρ,GEOS5 and κρ,W15 are along the equator, in the Southern Ocean, in

the Labrador and Irminger Seas, and in the Gulf Stream and Kuroshio Extensions (Fig. A2b). Along the equator the values

of κρ,GEOS5 tend to be larger than the observational product, but the discrepancy changes sign slightly poleward in the near-585

equator tropics. Inadequate resolution and parameterization of diapycnal mixing can cause too little mixing to occur in these

regions as well as in the Southern Ocean and along mid-ocean ridges (MacKinnon et al., 2017). The values of κρ,GEOS5 are

smaller than the observations both in regions where deep convection is prevalent and in the vicinity of the Antarctic Circumpolar

Current (ACC). In the Gulf Stream Extension region, the Malvinas Current region, part of the Kuroshio Extension region, and

the Indian Ocean sector of the ACC above 500 meters depth, the values of κρ,GEOS5 are too large. This is because κρ,GEOS5590

can be much increased inside the mixed layer depth, which can be deeper than 250 meters due to vertical convection. One

possible source of these errors in the abyssal κρ is the improper treatment of remote internal tide-induced mixing, discussed

in (Melet et al., 2016), but several other processes can impact κρ in the upper water column. For example, the wind-driven

near-inertial waves (Alford et al., 2016) can be important near the surface in many locations, and internal tide breaking is

important near the seafloor at low latitudes in the Northern Hemisphere (Arbic et al., 2004; Nycander, 2005; Melet et al., 2013;595

MacKinnon et al., 2017) and beneath the ACC, where lee wave breaking is important (Nikurashin and Ferrari, 2011; Scott

et al., 2011; Naveira Garabato et al., 2013; Melet et al., 2014; Wright et al., 2014; Trossman et al., 2013, 2016; Yang et al.,

2018). (MacKinnon et al., 2017) discusses other candidates for more accurate representation of κρ. Identifying the sources of

errors in κρ,GEOS5, particularly in the abyss, is beyond the scope of the present study. We emphasize the much greater errors

in κρ,GMAO and next examine whether the analysis increments could be one source of these larger errors (either directly or by600

way of altering the velocity field).
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B3 Relationships between steric sea level budget terms

We now examine whether the velocity field itself changes because of the analysis increments. To do this, we show the rela-

tionship between the analysis increments and resolved advection terms in the steric sea level budget for the GMAO S2S Ocean

Analysis in Fig. A3a. The Pearson correlation coefficient between the analysis increments and resolved advection terms in the605

steric sea level budget is about -0.3. The magnitudes of the analysis increments are determined by the temperature, salinity, and

sea surface height fields, and the analysis increments and the resolved advection term in the GMAO S2S Ocean Analysis are

comparable in size for both heat and salt tendencies–the largest terms in each budget in their zonal averages at most latitudes.

However, previous studies have shown that analysis increments induce changes in the velocity field via dynamic adjustment

(Stammer et al., 2016; Pilo et al., 2018). The correlation between the analysis increments and resolved advection terms shown610

in Fig. A3a are consistent with the findings of these previous studies. The role of the analysis increments, by a similar argu-

ment, could be extended to the introduction of physically inconsistent air-sea exchanges; we next show that these factors at

least partially cause errors in κρ,GMAO. There are distortions in temperature and salinity fields from applying analysis incre-

ments, violating conservation principles and potentially causing the model to undergo baroclinic adjustment (Stammer et al.,

2016). The Pearson correlation coefficients between the diapycnal diffusion terms and the analysis increment terms in the heat615

and salt budgets over all locations are about 0.7 (Fig. A3b), suggesting that the analysis increments are associated with errors

in κρ,GMAO. Problems with the physical consistency of air-sea exchanges–due to relaxation of sea surface temperatures and

requiring net zero water input–could also contribute to the errors in κρ,GMAO. The correlation between the surface flux and

diapycnal diffusion terms in the heat and salt tendency budgets are fairly well correlated–Pearson correlation coefficient of

about -0.4 (Fig. A3c), suggesting that there is an association between the surface flux errors and errors in κρ,GMAO. Given620

these correlations and the way analysis increments and physical inconsistencies of air-sea exchanges are implemented in the

GMAO S2S Ocean Analysis, errors in κρ,GMAO must be caused by analysis increments (and possibly adjustments of air-sea

exchanges) rather than the other way around.
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Figure A1. κρ profiles (panel a) averaged over all microstructure observation locations from the 24-year-average of the free-running GEOS-5

simulation (G-CTRL - red curve). Also shown is the average of κρ profiles from the 24 full-depth microstructure observations (black curve)

presented in (Waterhouse et al., 2014) (see their Fig. 6) and the average of κρ (magenta X’s bounded by horizontal lines) at each of the depth

bins in the (Whalen et al., 2015) product. At each location, the simulated profiles are extracted and the base-10 logarithms of the geometric

averages of the observed and GEOS-5-calculated κρ (units in m2 s−1) are shown. Also shown are (panel b) κρ profiles from the free-running

GEOS-5 simulation averaged over 40− 50oN in the North Atlantic Ocean and averaged over all January months (lighter colors), ..., and all

December months (darker colors).
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a) Base-10 logarithms of diapycnal diffusivity ratios (GMAO S2S to Argo) b) Base-10 logarithms of diapycnal diffusivity ratios (GEOS5 to Argo)
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Figure A2. Shown are (a) the base-10 logarithms of the ratios of the time-averaged κρ,GMAO to κρ,W15, and (b) the base-10 logarithms of

the ratios of the time-averaged κρ,GEOS5 to κρ,W15. Each panels shows an average over 250-2000 meters depth. White areas in the ocean

indicate insufficient Argo data to derive κρ,W15. The green X’s indicate regions where the disagreement between κρ,GMAO or κρ,GEOS5

and κρ,W15 is greater than a factor of 3.
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Figure A3. Scatterplots between several of the most locally dominant tendency terms in the steric sea level budget of the GMAO S2S Ocean

Analysis, averaged over the entire run’s time period (2012-2017): shown are (panel a) the analysis increment (abscissa) versus the resolved

advection (ordinate) terms, (panel b) the analysis increment (abscissa) versus the vertical diffusion (ordinate) terms, and (panel c) the surface

flux (abscissa) versus the vertical diffusion (ordinate) terms. The more yellow colors indicate a greater density of dots in the scatterplots.

The more blue colors indicate a lower density of dots in the scatterplots. Also listed in each panel are the correlations between each of the

comparisons.
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Data availability. The data used in this study will be available through zenodo upon publication, but in the meantime, they are available at:

https://www.dropbox.com/s/z4w7ihzdg3hpebr/ECCOoxygenkappa.tar.gz?dl=0 . Also, the GMAO S2S Ocean Analysis output is available at:625

ftp://gmaoftp.gsfc.nasa.gov/pub/data/kovach/S2S_OceanAnalysis/ . The hydrography-derived diapycnal diffusivities from the finescale pa-

rameterization used in this study, courtesy of Eric Kunze, are available by logging in as a guest at: ftp://ftp.nwra.com/outgoing/kunze/iwturb/

. The microstructure data used in this study are available at: https://microstructure.ucsd.edu/ .
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a) dO2/dz (250-500 m average)

b) dO2/dz (500-1000 m average)

c) dO2/dz (1000-2000 m average)
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Figure 1. Shown are the vertical gradients of oxygen concentrations (units in ml/l/m) from the World Ocean Atlas (2013). Panel a shows an

average over 250-500 meters depth. Panel b shows an average over 500-1000 meters depth. Panel c shows an average over 1000-2000 meters

depth. White areas in the ocean indicate insufficient data.
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Figure 2. Shown are the average differences between the oxygen concentrations’ initial conditions (units in ml/l) used for the ECCO adjoint

sensitivity experiments and the observational climatologies from the World Ocean Atlas (2013) in the model’s cost function. White areas in

the ocean indicate insufficient data.
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X
X

X

Diapycnal diffusivities from ECCO, compared to microstructure and Argo [m2 s-1]

Figure 3. κρ profiles averaged over all microstructure observation locations and over the length of the ECCO simulations from the first

iteration of the optimization (E-CTRL0 - grey curve), and from the (final) fifty-ninth iteration of the optimization (E-CTRL - red curve).

Also shown is the average of κρ profiles from the 24 full-depth microstructure observations (black curve) presented in Waterhouse et al.

(2014) (see their Fig. 6; also see Figs. 4b,d,f of the present study) and the average of κρ (magenta X’s bounded by horizontal lines) at each

of the depth bins in the Whalen et al. (2015) product. At each location, the simulated profiles are extracted and the base-10 logarithms of the

geometric averages of the observed and ECCO-estimated κρ (units in m2 s−1) are shown.
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Figure 4. Shown are (a,c,e) the base-10 logarithms of κρ,W15 (units in m2 s−1) and (b,d,f) the base-10 logarithms of the ratios of the time-

averaged κρ,ECCO to κρ,W15. Panels a-b show an average over 250-500 meters depth. Panels c-d show an average over 500-1000 meters

depth. Panels e-f show an average over 1000-2000 meters depth. White areas in the ocean indicate insufficient Argo data to derive κρ,W15.

Black X’s indicate locations where there are microstructure profiles used in Fig. 3.

35

https://doi.org/10.5194/os-2021-87
Preprint. Discussion started: 28 September 2021
c© Author(s) 2021. CC BY 4.0 License.



45oN

0o

45oS

120oW 0o60oW 60oE 120oE180oW 180o 120oW 0o60oW 60oE 120oE 180o

b) Sign of adjoint sensitivities (misfit: oxygen concentrations)

d) Sign of adjoint sensitivities (misfit: oxygen concentrations)

a) Sign of adjoint sensitivities (misfit: diapycnal diffusivities)

c) Sign of adjoint sensitivities (misfit: diapycnal diffusivities)

Figure 5. Adjoint sensitivity sign comparisons: Results from Eκ (panels a and c) and EO (panels b and d) are shown for the adjoint

sensitivities (units in s m−2) with respect to κρ: averaged over 250-2000 meters depth (panels a-b) and zonally averaged (panels c-d). The

red regions indicate that the adjoint sensitivities are positive (∂J/∂κρ > 0) and blue regions indicate negative adjoint sensitivities. κρ,W15

and κρ,K17 are the only quantities used in the misfit calculation of an adjoint run shown in panels a and c. The climatological oxygen

concentrations from the World Ocean Atlas (2013) are the only observations used in the misfit calculation of a separate adjoint run shown in

panels b and d. The adjoint sensitivities in panels a and c are computed offline (i.e., not using ECCO, but by plugging in the value the model

reads in for the base-10 logarithm of κρ and comparing that with the above observationally-derived base-10 logarithm of the κρ products

using the finescale parameterization via Eq. 2). The adjoint sensitivities in panels b and d are computed online (i.e., using ECCO, which uses

the base-10 logarithm of κρ as a control variable). The white regions are locations with bathymetry or insufficient observations. The adjoint

sensitivities are calculated over just one year (1992).
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Percent of volume in water column with agreement in adjoint sensitivities
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Figure 6. Shown are the percents of volume over the water column for each horizontal location (panel a) and percent of volume over all

longitudes for each depth and latitude (panel b) where the sign of ∂J/∂κρ agrees between Eκ and EO . The white areas are locations where

the disagreements between κρ,ECCO and κρ,W15 supplemented with κρ,K17 are within three times the value fo the observationally-derived

κρ so these were excluded.
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Figure 7. Shown are scatterplots between the adjoint sensitivities from EO and Eκ where they are both negative (panels a and c) and

where they are both positive (panels b and d), where Eκ has its adjoint sensitivities calculated with either Argo-derived κρ (κρ,W15 and

κρ,K17; panels a-b) or microstructure-inferred κρ (panels c-d). Only the adjoint sensitivities where the differences between κρ,ECCO and

observational κρ products are statistically significant (greater than a factor of three) and where the differences between oxygen concentrations

from ECCO and those from the World Ocean Atlas (2013) are statistically insignificant (within 2% of the latter) are included. The correlations

for all of the data points shown in each panel are listed. Also listed below each panel are the maximum possible correlations from a Monte

Carlo-based approach in which 10,000 random samples of κρ within the uncertainties of the observational κρ products are used to recompute

the adjoint sensitivities for Eκ.
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Table 1. The latitude and depth ranges of each observationally-derived product from a parameterization used in this study. The longitude

range for each dataset spans (180oE,180oW ). Also listed is the time period of the observations each product is based on and the range of

values in each product (to the nearest order of magnitude in units of m2s−1).

data source range [m2s−1] latitude range depth range time period

Argo (κρ,W15) (10−7,10−2) (75oS,75oN) (250,2000) 2006-2014

Ship-based CTD hydrography (κρ,K17) (10−8,10−3) (77.35oS,78.70oN) (173,6044.5) 1981-2010

Table 2. Listed are the ECCO simulations performed and analyzed in the present study as well as the observationally-derived data or

measured data included in each simulation. Either observationally-derived data or measured data are included in the experiments through its

misfit calculation (Eq. 1). Here, κρ denotes an observationally-derived κρ product from the finescale parameteration, ε= κρN
2/0.2 indicates

an observationally-derived dissipation rate (N2 is the stratification from the World Ocean Atlas or WOA (2013)), and O2 is the climatology

of measured oxygen concentrations from WOA (2013). The misfits for the experiments with κρ and ε are calculated using Eq. 2.

experiment observationally-derived data measured data

E-CTRL N/A see Section 2.2.1

Eκ κρ,W15,κρ,K17 N/A

EO N/A O2 [WOA, 2013]

Eε κρ,W15,κρ,K17 T/S [WOA, 2013]

Table 3. The cost functions of the adjoint sensitivity ECCO runs for each data sources. Listed are the globally computed values and the

number of data points used.

experiment data source cost function number of data points

Eκ Argo 1.91× 1017 5.933× 104

Eκ Ship-based CTD hydrography 2.89× 1018 7.3806× 104

EO O2 WOA (2013) 7.71× 104 7.9752× 104
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Table 4. Listed are the percent volumes where the signs of the adjoint sensitivities agree between Eκ and EO for different regions of

the ocean. The boundaries of subtropical/equatorial regions are set to be at 20oN/S. The boundaries of subtropical/subpolar or subtropi-

cal/Southern Ocean regions are set to be 50oN/S. The percentages are only calculated where sufficient observations are available to derive

κρ and where the difference between the model-calculated and observationally-derived κρ is greater than the uncertainty (i.e., three times

the observationally-derived κρ). In parentheses are the same, except for the dissipation rates, ερ =N2κρ/0.2, where N2 is the stratification

and 0.2 is an empirical coefficient (see, e.g., Gregg et al. (2018)).

region percent of ocean volume with agreement

Global 60.8% (59.9%)

Subtropics 72.3% (72.9%)

Subtropical South Pacific 76.9% (79.2%)

Equatorial Pacific 57.9% (54.9%)

Subtropical North Pacific 60.4% (59.6%)

Southern 49.5% (47.9%)

Indian 67.8% (68.7%)

Subtropical South Atlantic 44.6% (35.8%)

Equatorial Atlantic 62.1% (62.1%)

Subtropical North Atlantic 84.7% (85.4%)

Subpolar North Atlantic 12.7% (12.8%)
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