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Abstract. Use of an ocean parameter and state estimation framework–such as the Estimating the Circulation & Climate of

the Ocean (ECCO) framework–could provide an opportunity to learn about the spatial distribution of the diapycnal diffusiv-

ity parameter (κρ) that observations alone cannot due to gaps in coverage. However, we show that the inclusion of misfits to

observed physical variables–such as in situ temperature, salinity, and pressure–currently accounted for in ECCO is not suffi-

cient, as κρ from ECCO does not agree closely with any observationally-derived product. These observationally-derived κρ5

products were inferred from microstructure measurements, derived from Argo and CTD data using a strain-based parameter-

ization of finescale hydrographic structure, or calculated from climatological and seafloor data using a parameterization of

tidal mixing. The κρ products are in close agreement with one another, but have both measurement and structural uncertain-

ties, whereas tracers can have relatively small measurement uncertainties. With the ultimate goal being to jointly improve the

ECCO state estimate and representation of κρ in ECCO, we investigate whether adjustments in κρ due to inclusion of misfits to10

a tracer–dissolved oxygen concentrations from an annual climatology–would be similar to those due to inclusion of misfits to

observationally-derived κρ products. We do this by performing sensitivity analyses with ECCO. We compare multiple adjoint

sensitivity calculations: one configuration that uses misfits to observationally-derived κρ and the other uses misfits to observed

dissolved oxygen concentrations. We show that adjoint sensitivities of dissolved oxygen concentration misfits to the state es-

timate’s control space typically direct κρ to improve relative to the observationally-derived values. These results suggest that15

the inclusion of oxygen in ECCO’s misfits will improve κρ in ECCO, particularly in (sub)tropical regions.

1 Introduction

We consider the challenges with using observational data in the context of a parameter and state estimation framework to infer

the global distribution of ocean mixing. Ocean models must parameterize the unresolved, turbulent diffusion of oceanic tracers.
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Ocean mixing is typically conceptualized in terms of diffusion along and across isopycnal surfaces. Subgrid-scale transport20

of isopycnal thickness (or bolus)–which is effectively an advective contribution to tracer budgets–also must be parameterized.

Ocean models often represent these unresolved processes with three parameters: the across-isopycnal mixing parameter (diapy-

cnal diffusivity; Munk and Wunsch (1998)), the along-isopycnal mixing parameter (Redi coefficient; Redi (1982)), and the eddy

isopycnal thickness transport parameter (Gent-McWilliams coefficient; Gent and McWilliams (1990)). Diapycnal mixing is an

essential component in explaining the observed oceanic stratification (Munk and Wunsch, 1998; Gnanadesikan, 1999; Scott25

and Marotzke, 2002). Changes in the background diapycnal diffusivity (Dalan et al., 2005; Krasting et al., 2018; Hieronymus

et al., 2019; Sinha et al., 2020), Redi coefficient (Gnanadesikan et al., 2015; Ehlert et al., 2017), and Gent-McWilliams coeffi-

cient (Danabasoglu and McWilliams, 1995) are known to have a profound influence on climate simulations through alterations

in the response to surface flux perturbations and changes in ventilation rates.

The spatiotemporal variabilities suggested in previous studies of the Redi coefficient (Abernathey et al., 2013; Bates et al.,30

2014; Forget et al., 2015b; Cole et al., 2015; Busecke and Abernathey, 2019; Groeskamp et al., 2020) and Gent-McWilliams

coefficient (Forget et al., 2015b; Katsumata, 2016; Bachman et al., 2020) fields are virtually absent in ocean models. There

is also a dearth of independent observations with which to assess their observationally-derived values (Cole et al., 2015;

Katsumata, 2016; Roach et al., 2018; Groeskamp et al., 2020), and these values cannot be easily compared with those in

models. For instance, it is unclear how to compare Redi coefficients derived from observations with those from models because35

they are expected to vary with horizontal resolution. Also, the formulations of the perpendicular and parallel components of

the eddy advection tensor relative to isopycnal surfaces are not the same in many models as in the observationally-derived

Gent-McWilliams coefficient product (Katsumata, 2016). To gain deeper insight into the issues with model-representation of

ocean mixing, we focus on the diapycnal diffusivity field–κρ hereafter–in this study.

Parameterizations for κρ (Gaspar et al., 1990; Large et al., 1994; Reichl and Hallberg, 2018) have allowed for a spatiotemporally-40

varying κρ field, but assessing the performance of these parameterizations has been challenging due to a profound lack of ob-

servations. Until recently, the only available observational information about κρ came from tracer release experiments (Ledwell

and Watson, 1991; Polzin et al., 1997; Messias et al., 2008) and microstructure (i.e., the scales over which molecular viscosity

and diffusion are important) measurements of velocity shear (e.g., Waterhouse et al. (2014)) or temperature variability (e.g.,

Gregg (1987)). These data are infrequently sampled and cover a relatively small portion of the ocean, but are independent45

observations with which to compare the more recent global mixing data products calculated from Argo (Whalen et al., 2015),

CTD (Kunze, 2017), and climatological and seafloor (de Lavergne et al., 2020) observations. While our understanding of the

global distribution of κρ has been transformed by the use of theories to derive κρ from limited observations (MacKinnon et

al., 2017; Whalen et al., 2020), none of the observationally-derived κρ products have been used to date in ocean models to

assess whether corresponding simulations would be improved over globally uniform values, or those based on theory. (Here,50

by “constrain,” we were referring to using new data to change the level of agreement between the model and an observational

product–not necessarily to achieve a perfect match.)

Currently, the only information about κρ comes from temperature, salinity, and pressure observations in ocean parameter and

state estimation or data assimilation systems. If these observations were collected at every location and depth of the ocean, there
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could be sufficient information to accurately derive κρ (Groeskamp et al., 2017), but there are spatiotemporal gaps. This work55

explores the use of a parameter and state estimation framework to invert for global fields of κρ using incomplete observations

and theories.

We use the Estimating the Circulation & Climate of the Ocean (ECCO) parameter and state estimation framework to evaluate

how near-global, observationally-derived κρ can be used to inform ocean models. The aim of the ECCO framework is to

reconstruct the recent history of the ocean (the “state estimate”) by filling in the gaps between incomplete observations, which60

are often sparse and aliased, through dynamical techniques. The state estimate is related to a reanalysis product (Heimbach et

al., 2019), but the state estimation framework overcomes some serious shortcomings (see the Appendix) by requiring dynamical

and kinematical consistency (Stammer et al., 2016) of the estimated state throughout its full period of estimation (here, 1992

to 2015). The version 4, release 3 of ECCO (ECCOv4r3; Fukumori et al. (2017)) state estimate–like previous versions and

releases–is achieved by fitting a general circulation model to available observations in a weighted least squares sense (Wunsch,65

2006; Forget et al., 2015a). The model-data misfit (objective or “cost function”) is minimized by varying (i.e., inverting for)

a set of uncertain control variables, all of which are independent inputs to the model equations being solved. These control

variables can be iteratively improved by running the model in forward plus backward–its “adjoint”–mode, which enables the

calculation of gradients in the cost function. Each of these runs maintains dynamical and kinematical consistency because,

in contrast to filter-based data assimilation systems (see the Appendix for an example), the only ocean variables that get70

adjusted are the control variables–not the dynamically active–or prognostic–variables. These control variables are determined

using the entire length of the state estimate–as opposed to introducing temporal discontinuities by periodically adjusting them.

Importantly for our goal of parameter estimation, the set of control variables may consist not only of initial and boundary

conditions, but also of (spatially-varying) model parameters, such as the three used to represent ocean subgrid-scale transport

or mixing (Liu et al., 2012; Forget et al., 2015a). Inaccuracies in variables such as κρ in any ocean model can make physical75

inference less grounded in reality–e.g., the differences in the importance of diapycnal mixing in steric sea level budgets of

models used in this study (Piecuch and Ponte, 2011; Palter et al., 2014)–and could make the ECCO state estimate itself less

accurate–e.g., errors in κρ will influence vertical tracer transport and mixed layer depths. Since it remains under-explored how

well κρ, in particular, is estimated with ECCOv4r3, this is one subject of the current study.

The other goal of the present study is to examine how we can provide additional information about κρ using either obser-80

vational estimates of κρ itself or a tracer–e.g., oxygen–from observations in ECCO’s misfits. κρ products have been shown to

agree well with each other (Whalen et al., 2015; de Lavergne et al., 2020). However, because κρ is derived and not measured,

a parameter and state estimation system would need to account for both their structural and measurement errors, and their

structural uncertainties are not yet well-understood. This is a potential problem because it is not clear how to weight these data

when constraining the model and conservatively large uncertainties would place little to no constraints on the model. An alter-85

native approach to constraining κρ is to find a quantity measured with in situ observations–e.g., a tracer, as proposed here–that

provides information about κρ.Passive transient tracers are known to provide information about ocean mixing (Mecking et al.,

2004; Trossman et al., 2014; Shao et al., 2016). However, their concentrations tend to be difficult to detect below a couple

thousand meters depth and are not monitored as well as biogeochemical tracers such as dissolved oxygen. Dissolved oxygen
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has vertical gradients that can be resolved by most ocean models in the open ocean. Through altering oxygen saturation and90

ventilation rates, mixing likely plays an important role in controlling the dissolved oxygen concentrations and volumes of tropi-

cal oxygen minimum zones (OMZs) (Brandt et al., 2015; Lévy et al., 2021), the rate of future global deoxygenation (Duteil and

Oschlies, 2011; Palter and Trossman, 2018; Couespel et al., 2019), the abyssal-shadow zone overturning connectivity (Holzer

et al., 2021), and the upwelling of low-latitude waters as part of the meridional overturning circulation (Talley, 2013). Oxygen

utilization rates within subtropical mode water in the North Atlantic Ocean strongly depend upon vertical mixing (Billheimer95

et al., 2021). Along with temperature and salinity observations, oxygen concentrations help identify particular water masses

because oxygen utilization often reflects how recently water has been ventilated by the thermocline (Jenkins, 1987). Oxygen

concentrations are less numerous than temperature and salinity observations, but tracers have different sources and sinks, are

in varying degrees of disequilibrium, and require different amounts of time to equilibrate–similar in argument to why multiple

tracers are needed best constrain transit-time distributions (Waugh et al., 2003). Thus, we assess the information that dissolved100

oxygen concentrations provide about κρ with ECCOv4r3–which has already incorporated information about temperature and

salinity–in the present study.

Our two primary objectives are: 1) to test whether κρ calculated using ECCO agrees with κρ from observations, given

incomplete temperature, salinity, and pressure observations; and 2) to assess whether dissolved oxygen concentrations and κρ

from observations provide similar information about how to improve the agreement between κρ from ECCO and observations.105

In the Appendix, we present κρ from one example sequential data assimilation framework in order to contrast its potential

issues with those of ECCO. We use κρ inferred from microstructure (Waterhouse et al., 2014), derived from Argo floats

(Whalen et al., 2015) and CTD profiles (Kunze, 2017), and calculated from climatological and seafloor data (de Lavergne et

al., 2020) to determine whether the ECCO framework needs to improve its κρ using observational constraints (Sections 3.1 and

3.2). We then perform model experiments in forward plus adjoint mode to determine whether dissolved oxygen concentration110

data and observationally-derived κρ provide similar information about how to adjust κρ (Section 3.3). This will help determine

whether κρ could be improved by including tracer data in the misfits of a future iterative ocean parameter and state estimation

procedure.

2 Methods

2.1 Observationally-derived data products and measured data115

2.1.1 Diapycnal Diffusivities

κρ is routinely inferred from the velocity shear measured using microstructure profilers (Waterhouse et al., 2014). We use

microstructure-inferred κρ–referred to as κρ,micro hereafter– (Osborn, 1980; Lueck et al., 1997; Gregg, 1989; Moum et al.,

2002; Waterhouse et al., 2014) to evaluate a model’s κρ. (We distinguish between “observations” that are measured quantities

using in situ instruments and observationally-derived values, which use measured quantities and a theory to derive values. The120

former data have only measurement uncertainties, while the latter data have both measurement and structural uncertainties. We
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further distinguish “observationally-inferred” values, which are from the currently accepted method of observing a quantity

such as κρ but are not measured, and “observationally-derived” values because the latter data depend on a method that requires

additional assumptions. These terms only apply to values calculated making use of observations.) κρ,micro are based on an

expression for the isotropic turbulence field, which is proportional to the viscosity of water and the velocity shear resolved to125

dissipative scales (Thorpe (2007); and references therein). The depth ranges of the data collected by Waterhouse et al. (2014)

go from the upper several hundred meters to the full water column. The profiles are seasonally biased at higher latitudes and

span decades. There are thousands of vertical profiles from 24 different campaigns that comprise this data set, with samples

being taken in North Pacific Ocean, North Atlantic Ocean, tropical Pacific, near Drake Passage, near the Kerguelen Plateau,

and in the South Atlantic Ocean. Many of the profiles were taken in regions with both smooth and rough bottom topography. To130

compare the microstructure profiles with model output, the nearest neighbors to each model’s grid are selected. A geometric

average is taken for each profile because this is more representative than an arithmetic average for a small sample size and

when the data are not normally distributed (Manikandan, 2011), like the log-normal distribution of κρ (Whalen, 2021).

We make use of multiple data sets for κρ derived from observations. Two of these data sets–listed in Table 1–are derived using

a finescale parameterization; they contain values equatorwards of 75oS and 75oN and deeper than about about 250 meters be-135

cause the theory does not yield accurate results in the presence of strong upper-ocean density variability (e.g., D’Asaro (2014)).

κρ values are derived from finestructure observations of temperature, salinity, and pressure using a strain-based finescale pa-

rameterization, which has been developed and implemented in different ways (Henyey et al., 1986; Gregg, 1989; Polzin et al.,

1995, 2014), but typically assumes a mixing efficiency of 0.2 (St. Laurent and Schmitt, 1999; Gregg et al., 2018). The finescale

parameterization assumes that 1) the production of turbulent energy at small scales is due to an energy transfer driven by140

wave-wave interactions down to a wave breaking scale; 2) nonlinearities in the equation of state, double diffusion, downscale

energy transports, and mixing associated with boundary layer physics and hydraulic jumps are neglected; and 3) stationary

turbulent energy balance exists where production is matched by dissipation and a buoyancy flux in fixed proportions (Polzin et

al., 2014). The implementation by Whalen et al. (2015) uses Argo data assumes a shear-to-strain variance ratio of 3 and a flux

Richardson number ofRf = 0.17, and determines the fraction of turbulent production that goes into the buoyancy flux (and the145

rest for dissipation). The finestructure method is not expected to be valid in equatorial regions of the ocean, but nevertheless,

the κρ product compares well with microstructure near the equator (Whalen et al., 2015). We use the 2006-2014 climatology

of Whalen et al. (2015)–referred to as κρ,Argo hereafter–which is a gridded product on an approximately 1o× 1o horizontal

grid and has three vertical levels: 250-500 meters, 500-1000 meters, and 1000-2000 meters depth. Whalen et al. (2015) found

that 81% (96%) of their κρ,Argo product is within a factor of 2 (3) of the microstructure measurements. We use this as the basis150

for the factor of 2-3 uncertainty we cite hereafter.

In addition to the Argo-derived κρ,Argo product, there is ship-based Conductivity, Temperature, and Depth (CTD) hydrography-

derived κρ (Kunze, 2017)–referred to as κρ,CTD hereafter–that uses the same finestructure parameterization as in the calculation

of the κρ,Argo product (see Section 2.2). The vertical resolution of the κρ,CTD product is 256 meters and the horizontal resolu-

tion is the spacing between each CTD profile. Data are only included in the κρ,CTD product when the square of the buoyancy155
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frequency is greater than 10−7 rad2 s−2 and greater than the square of the Coriolis frequency, κρ,CTD < 3× 10−3 m2 s−1 is

positive, and the depth is deeper than 400 meters.

One last product we use for observationally-derived κρ–referred to as κρ,tides hereafter–is based on theory, a spectral pa-

rameterization for abyssal hills, and climatological products (de Lavergne et al., 2020). This scheme accounts for the local

breaking of high-mode internal tides and remote dissipation of low-mode internal tides. The four processes contributing to the160

mixing from this scheme include wave-wave interactions that attenuate low-mode internal tides, shoaling that breaks low-mode

internal tides, dissipation of low-mode internal tides at critical slopes, and scattering of low-mode internal tides combined with

generation of high-mode internal tides via abyssal hills. Note that these tidally-induced mixing process are not equivalent to the

suite of internal wave-induced mixing processes that κρ,Argo and κρ,CTD account for. The gridded κρ,tides product is global,

nominally 1/2o horizontal resolution, and ranges from 10 to 250 meters in vertical resolution. A stratification field is provided165

in this product, which is the one we use for the remainder of this study (Section 2.1.3).

2.1.2 Dissolved oxygen

Because we have annual mean κρ products, we use the annual mean dissolved oxygen concentration climatology from the

World Ocean Atlas (2013) for the remainder of our analysis. Any potential information that oxygen concentrations provide

about κρ is likely through oxygen’s vertical gradients because water masses–which tend to be relatively homogenous in oxygen170

concentrations–are eroded via diapycnal mixing along their peripheries. Thus, we show oxygen’s vertical gradients, ∂O2/∂z

here. We compare ∂O2/∂z (Figs. 1a,c,e) with the dissipation rates, ε=N2κρ/0.2 for stratification N2 through the Osborn

(1980) relationship, from the Whalen et al. (2015) product (Fig. 1b,d,f) at the same depth-averaged bins. ∂O2/∂z is generally

smaller in magnitude in many high-latitude and tropical regions (Figs. 1a,c,e), whereas the Argo-derived dissipation rates can

be relatively large in these regions, with the exception of locations in the Southern Ocean (Figs. 1b,d,f). ∂O2/∂z is relatively175

large and positive landward of the Gulf Stream, in the Chukchi and Beaufort Seas, near the Norwegian coast, off the southern

coast of India, near the equator in the Atlantic and western Pacific Oceans, and in the Southern Hemisphere’s subtropical

gyres of the Pacific and Indian Oceans between 250-500 meters depth (Fig. 1a). The largest positive ∂O2/∂z are between

the subpolar regions and the equator at deeper depths (Figs. 1c,e). The dissipation rates are relatively small in many of these

regions (Figs. 1b,d,f). Exceptions to the inverse relationship between ∂O2/∂z and the dissipation rates tend to be in the vicinity180

of intensified jets, likely because lateral exchanges of oxygen concentrations become more important in these regions. Where

data exist for both data products, the spatial correlation between ∂O2/∂z and the dissipation rates is about −0.2 and increases

in magnitude on coarser grids. This indicates a possibly non-local relationship between ∂O2/∂z and dissipation rates. The

spatial correlation between ∂O2/∂z and κρ,Argo is smaller in magnitude–about −0.1–which motivates further consideration

of the information provided by N2.185

2.1.3 Stratification

We use an observational climatology for N2, as provided by the de Lavergne et al. (2020) data set. N2 is generally about

10−7− 10−5 s−2, with lower values in high-latitude and deeper regions and higher values in the thermocline and in shallow
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water areas–which skew its global average (standard deviation) below the mixed layer to about 1.2× 10−4 (3× 10−3) s−2.

The vertical gradients in N2 are typically between −10−5 and 10−5 m−1 s−2 and have an average value (standard deviation)190

of about −10−7 (4× 10−6) m−1 s−2, with its largest magnitudes on continental shelves–high-latitude ones in particular–and

in the eastern equatorial Pacific Ocean. The spatial correlation between the annual mean vertical gradients in oxygen (Figs.

1a,c,e) and the annual mean vertical gradients in N2 is about 0.25, which suggests that stratification is one candidate factor

in explaining why oxygen concentrations are correlated with κρ and ε. However, we do not test this with model experiments

that incorporate information about N2–which directly compare N2 from our model and observations–because the vertical195

resolution of our ocean model is so much coarser than that of observations. Instead, we run a set of model experiments that

compare oxygen concentrations, κρ, or ε. We perform these model experiments to further explore the potential information that

oxygen concentrations provide about κρ and indirectly infer–via the Osborn (1980) relation–the possible role of stratification.

2.2 Modeling system

We use the Estimating the Circulation & Climate of the Ocean (ECCO) framework in our analysis. ECCO uses a time-invariant200

but spatially varying background κρ field, calculated with a parameter and state estimation procedure, where κρ associated

with temperature and salinity are assumed to be identical. Details about the model simulations we perform are summarized in

Table 2.

2.2.1 ECCO

The modeling system used here is ECCOv4r3 (Fukumori et al., 2017). The underlying ocean-sea ice model is based on the205

Massachusetts Institute of Technology general circulation model (MITgcm), which is a global finite volume model. The EC-

COv4r3 global configuration uses curvilinear Cartesian coordinates (Forget et al. (2015a) - see their Figs. 1-3) at a nominal 1o

(0.4o at equator) resolution and rescaled height coordinates (Adcroft and Campin, 2004) with 50 vertical levels and a partial cell

representation of bottom topography (Adcroft et al., 1997). The MITgcm uses a dynamic/thermodynamic sea ice component

(Menemenlis et al., 2005; Losch et al., 2010; Heimbach et al., 2010) and a nonlinear free surface with freshwater flux boundary210

conditions (Campin et al., 2004). The wind speed and wind stress are specified as 6-hourly varying input fields over 24 years

(1992-2015). Average adjustments to the wind stress, wind speed, specific humidity, shortwave downwelling radiation, and

surface air temperature are re-estimated and then applied over 14-day periods. These adjustments are based on estimated prior

uncertainties for the chosen atmospheric reanalysis (Chaudhuri et al., 2013), which is ERA-Interim (Dee et al., 2011). The net

heat flux is then computed via a bulk formula (Large and Yeager, 2009). The ocean variables, on the other hand, do not get pe-215

riodically adjusted. A parameterization of the effects of geostrophic eddies (Gent and McWilliams, 1990) is used. Mixing along

isopycnals is accounted for according to the framework provided by Redi (1982). Vertical mixing–diapycnal plus the vertical

component of the along-isopycnal tensor–is determined according to the Gaspar et al. (1990) mixed layer turbulence closure,

simple convective adjustment, and estimated background κρ. Here, κρ represents a combination of processes, including–but

potentially not limited to–internal wave-induced mixing. κρ, the Redi coefficient, and the Gent-McWilliams coefficient are220

time-independent because of the under-determined problem of inverting for initial conditions and model parameters would be
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even more under-determined if they were allowed to vary in time–explained below. In order to simulate oxygen concentra-

tions, tracers are carried using Biogeochemistry with Light, Iron, Nutrients and Gases (BLING) model (Galbraith et al., 2015).

BLING is an intermediate complexity biogeochemistry model that uses eight prognostic tracers and parameterized, implicit

representations of iron, macronutrients, and light limitation and photoadaptation. BLING has been shown to compare well with225

the Geophysical Fluid Dynamics Laboratory’s full-complexity biogeochemical model, TOPAZ (Galbraith et al., 2015), and

has been adapted for use in the MITgcm with its adjoint (Verdy and Mazloff , 2017).

Initial conditions and model parameters for the runs performed here are from ECCOv4r3. The least-squares problem solved

by the ECCO model uses the method of Lagrange multipliers through iterative improvement, which relies upon a quasi-Newton

gradient search (Nocedal, 1980; Gilbert and Lemarechal, 1989). Algorithmic (or automatic) differentiation tools (Griewank,230

1992; Giering and Kaminski, 1998) have allowed for the practical use of Lagrange multipliers in a time-varying non-linear

inverse problem such as ocean modeling, eliminating the need for discretized adjoint equations to be explicitly hand-coded.

Contributions of observations to the model-data misfit function are weighted by best-available estimated data and model rep-

resentation error variance (Wunsch and Heimbach, 2007). The observational data included in the ECCO state estimation pro-

cedure are discussed in Forget et al. (2015a) and Fukumori et al. (2017). These data include satellite-derived ocean bottom235

pressure anomalies, sea ice concentrations, sea surface temperatures, sea surface salinities, sea surface height anomalies, and

mean dynamic topography, as well as profiler- and mooring-derived temperatures and salinities (Fukumori et al., 2017). No

ocean subgrid-scale transport parameter, mixing parameter, or biogeochemical tracer data are included in the model’s misfits

during the parameter and state estimation procedure. The control variables that are inverted for iteratively by ECCO are listed

in Table 3, which include the ocean subgrid-scale transport and mixing parameters–e.g., κρ. The error covariances for each240

of the ocean subgrid-scale transport and mixing parameters are specified by imposing a smoothness operator (Weaver and

Courtier, 2001) at the scale of three grid points–decorrelation length scale diameter of∼ 100 km–which allows for the dynam-

ical model to regionally adjust from the information provided by observations (Forget et al., 2015b). Fifty-nine iterations of

the parameter and state estimation procedure–referred to as the “optimization” run hereafter–were performed to arrive at the

ECCOv4r3 solution we start from for our experiments. The resulting κρ field in the ECCOv4r3 solution will be referred to as245

κρ,ECCO hereafter and is shown in Fig. 2–depth-averaged below the model’s average mixed layer depth. Note that the initial

guess for κρ,ECCO is 10−5 m2 s−1 and in the absence of observation-driven adjustments, κρ,ECCO remains at or is close to

its initial value in the ECCOv4r3 solution, at least in its depth-average. κρ,ECCO is elevated in regions that undergo deep con-

vection, near the margins of continental shelves and intensified jets, and in the Indonesian Throughflow. We will later compare

κρ,ECCO with κρ from the first iteration of the same optimization run with ECCO, which will be referred to as κρ,ECCO,0250

hereafter. If κρ,ECCO,0 is in closer agreement with κρ from observational products than κρ,ECCO, then errors in κρ,ECCO are

likely being compensated by errors in other control variables beyond the first iteration of the model’s optimization run.

We run ECCO in two configurations: 1) a “re-run,” where all control variables are set to be their estimated values from

ECCOv4r3 in forward mode–sometimes referred to as an ocean-only free run–and 2) an “adjoint sensitivity” run of the pa-

rameter and state estimate in forward plus adjoint modes, where data are included in the model’s misfits but not technically255

“assimilated” because the model input parameters do not change as the model runs. An adjoint sensitivity is essentially the sen-
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sitivity of one variable to another, computed by making use of the model’s adjoint. Formally, an adjoint sensitivity is ∂J/∂X ,

where the cost function J is a sum of weighted misfits to observations and a control variable X is a variable that the model

estimates by making use of its adjoint and observations–see Section 2.2.2. The adjoint sensitivities provide information about

which directions the model’s input parameters should change X in order to minimize J . Masuda and Osafune (2021) showed260

some examples of adjoint sensitivities of several model parameters in their ocean state estimate to a vertical mixing parameter

(slightly different from κρ). We also compute adjoint sensitivities in the present study, but using ECCO with respect toX = κρ.

The following is a summary of the ECCO experiments we run (Table 2):

– E-CTRL - a forward ECCOv4 simulation that uses the parameters from ECCOv4r3; this simulation can be referred to

as a “re-run”265

– EO - an adjoint sensitivity (with respect to X = κρ) experiment in which only oxygen concentrations from the World

Ocean Atlas (2013) climatology are included in the misfit function J

– Eκ - an adjoint sensitivity (with respect to X = κρ) experiment in which only the base-10 logarithm of the κρ,micro data

set, κρ,Argo and κρ,CTD products, or κρ,tides product are included in the misfit function J

– Eε - an adjoint sensitivity (with respect to X = ε) experiment in which only the base-10 logarithm of the εArgo =270

κρ,ArgoN
2/0.2 and εCTD = κρ,CTDN

2/0.2 products or εtides = κρ,tidesN
2/0.2 product are included in the misfit

function J

The difference between experiment Eκ and Eε is that the latter uses observationally-derived dissipation rates, ε=N2κρ/0.2

instead of κρ, in the misfit function via Eq (2). We do not perform the experiment Eε with microstructure data included in

the model’s misfit function because of the sparsity of those data. We analyze the adjoint sensitivities with dissipation rates275

in the misfit function (Eε in Table 2) in order to assess whether the stratification–a multiplying factor between κρ and the

dissipation rates according to Osborn (1980)–provides information about κρ. Due to the relatively coarse vertical resolution of

ECCO compared with observations, we do not directly compare N2 from ECCO with N2 from observations in another adjoint

sensitivity experiment.

We take the ECCOv4r3 solution as the reference state for each of our simulations. We perform an adjoint calculation in each280

experiment, except for E-CTRL. The adjoint sensitivities are accumulated and averaged over the full integration period. Only

one year was run for each of the adjoint simulations, but our results are not qualitatively sensitive to the run length–which is at

least partially because we are using time-invariant climatologies. The time-dependence of the κρ sensitivities from Eκ is weak

due to the lack of time-dependence of the observations included in the misfits–κρ and oxygen concentrations; initial condition

sensitivities are stronger. Thus, our simulations will suffice to demonstrate whether the inclusion of a biogeochemical tracer in285

the model’s misfits can reduce the bias in κρ.

We begin EO from a previously-derived product that has been spun-up from an initial climatology (Fig. 3a) derived from

World Ocean Atlas (2013). Thus, disagreements with the World Ocean Atlas (2013) are due to model drift. The depth-averaged

differences between the uninterpolated World Ocean Atlas (2013) product and the initial conditions for oxygen concentrations
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in our ECCO run using BLING are shown in Fig. 3b. The differences are largest in the Arctic Ocean, northeastern Pacific290

Ocean, and near the coasts, particularly on the eastern side of the American continent, the southwestern side of the African

continent, around the Kuroshio/Sea of Japan region, along almost every coastline of Oceania, and in the Mediterranean Sea

(Fig. 3b). Point-wise differences between the initial conditions for oxygen concentrations in ECCO and the World Ocean Atlas

(2013) product are shown in Fig. 3c, which suggests that there is strong agreement between the two fields. Where there are

disagreements, the initial conditions for oxygen concentrations in ECCO are more often too small (particularly in the Atlantic295

Ocean, as shown in Fig. 3b) than too large. These differences are likely due to the deficiencies in model resolution, the sparse

observations in regions such as the Arctic Ocean, the locations of sea ice (Bigdeli et al., 2017), and the parameterization of

the tracer air-sea fluxes (e.g., Atamanchuk et al. (2020)). We need to consider the spatial patterns shown in Fig. 3b when

interpreting the signs of the adjoint sensitivities.

2.2.2 ECCO adjoint sensitivity analyses300

Short of including a particular data set (e.g., dissolved oxygen concentrations) in the misfits of a new optimization run of

ECCO, we assess whether the inclusion of a particular data set in the model’s misfits could lead to a more accurate estimate of

a control variable that can be observed (e.g., κρ). In order to understand whether κρ could be estimated more accurately through

the inclusion of oxygen concentrations in the model’s misfit, we need to further explain the details of our adjoint sensitivity

experiments with ECCO. We define the objective (or cost) function here to more formally explain what the adjoint sensitivity305

is. ECCO calculates the cost function to be minimized, J , (Stammer et al., 2002) as–focusing here only on the observational

misfit terms while omitting regularization terms for the control variables:

J =

tf∑
t=1

[y(t)−Sx̃(t)]TW(t)[y(t)−Sx̃(t)] (1)

where tf is the final time step, x̃ is the model-based estimate of the state vector x, S is the observation matrix that relates

the model state vector to observed variables y (such that Sx̃ is the model-based estimate of the observables y), and W is the310

weight (inverse square of approximate uncertainties accounting for measurement and representation errors) of the observations.

In each of our adjoint sensitivity experiments, the data vector y only contains the data set specific to the experiment (see Table

2) so we emphasize here that J is different for each of our experiments. The uncertainties in κρ,ECCO in Eκ are set to be three

times the values of the observationally-derived κρ because of the level of agreement between the κρ,Argo and κρ,micro (Whalen

et al., 2015). The uncertainties in oxygen concentrations inEO are set to be 2% of the values of the measured dissolved oxygen315

concentrations.

The adjoint sensitivities computed in this study are the derivatives of J in Eq. 1 with respect to κρ. We consider evaluating

directions in the control space in which to improve κρ, given the control vector from the ECCOv4r3 solution. While the adjoint

sensitivities of J to the control space in experiment EO must be computed online, those in Eκ can either be computed online

or offline using an analytical equation (see below). The adjoint sensitivity run with κρ included in the misfit calculation of320
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experiment Eκ can be calculated offline using output from the E-CTRL run instead of being calculated online as follows:

∂J

∂X
=−2

(Xobs−Xmodel)

σ2
X

. (2)

Here,X = κρ is the control variable,Xobs is the observationally-derived value ofX described in the previous section,Xmodelis

the value that ECCO estimates for X , and σX is taken to be 3Xobs/1.96 (or the base-10 logarithm of this in the case of κρ) due

to the factor of 3 uncertainty corresponding to an approximate 95% confidence interval in Whalen et al. (2015). For Xmodel,325

we use the offline values calculated from the E-CTRL run following Eq. 2. While this assumes a diagonal W and minimal

impact of the smoothing operator applied over a decorrelation length scale diameter of ∼ 100 km, the offline Eq. 2 and online

sensitivities have been verified to be in agreement.

Because the observations of κρ here are not direct measurements, we first need to show that observationally-derived κρ has

a smaller bias with respect to independent observations than the model’s estimate of κρ. We devote the first portion of our330

study to determining whether |κρ,Argo−κρ,micro|< |κρ,ECCO−κρ,micro| (and, by extension, κρ,CTD in place of κρ,Argo) is

true. We do this because κρ,micro is limited in its spatial coverage compared to κρ,Argo, κρ,CTD, and κρ,tides. Also, κρ,Argo

and κρ,CTD are still limited spatial coverage relative to dissolved oxygen concentrations. While κρ,tides has global spatial

coverage, its measurement plus structural uncertainties are not well-known compared to dissolved oxygen concentrations. The

data product with higher accuracy (dissolved oxygen concentrations) will have larger weights (W in Eq. 1) and thus will exert335

more influence in constraining κρ,ECCO–bringing it closer to microstructure values. So if we can show that the adjustments to

κρ in ECCO are similar, whether we provide information from observationally-derived κρ or a measured tracer with relatively

small uncertainties (dissolved oxygen concentrations), then we would include the tracer in the misfits.

One problem with doing a direct comparison of the adjustments is that the uncertainties in observationally-derived κρ

products are large, so we first quantify the extent to which the adjoint sensitivities from two runs (here, Eκ and EO) have340

the same sign at each location and depth. Specifically, we inspect whether ∂J/∂κρ has the same sign in Eκ and EO where

|κρ,Argo−κρ,ECCO| is significantly different from zero (i.e., κρ,Argo is more than a factor of three greater or less than a factor

of three smaller than κρ,ECCO). We are interested in regions where κρ is significantly erroneous and where the errors in oxygen

are due to errors in the physics (e.g., κρ), not initial conditions; hence, these choices. We perform these comparisons in regions

where the difference between the observationally-derived κρ products and κρ,ECCO exceeds three times the observational345

products’ magnitudes (i.e., statistically distinguishable from zero). Because model errors unrelated to κρ can confound the

correlations between the adjoint sensitivities from Eκ and EO, we additionally look at regions where the difference between

oxygen concentrations from the model and the World Ocean Atlas (2013) is relatively small to determine whether oxygen

concentrations guide the state estimate’s control space to improve the magnitude of κρ. In this subset of regions, we calculate

the correlations between the adjoint sensitivities from Eκ and EO–despite the difficulty with determining their significance.350

To investigate whether the results are sensitive to our assumptions about the signal-to-noise ratio of our data–through W

in Eq. 1–we additionally perform Monte Carlo simulations for the adjoint sensitivities from Eκ–using three different data sets

for κρ: κρ,micro, κρ,Argo together with κρ,CTD, and κρ,tides. In the Monte Carlo simulations, at each location and depth, we

randomly sample κρ values within its uncertainty–σκ–simultaneously with randomly sampled values of σκ between a factor
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of 2-3 of κρ. This accounts for the uncertainties in the κρ products in both the numerator–corresponding to uncertainties in the355

observationally-derived estimates–and denominator of Eq (2)–corresponding to the weights. With each of the 10,000 samples

of κρ and σκ, we recompute the adjoint sensitivity for Eκ and then its correlation with that for EO. With these Monte Carlo

simulations, we report the maximum possible correlation between each experiment’s adjoint sensitivities.

3 Results

We first show that the disagreements between κρ from ECCO and κρ from various observations are larger than the observations’360

approximate 95% confidence intervals. Then we analyze results from pairs of adjoint sensitivity runs: one with misfits to

observed κρ derived from the finescale parameterization and the other with misfits to observed O2. We use these results to

investigate the potential to use O2 as a constraint for improving κρ,ECCO in a future optimization. We then compare the results

of the adjoint sensitivity runs using misfits in κρ with ones using misfits in ε to infer a potential role of stratification in any

information that O2 provides about κρ. In the Appendix, we show there is general agreement between κρ from observations and365

a free-running earth system model that calculates a physically-motivated parameterization for κρ, but poor agreement between

κρ from observations and a sequential ocean data assimilation system based on the same earth system model (Fig. A1a).

3.1 Model-inverted vs microstructure-inferred κρ comparisons

We compare the average κρ,micro profile that is comprised of 24 campaigns’ worth of data (Waterhouse et al., 2014) (see their

Fig. 6; black curves in Figs. 4a and 5) with average κρ,ECCO profiles from two different iterations and the κρ,Argo product370

(Whalen et al., 2015). The locations of the microstructure measurements are shown in Fig. 2 (black X’s). We also compare the

average κρ,tides profile (de Lavergne et al., 2020) (see their Fig. 2e; black curve in Fig. 4b) with the average κρ,ECCO profile

from the final iteration.

The average κρ,ECCO,0 profile–i.e., the initial guess of κρ,ECCO–is typically smaller than the microstructure profile, par-

ticularly at 1000 m where the difference is approximately an order of magnitude (Fig. 4a). At iteration 59 (which is the EC-375

COv4r3 solution), the difference between κρ,ECCO and κρ,micro decreases. However, agreement between the average profiles

of κρ,ECCO and κρ,micro is still worse than the agreement between κρ,Argo and κρ,micro. The agreement between κρ,Argo and

κρ,micro at each of the three depth bins is well within a factor of three (dotted black curves in Fig. 4a) and the spatial standard

deviation of κρ,micro (dashed black curves in Fig. 4a). The agreement between the average profiles of κρ,ECCO and κρ,tides is

poor, with κρ,ECCO typically too small, notably so at deeper depths (Fig. 4b). κρ,ECCO includes internal-wave-induced mix-380

ing as well as potentially numerical diffusion. However, numerical diffusion cannot explain the errors in κρ,ECCO where κρ is

too small in the model relative to the observationally-derived products because numerical diffusion would increase κρ,ECCO.

In these regions, one likely explanation is that errors in other model parameters (e.g., the Redi coefficients) compensate for the

errors in κρ,ECCO.

We also compare κρ,ECCO and κρ,ECCO,0 profiles with κρ,micro from 16 example campaigns in Fig. 5. In some regions,385

the κρ,ECCO and κρ,ECCO,0 profiles are constant (10−5 m2 s−1, the default background value) because ECCO does not
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sufficiently resolve the bathymetry so we exclude those from Fig. 5. We also exclude some others, for example, in the subpolar

North Atlantic because temporal variations in κρ can be large there (Fig. A1b). The κρ,ECCO profiles (blue curves in Fig. 5)

and κρ,ECCO,0 profiles (grey curves in Fig. 5) are often within the approximate (factor of three) uncertainties in the κρ,micro

profiles (dashed black curves in Fig. 5), but not always. Without taking an average over all of the campaigns, there can be390

large regional disagreements between the model and observations. Also, the κρ,ECCO profiles are not always closer to the

κρ,micro profiles than the κρ,ECCO,0 profiles. This suggests that performing more iterations of the optimization of ECCO is

not necessarily going to lead to more accurate representation of κρ with the current data constraints.

3.2 Model-inverted vs finescale parameterization-derived κρ comparisons

We next show κρ,Argo and κρ,tides as well as how they contrast with κρ,ECCO because this highlights the spatial patterns of395

the adjoint sensitivities in Eκ (see later). The ratio between the κρ,Argo product (Figs. 6a,c,e) and κρ,ECCO varies throughout

the globe (Figs. 6b,d,f). Red (Blue) areas in Figs. 6b,d,f indicate locations where Argo-derived κρ,Argo is smaller (larger)

than κρ,ECCO. The percent of volume where κρ,ECCO is at least an order of magnitude different from κρ,Argo is 43.8%.

The values of κρ,ECCO are smaller than those in the Argo- and hydrography-derived observational product in the Kursoshio

Extension (500-1000 meters depth), subpolar North Atlantic (500-1000 meters depth), Southern Ocean, equatorial regions400

in the Atlantic, and shallow (250-500 meters depth) Indian and eastern Pacific Oceans (Figs. 6b,d,f). In contrast, κρ,ECCO

tends to be too large relative to the κρ,tides product (Figs. 7a,c,e) in the Atlantic Ocean below 500 meters depth as well as in

many near-equatorial and subpolar regions and κρ,ECCO tends to be too small everywhere else (Figs. 7b,d,f). Regardless of

the observational product, the κρ,ECCO field is comparatively large in many of the model’s near-equatorial regions, where the

intermittency of strong mixing events is likely not captured–even in a time-mean sense–by a time-invariant κρ,ECCO. However,405

the fidelity of each observational product is unknown near the equator. The fact that κρ,ECCO and each observational product

disagree within the deep mixed layers at high latitudes is not consequential for tracer transport. The errors in κρ,ECCO could

be partially compensating for errors in the vertical component of the along-isopycnal diffusivity tensor, erroneous air-sea fluxes

due to inconsistencies between the sea surface and atmospheric forcing fields, and/or the presence of numerical diffusion.

Incomplete historical observations–of temperature, salinity, and pressure–are currently insufficient to accurately estimate410

κρ,ECCO. Even the abundance of Argo data in the upper 2000 meters have not been enough to calculate a realistic κρ,ECCO

in the upper 2000 meters. The sparsity of the observations below 2000 meters depth, in high latitude regions, and in some

near-coastal areas–where internal wave-induced mixing can be important–is relevant because complete observational coverage

of the ocean’s temperature, salinity, and pressure could, in principle, better constrain κρ using inverse modeling (Groeskamp

et al., 2017). However, the lack of time-dependence of κρ,ECCO, the presence of numerical mixing, and joint estimation of415

many under-determined parameters in ECCO could also lead to erroneous κρ,ECCO. These are some reasons why values of

κρ,ECCO do not agree well with κρ from observations–κρ,micro, κρ,Argo, κρ,CTD, or κρ,tides.
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3.3 Adjoint sensitivities in ECCO

Because the data that are currently included in ECCO’s misfits are insufficient for κρ,ECCO to match κρ,micro, κρ,Argo,

κρ,CTD, or κρ,tides, including additional variables controlled by mixing in the model’s misfits may assist in further improving420

the modeled mixing parameters. Oxygen is a candidate since its distribution is, in part, determined by the local κρ. To test this,

we run multiple adjoint sensitivity experiments in which either observationally-derived κρ or oxygen is included in the misfit

calculation to guide constraints on κρ. We expect that the signs of sensitivities agree most in regions away from where air-sea

fluxes and transport of oxygen–e.g., by intensified jets–are large. One of these regions is the subtropical North Atlantic Ocean,

away from the Gulf Stream Extension. Further, we expect to find more agreement between the signs of sensitivities in tropical425

OMZs and other (sub)tropical regions because of the known importance of diapycnal mixing in these regions.

We show the adjoint sensitivity calculations using Eq. 2 for κρ misfits (experiment Eκ in Table 2) in Fig. 8 using κρ,Argo

and κρ,CTD; these are later compared with the sensitivities for oxygen concentration misfits in experiment EO. A positive

adjoint sensitivity implies that the misfit can be reduced by decreasing κρ,ECCO. The signs of ∂J/∂ κρ using κρ,Argo and

κρ,CTD (Fig. 8a) are consistent with the signs of local disagreement with microstructure (Figs. 4a and 5) and Argo-derived430

observations (Fig. 6b,d,f), by construction. Because κρ,ECCO tends to be very large inside mixed layers, ∂J/∂ κρ tends to be

positive and larger at many locations in the subpolar latitudes where there are deep mixed layers in the model but possibly not

in the real ocean; conversely, ∂J/∂ κρ can be negative where the mixed layer depth is too shallow in ECCO, but this isn’t the

only reason for ∂J/∂ κρ < 0. The large positive values of ∂J/∂ κρ within the mixed layer and some other regions overwhelm

the zonal averages in favor of positive values (Fig. 8c). κρ,ECCO needs to be decreased in many regions at depths shallower435

than 500 meters to agree better with κρ,Argo and κρ,CTD (yellow regions in Figs. 6b,d,f), but microstructure measurements

(X’s in Fig. 2) were often taken in locations where κρ,ECCO should be increased (blue regions in Figs. 6b,d,f) or stay the

same. Microstructure measurements tend to be regions where there are prominent topographic features and where the centers

of subtropical gyres are found, which–judging from the predominant signs of disagreement in Figs. 4a and 5 versus Figs.

6b,d,f–aren’t representative of the ocean where Argo measurements were taken.440

We next compare ∂J/∂ κρ fromEκ using κρ,Argo and κρ,CTD with ∂J/∂ κρ fromEO. InEO, ∂J/∂ κρ is generally negative

in subtropical regions (Figs. 8b,d). Overall, the locations of the positive/negative signs of ∂J/∂ κρ are not the same everywhere

between the Eκ and the EO experiments, but they agree in many regions (Figs. 8a,c and Figs. 8b,d) using κρ,Argo and κρ,CTD,

which account for nearly two-thirds (three-fourths) of the ocean’s volume where they can be compared (in the subtropics,

between 20o-50oN/S; Fig. 9; Table 4). The ocean basin with the highest percent volume of agreement in adjoint sensitivity445

signs between Eκ and EO is the subtropical North Atlantic Ocean, with nearly 85% volume agreement. The subtropical South

Atlantic Ocean is the only subtropical basin with less than half of its volume in agreement in adjoint sensitivity sign. In general,

the tropical regions (between 20oS and 20oN) have adjoint sensitivity signs in lesser agreement than the subtropical regions

and the subpolar regions (poleward of 50oN/S) are the regions with the lowest percent volume agreements in adjoint sensitivity

signs.450
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We also show the adjoint sensitivity calculations using Eq. 2 for κρ misfits (experiment Eκ in Table 2) in Fig. 10 using

κρ,tides and compare ∂J/∂ κρ from Eκ using κρ,tides with ∂J/∂ κρ from EO. The signs of ∂J/∂ κρ using κρ,tides (Fig.

10a) are consistent with the signs of local disagreement with the de Lavergne et al. (2020) product (Figs. 4b and 7b,d,f), by

construction. The positive values of ∂J/∂ κρ outside of the Atlantic Ocean and in the vicinity of intensified jets overwhelm

the zonal averages in favor of positive values at most depths (Fig. 10c). κρ,ECCO needs to be decreased in many regions at455

depths shallower than about 2500 meters to agree better with κρ,tides (Fig. 4b; yellow regions in Figs. 7b,d,f). The regions

where κρ,ECCO needs to be increased become dominant closer to the seafloor, particularly in the Atlantic Ocean. The signs

of ∂J/∂ κρ from Eκ agree with ∂J/∂ κρ from EO in fewer regions (Figs. 10a,c and Figs. 10b,d) using κρ,tides instead of

κρ,Argo and κρ,CTD. The regions with agreement in signs of sensitivities using κρ,tides account for just over half of the ocean’s

volume where they can be compared globally (Fig. 11; Table 4); this is also true for the subtropics. The equatorial regions have460

the highest percent volume of agreement in signs of sensitivities using κρ,tides over all depths, but the North Atlantic also has

fairly high agreement (Fig. 11a). There is high agreement in the regions of the Arctic Ocean that are north of the Greenland

and Barents Seas too. Compared with shallower depths, regions below 3000 meters depth tend to be derived from Antarctic

Bottom Water (Marshall and Speer, 2012 - see their Figure 1) and therefore have different oxygen concentration characteristics

such as weaker vertical gradients, have differences between κρ,ECCO and observationally-derived κρ that are more commonly465

statistically indistinguishable, and have less overwhelmingly positive adjoint sensitivities from Eκ using κρ,tides (Fig. 10c).

As a result, all of the depths with the highest levels of agreement in signs of sensitivities using κρ,tides are between the

mixed layer depth and 3000 meters depth (Fig. 11b). Most differences in the spatial distribution of agreements between the

signs of sensitivities across different observationally-derived products (Figs. 9 and 11) are at least partially due to their spatial

coverage–Argo versus global–and the < 100% overlap in processes accounted for by the various κρ products. Thus, the level470

of agreement in signs of sensitivities from Eκ and EO is high over many regions, and is qualitatively consistent in its spatial

distribution across the different observationally-derived products for κρ.

We need to address whether any of the agreement in signs of sensitivities is random–as their correlation is due to the

large uncertainties in observationally-derived κρ–or underpinned by physical reasons. We first focus on the locations with

statistically indistinguishable errors in κρ,ECCO. These regions and those where there can be significant differences between475

oxygen concentrations in ECCO and the World Ocean Atlas (2013) product correspond to the white regions in Fig. 9 that

are red or blue in Fig. 8–likewise for Fig. 11 versus Fig. 10. The vast majority of the locations where disagreements occur

in sensitivity signs are in places with statistically indistinguishable differences between κρ,ECCO and observationally-derived

κρ. The regions with statistically indistinguishable differences in κρ account for 56.2% (24.1%) of the volume of the ocean

where the adjoint sensitivities from EO and Eκ can be compared using κρ,Argo and κρ,CTD (κρ,tides). Thus, we exclude a480

large portion of the ocean from the remainder of our analysis because we cannot determine whether agreements in signs of

sensitivities are by random chance in these regions.

We next inspect the sensitivity sign patterns in regions with statistically significant κρ misfits. The regions where the signs of

∂J/∂ κρ agree from the two experiments and have large differences between κρ,ECCO and the combined κρ,Argo and κρ,CTD

product tend to have relatively small oxygen concentration misfits (Fig. 3b). This is also true when using the κρ,tides product.485
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For example, when only regions with less than one standard deviations above the average oxygen concentration misfits are

selected, the signs of the adjoint sensitivities agree between EO and Eκ over 60.8% (50.5%) of the volume with sufficient

data using κρ,Argo and κρ,CTD (κρ,tides). However, the larger the oxygen concentration misfits, the more often the signs of

the sensitivities agree. When only regions with more than three standard deviations above the average oxygen concentration

misfits are selected, the signs of the sensitivities always agree. Thus, the regions with the largest disagreements in oxygen490

concentrations can always decrease their oxygen misfits by changing κρ,ECCO with a sign consistent with decreasing its

disagreement with observationally-derived κρ, wherever differences in κρ are detectable.

Where there are statistically significant differences in κρ, we still need to determine whether there is a physical basis for the

agreements in signs of sensitivities. We next show results that are consistent with our hypothesis that the tropical OMZs and

other (sub)tropical regions are where oxygen concentrations can inform κρ in the model such that there is better agreement with495

observationally-derived κρ products. The regions with the highest percent volume agreement in sensitivity signs, regardless of

which observationally-derived κρ product is used, include tropical OMZs and other (sub)tropical regions below several hundred

meters depth (Figs. 9b and 11b). Differences between the signs of the sensitivities tend to be more common in locations where

κρ is not expected to dominate the variability in oxygen. These regions include, for example, the open subpolar North Atlantic

Ocean (e.g., the Labrador Sea in Figs. 9a and 11a), where Atamanchuk et al. (2020) present observational evidence that air-500

sea fluxes mediated by bubble injection–not represented by ECCO–dominate the variability in oxygen down to 1000 meters

depth. While there can be a high percent volume agreement in sensitivity signs in the equatorial Pacific and Atlantic Oceans,

these are also regions where Palter and Trossman (2018) and Brandt et al. (2021) point out that ocean circulation changes

significantly influence long-term changes in oxygen. This suggests that changes in both ocean circulation and κρ could be

important in explaining oxygen concentration variations in the tropics. When the tropical and subpolar regions (outside of the505

20o− 50oN/S bands) are excluded, the percent volume of the ocean where the signs of the adjoint sensitivities agree between

Eκ and EO increases, regardless of which observationally-derived κρ product we use. Given that there are known physical

processes not dominated by κρ causing variations in oxygen concentrations in regions outside of the tropical OMZs and other

(sub)tropical regions, our interpretation of the patterns shown in Figs. 8-11 is that κρ controls much of the variability in oxygen

concentrations in large portions of the tropical OMZs and other (sub)tropical regions. This is one indication that dissolved510

oxygen concentrations could provide information about κρ, at least for some regions of the ocean.

We further address whether the potential information dissolved oxygen concentrations provide about κρ is due to the in-

formation oxygen contains about stratification. To determine whether oxygen provides information about stratification–and

through stratification, about κρ–we use the adjoint sensitivity results obtained from experimentEε with observationally-derived

dissipation rates, ε=N2κρ/0.2 (e.g., Figs. 1b,d,f) instead of κρ (e.g., Figs. 6b,d,f), in the misfit function via Eq (2) and multi-515

ply the adjoint sensitivity of EO by 0.2/N2 so that their sensitivities are each taken with respect to ε (parentheses in Table 4).

We find approximately equal agreement between the signs of the adjoint sensitivities from EO (scaled by 0.2/N2) and Eε as

we do between those from EO and Eκ in every region, regardless of which observationally-derived product we use. Because

ε is related to κρ through the stratification, we suggest that the information oxygen concentrations provide about κρ is likely

independent of the stratification field.520
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Lastly, given that the general agreement in signs of sensitivities between Eκ and EO are likely underpinned by physical rea-

sons unrelated to stratification, we pursue whether there is a statistically significant relationship between the adjoint sensitivities

from Eκ and EO. We again focus on the regions where the difference between κρ,ECCO and observational κρ products (from

tides, Argo/CTD, and microstructure) is statistically significant (greater than a factor of three), but also filter out the adjoint

sensitivities where the differences between oxygen concentrations from ECCO and those from the World Ocean Atlas (2013)525

are statistically significant. The simple correlations between the adjoint sensitivities from Eκ and EO in the remaining regions

tend to be small but positive (Fig. 12). In addition to taking simple correlations, we’ve performed Monte Carlo simulations

to get a maximum possible correlation between each experiment’s adjoint sensitivities. The maximum correlations from the

Monte Carlo simulations are larger than the simple correlations. This is particularly the case where the adjoint sensitivities are

both negative (Figs. 12a,c,e), but also true where the adjoint sensitivities are both positive (Figs. 12b,d,f). If we only consider530

comparing locations where we have both observationally-derived κρ data and oxygen data, our results are qualitatively the

same and the correlations increase to as much as 0.47 in the case of the κρ,tides product using a Monte Carlo approach. If we

further only consider regions where the vertical gradients in stratification are less than their global mean and where the vertical

gradients in oxygen concentrations are greater than their global mean, the correlations are approximately the same, indicating

that the information oxygen provides about κρ is not conditional on the stratification. This suggests that κρ,ECCO may be con-535

strained by the information provided by oxygen concentrations. That is, oxygen concentrations inform adjoint sensitivities that

typically direct κρ,ECCO to improve relative to observationally-derived κρ. However, inclusion of accurately known oxygen

concentrations in the model’s misfits is not a perfect substitute for the inclusion of accurately known κρ itself in the model’s

misfits.

4 Discussion and Concluding Remarks540

4.1 Discussion

This study evaluated the potential to improve the diapycnal diffusivities (κρ) in the ECCOv4 ocean parameter and state esti-

mation framework. We assessed the fidelity of the inverted field of κρ,ECCO by first comparing the average inverted vertical

profiles of κρ,ECCO with those inferred from microstructure. The comparison was not favorable. κρ,ECCO is inverted for

within the ECCO framework through constraints of vertical profiles of temperature and salinity–e.g., from Argo profiles.545

Model choices–e.g., the initial guess of κρ = 10−5 m2 s−1 everywhere–can lead to errors in κρ,ECCO even in the presence of

globally complete hydrographic observations (see Section 4.2), but we investigated whether κρ,ECCO can benefit from new

information.

We then investigated which additional observations can be used as new constraints to improve the fidelity of the inverted

κρ,ECCO. The products we used were observationally-derived κρ based on Argo and ship-based CTD hydrographic data,550

observationally-derived κρ based on climatological and seafloor data, and climatological oxygen concentrations. To justify the

use of the observationally-derived κρ products, we also evaluated them by comparing them with the microstructure-inferred

product. κρ,Argo and κρ,CTD have better agreement with the microstructure-inferred data than κρ,ECCO does.
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We inspected the misfit of the model parameter κρ,ECCO with respect to κρ,Argo and κρ,CTD as well as to κρ,tides and

motivated use of dissolved oxygen concentration data as a potential constraint in ECCO. One drawback of the observationally-555

derived data products for κρ is that they have large uncertainties–here, approximated by a factor of three. Observed oxygen

concentrations, on the other hand, have a relatively small uncertainties. More importantly, we showed that vertical oxygen

gradients have similar geographical patterns to energy dissipation rates. We therefore performed an additional adjoint sensitivity

experiment with oxygen concentration data as the only data in the misfit function. Adjoint sensitivities results were compared

between the experiment with measured oxygen in the misfit function and observationally-derived κρ in the misfit function.560

Regions where the sensitivities agree in signs between the two experiments are locations where adjustments in κρ, as informed

by these data, can potentially help improve κρ,ECCO. These regions include well over half of the volume of comparable

seawater in the (sub)tropical regions–including tropical OMZs. These spatial patterns are consistent with where we expected

κρ to explain much of the variability in oxygen concentrations. Correlations between adjoint sensitivities from each experiment

are positive where differences between the oxygen concentrations in the model and observations are relatively small. These565

findings suggest that dissolved oxygen concentrations could be used to more accurately estimate κρ in a newly optimized ECCO

solution. However, given the magnitudes of the correlations between the adjoint sensitivities, inclusion of observationally-

derived κρ in the model’s misfits could (additionally) be necessary, especially if their uncertainties are reduced.

4.2 Caveats and future directions

Many factors–including a significant absence of independent observations for assessment, a combination of measurement570

and structural errors, numerical diffusion in our simulations, and unconstrained parameters in the biogeochemical modules–

have stymied progress in state estimation of ocean subgrid-scale transport and mixing parameters. First, the observational

measurement errors used here are only approximate. We assumed uncertainties equal to a factor of three of the observationally-

derived κρ and 2% of the oxygen concentrations. These do not account for interpolation/averaging errors that entered the data

prior to our calculations, but are conservative estimates nonetheless. The observational uncertainties affect the weights given in575

the misfits that enter the adjoint sensitivity calculations and our Monte Carlo simulations of the correlations between the adjoint

sensitivities account for the possibility that these weights are misspecified. Second, only one ocean subgrid-scale transport or

mixing parameter–namely, κρ–has been compared with independent observational data–microstructure. This is the primary

reason why we focused on κρ in our study. Third, the ECCO-estimated κρ accounts for other model errors–e.g., structural

ones suggested by Polzin et al. (2014)–which explains some of the model biases relative to microstructure observations. For580

instance, the ECCO-estimated κρ should be time-dependent as well as spatially-varying, but it is only spatially-varying. In the

presence of other estimated model parameters and initial conditions, some parameters could be compensating for errors in κρ.

The ECCO-estimated κρ can also be sensitive to the a-priori estimate of κρ and we showed how one particular initial guess–

10−5 m2 s−1 everywhere–can evolve from the first optimization iteration to the final one. Additionally, there is numerical

diffusion in the model, which could confound some physical inferences about the model–e.g., regarding how sensitive the585

model’s state is to κρ relative to along-isopycnal diffusion. Numerical errors could remain and result in the primary source of

error in the ocean state estimate even if additional constraints are placed on κρ in ECCO. Retaining a parameter which absorbs
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structural model errors that are not expressed in the model’s functional form may be necessary to improving the ECCO state

estimate itself, but minimizing numerical errors would be beneficial to improving the ECCO-estimated κρ. Lastly, there are

several unconstrained parameters in biogeochemical modules used to calculate biogeochemical tracers (Verdy and Mazloff ,590

2017), so some of the disagreements in signs of the adjoint sensitivities found here could be associated with other inaccurate

parameters.

These challenges can continue to be overcome by allowing models and observations to inform each other. First, the observationally-

derived κρ from the finescale parameterization could be further scrutinized using ship-based CTD data taken concurrently with

microstructure velocity shear data. A preliminary analysis suggests that the percent difference between the full depth-averaged595

CTD-derived κρ from the finescale parameterization and the microstructure-inferred κρ at the same locations is 1.68%, which

is indistinguishable from zero, but the quality of the the CTD data taken concomitantly with microstructure has not been

fully assessed. Second, we would need to account for the time-dependence of κρ in a future ocean state estimate. The under-

determined nature of the parameter estimation procedure makes this difficult. These efforts would also benefit from minimizing

spurious mixing due to numerical diffusion (e.g., Holmes et al. (2021)) through choosing a different advection scheme, but this600

would add computational expense. If the goal is to improve the other control variables and the state estimate itself–instead of

estimating κρ with ECCO–then we could potentially reduce the influence of numerical diffusion and other confounding factors

in the estimation of κρ by no longer treating κρ as a control variable. Using an observationally-derived κρ, such as the de

Lavergne et al. (2020) product, would make the estimation of other control variables less under-determined, but this would not

resolve the problem with a lack of time-dependence of κρ nor would it assuage potential problems with model drift. Third,605

unconstrained parameters in the biogeochemical modules could potentially be circumvented. One potential way to do this is

by including preformed oxygen–i.e., oxygen without any biological influence, making it a passive tracer–in the model’s misfits

instead of oxygen concentrations. Observationally-derived transit-time distributions with a maximum entropy-based method

from previous studies (e.g., Khatiwala et al. (2009); Zanna et al. (2019)) or from a tracer-informed ocean state estimate (De-

Vries and Holzer, 2019) can help derive preformed oxygen from oxygen concentration observations. Fourth, we could optimize610

the information from existing oxygen observations with the purpose of constraining κρ. One way to do this is to run observing

system experiments. A complementary approach that uses the effective proxy potential framework of Loose and Heimbach

(2021) could also help indicate whether measurements of oxygen concentrations in particular locations are redundant or more

informative of κρ than in other locations. We did not pursue this in the present study because our adjoint runs use a global

misfit. If we perform an ensemble of adjoint sensitivity runs with a single observation in each run, then we could calculate615

the effective proxy potential at each of these observation locations. Lastly, the (imperfectly-known) initial conditions of bio-

geochemical tracers will also need to be included in the input control vector during optimization of the ocean state estimate.

If biogeochemical tracers are included in the misfit calculation in an optimization run, their impact on variables such as κρ

would depend upon how they are weighted relative to the physical variables–e.g., temperature, salinity, and pressure. A more

complete representation and understanding of κρ is possible through these analyses and methods.620
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Appendix A: Model with a sequential data assimilation framework

A1 GEOS-5 and the GMAO S2S Ocean Analysis

To demonstrate a problem with κρ in a sequential data assimilation framework, we present example output from a reanalysis

product and output from an identical ocean model hindcast without any data assimilation. GEOS-5 includes a global, finite

volume atmospheric general circulation model that is used for numerical weather prediction, seasonal-to-decadal forecasts,625

and as the background field for atmospheric reanalyses (Molod et al., 2015). The ocean is represented by the GFDL Modular

Ocean Model (Griffies et al., 2015), version 5 (MOM5) and the Los Alamos Community Ice CodE sea ice model (Hunke et al.,

2013), version 4.1 (CICE4.1). We use a configuration of the GEOS-5 modeling system with a 1o (0.5o at equator) resolution

on a tripolar (Murray, 1996) staggered Arakawa B-grid (Mesinger and Arakawa, 1976) and 50 geopotential levels for MOM5,

2o resolution and 24 pressure levels for the atmospheric model, and 1o resolution and 3 layers for CICE4.1. Historical aerosols630

(sulfate, dust, and sea salt) and biomass burning emissions (black and organic carbon) updated from the Goddard Chemistry

Aerosol Radiation and Transport (GOCART) model (Chin et al., 2002) are used over the time period 1992 through 2016. Initial

conditions are based on a long spin-up that used MOM4 coupled to one version of the GEOS-5 atmosphere model (Molod et

al., 2012) and hundreds of additional years of spin-up that used MOM4 coupled to a slightly different version of the GEOS-5

atmosphere model. The differences between the two versions of the GEOS-5 atmospheric model used in the two phases of635

spin-up include developments in cloud microphysics and atmospheric chemistry.

κρ, Redi coefficients, and Gent-McWilliams coefficients are determined in MOM5 as follows. κρ in MOM5–κρ,GEOS5

hereafter–is represented by the K-Profile Parameterization (KPP; Large et al. (1994)) and a parameterization for mixing due

to internal tides (Simmons et al., 2004). Shear-driven mixing, gravitational instabilities that can cause vertical convection,

and double-diffusive processes, which can cause the temperature diffusivity to be different from the salinity diffusivity, are640

accounted for in the interior (Large et al., 1994). The resulting κρ,GEOS5 field spatio-temporally varies. However, this combi-

nation of parameterizations does not make use of an explicit energy budget that accounts for conversion between kinetic and

potential energy when determining κρ,GEOS5. The Redi coefficients (Redi, 1982) and Gent-McWilliams coefficients of the

(Gent and McWilliams, 1990) parameterization for mesoscale eddies are, by default, prescribed to be 600 m2 s−1 everywhere,

except for some variation in western boundary current regions for the Gent-McWilliams coefficients. The Redi coefficients645

and Gent-McWilliams coefficients are, thus, constant in time and in most locations. A mixed layer instability scheme for the

submesoscale transport by Fox-Kemper et al. (2011) is used.

We use a reanalysis product, which uses the same underlying modeling system as the GEOS-5 coupled earth system model,

called the Global Modeling and Assimilation Office sub-seasonal to seasonal (GMAO S2S) Ocean Analysis. The output of the

GMAO S2S Ocean Analysis highlights how κρ can behave due to the disruption of dynamical balance that can be the result of650

the use of a sequential data assimilation system (Stammer et al., 2016; Pilo et al., 2018). The GMAO S2S Ocean Analysis only

assimilates hydrographic information to constrain κρ and relies on the same parameterizations as GEOS-5’s ocean component

to calculate κρ.

20



The NASA GMAO has recently updated their GEOS-5 sub-seasonal to seasonal forecast system (S2S-v2.1;

https://gmao.gsfc.nasa.gov/cgi-bin/products/climateforecasts/geos5/S2S_2/index.cgi). This new system is the current contri-655

bution of the GMAO to the North American Multi-Model project

(http://www.cpc.ncep.noaa.gov/products/NMME/about.html) and NOAA’s experimental sub-seasonal ensemble project

(http://cola.gmu.edu/kpegion/subx/index.html). A configuration of the modeling system is used that is nominally 0.5o reso-

lution on a tripolar (Murray, 1996) staggered Arakawa B-grid (Mesinger and Arakawa, 1976) and 40 geopotential levels for

MOM5, and 0.5o resolution and 5 layers for CICE4.1 with atmospheric forcing from MERRA-2 (Modern-Era Retrospective660

analysis for Research and Applications, Version 2) reanalysis (Gelaro et al., 2017). The GMAO S2S Ocean Analysis (Molod

et al., 2020) is a reanalysis product that uses a system similar to the Local Ensemble Transform Kalman Filter (LETKF) data

assimilation procedure described by (Penny et al., 2013), but where the background error is calculated offline using ensemble

members of freely coupled simulations. The background error does not explicitly account for uncertainties in any of the ocean

subgrid-scale transport or mixing parameters, as it is only a function of the observed and background temperatures and salini-665

ties. The temperature and salinity would change and so would the calculated covariances if the mixing parameterizations were

changed, but each of the 21 background free-running simulations have the same mixing parameterization, as they only differ

in their initialization.

The following datasets were used by the GMAO S2S data assimilation modeling system. A relaxation procedure, or update,

is applied towards the MERRA-2 sea surface temperatures and sea ice fraction from the NASA TEAM-2 product (Markus et670

al., 2009) at a 5-day assimilation cycle. No ocean subgrid-scale transport or mixing parameter data are assimilated. Assimilated

in situ observational data that provide temperatures and salinities come from TAO, PIRATA, RAMA, XBT, CTD, and Argo

instruments. Satellite altimetry data that provide sea level anomalies come from TOPEX, ERS-1+2, Geosat FO, Jason-1, Jason-

2, Jason-3, Envisat, Cryosat-2, Saral, HY-2A, and Sentinel 3A. The absolute dynamic topography is calculated as the sum of

the sea level anomaly and the mean dynamic topography, which is estimated using GOCE and GRACE data, all available675

altimetry, and in situ data. Absolute dynamic topography data are assimilated into the model system using the same method as

for the in situ data, except these data are thinned along-track and a Gaussian weighted mean using a decorrelation scale of 1000

km is calculated prior to assimilation. In addition, the global trend was removed from the absolute dynamic topography before

assimilation and zero net input of water was applied. Precipitation is corrected using the Global Precipitation Climatology

Project version 2.1 (GPCPv2.1, provided by the NASA/Goddard Space Flight Center’s Laboratory for Atmospheres, which680

calculates the dataset as a contribution to the GEWEX Global Precipitation Climatology Project) and Climate Prediction

Center (CPC) Merged Analysis of Precipitation (CMAP, provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA,

from their website at http://www.esrl.noaa.gov/psd/), as described by Reichle et al. (2011) except for MERRA-2 instead of

MERRA data. All other atmospheric forcing fields used in the construction of the reanalysis came from MERRA-2. The

GMAO S2S modeling system is an update to the one described in Borovikov et al. (2017). As such, the model only ran for the685

period: May of 2012 to March of 2019.
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A2 Steric sea level budget framework

In order to examine whether the analysis increments can dynamically impact κρ, we analyze a model’s buoyancy budget, which

is broken down into heat and salt budgets and used to calculate the steric sea level budget. The tracer tendency equation terms

required for the heat and salt budgets were computed online and saved as the reanalysis was running. The tracer equations can690

be broken down into individual contributions (Palter et al., 2014),

ρ
dΘ

dt
+ ρAΘ =−∇ ·JΘ + ρQΘ (A1)

ρ
dS

dt
+ ρAS =−∇ ·JS + ρQS ,

where d/dt= ∂/∂t+ (v+v∗) · ∇ is the material derivative, v is the resolved velocity field, v∗ is the eddy-induced or quasi-

Stokes velocity field that represents parameterized motions, Θ is the potential temperature, S is the salinity, ρ is the locally695

referenced potential density, JΘ and JS are the parameterized along-isopycnal and diapycnal mixing fluxes associated with

potential temperature and salinity, QΘ and QS are the sums of sources and sinks of potential temperature and salinity, and

AΘ and AS are the analysis increments for potential temperature and salinity due to the assimilation of data by a sequential

filter-based data assimilation ocean modeling system. The analysis increments in a sequential filter-based data assimilation

system can obscure the physics, as AΘ and AS effectively correspond to unphysical, time-varying, three-dimensional fluxes of700

heat and salt.

The heat and salt budget terms summarized by Equation (A1) are computed as follows. The resolved, mesoscale, and

submesoscale transports are accounted for in the material derivatives Θ and S, the neutral and diapycnal diffusion of Θ and

S are accounted for by JΘ and JS , and the analysis increments of Θ and S are accounted for by AΘ and AS . The neutral

diffusion term includes cabbeling, thermobaricity, and a dianeutral contribution that mixes properties by providing for the705

exponential transition to horizontal diffusion in regions of steep isoneutral slopes according to Treguier (1992) and Ferrari

et al. (2008, 2010) where the surface boundary layer is encountered and following Gerdes et al. (1990) next to solid walls.

The diapycnal diffusion term is not added to the vertical component of the along-isopycnal diffusion term, but because of

convention (e.g., Palter et al., 2014) is nevertheless referred to as the vertical diffusion term hereafter. The vertical diffusion

term also includes penetrating shortwave radiation flux. The sources and sinks of Θ and S accounted for byQΘ andQS include710

nonlocal convection (the transport where turbulent fluxes don’t depend upon local gradients in Θ or S because buoyant water

gets entrained into the mixed layer when the surface buoyancy forcing drives convection above a stratified water column);

surface buoyancy fluxes (latent, sensible, shortwave, longwave, and frazil heat fluxes); precipitation minus evaporation; runoff

mixing (mixes properties associated with river outflows); downslope mixing (mixes properties downslope to represent the

overflow dense waters from marginal seas); sigma-diffusion (mixing properties along terrain-following coordinates in regions715

with partial bottom cells); numerical smoothing of the free surface (intended to reduce B-grid checkerboard noise); numerical

sponge (intended to absorb the Kelvin waves set off by the assimilation of some data); calving of land ice; and frazil ice

formation. The runoff mixing, downslope mixing, and sigma-diffusion terms are considered sources or sinks here because they

are associated with numerical schemes that aim to resolve problems created by coarse model resolution, the vertical coordinate
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system used near boundary layers, and imperfect bathymetry. There is no geothermal heating included in the GMAO S2S720

Ocean Analysis. The vertical diffusion term includes a subsurface shortwave heating contribution to a function of the κρ field,

the mesoscale transport term assumes constant Gent-McWilliams coefficients, and the neutral diffusion term assumes constant

Redi coefficients.

At each time step, the model evaluates a tendency term for every process that contributes to (A1) from their parameterized

or dynamically calculated values, their units are converted to W m−2 and kg m−2 s−1 for Θ and S, and their monthly averages725

are saved to the output files used in this analysis. Implicit in these output tendency terms is that each term is weighted by the

thicknesses of each layer as the model runs and writes the output to file. The heat and salt budget terms saved to file are used

to calculate the steric sea level budget as follows. The steric sea level budget terms are computed by scaling the heat tendency

terms by α/Cp and the salt tendency terms by −1000β, where Cp (units in J kg−1 K−1) is the specific heat of seawater,

α=−[1/ρ](∂ρ/∂T ) (units in K−1 ) is the thermal expansion coefficient, and β = [1/ρ](∂ρ/∂S) (units in kg g−1) is the haline730

contraction coefficient. In order to get a longitude-latitude map of the terms that depend upon depth shown here, we integrate

over depth by summing over the depth dimension. We analyze part of the steric sea level budget of the GMAO S2S Ocean

Analysis to examine the relationships between different terms.

Appendix B: Results for the sequential data assimilation framework

B1 Assessments of κρ from models735

First, we compare the average κρ,micro profile that is comprised of 24 campaigns worth of data (Waterhouse et al., 2014) (see

their Fig. 6; black curve in Fig. A1a) with the average model-calculated κρ profiles and κρ,Argo. A geometric average is taken

for each profile because a geometric average is more representative than an arithmetic average for a small sample size and

when the data are not normally distributed (Manikandan, 2011), like the log-normal distribution of κρ (Whalen, 2021).

We compare microstructure (black curve in Fig. A1a) with GEOS-5 (red curve in Fig. A1a). κρ,GEOS5, on average, is in close740

agreement with microstructure over the upper 250-2000 meters. On average, the disagreement with microstructure and Argo is

approximately the same as the disagreement between microstructure and GEOS-5. All three κρ are well within the uncertainty

of the Argo product. The profiles are also within the temporal variability in κρ,GEOS5 below the mixed layer depths (Fig. A1b;

also see Fig. 9 in Whalen et al. (2015)). The temporal variability in κρ is only large near regions with active deep convection

(e.g., between 40-50oN in the North Atlantic, as shown in Fig. A1b). The blue and green diamonds in Fig. 1c of Waterhouse745

et al. (2014) show that there are only a few microstructure profiles are within the 40-50oN band in the North Atlantic. These

are all near the east coast of North America, not in regions that experience deep convection so the temporal variability in

microstructure is not expected to be large enough that the disagreements in κρ can be explain by temporal sampling/aliasing.

While the average κρ,GEOS5 profile is fairly accurate, particularly below 500 meters depth (red curve in Fig. A1), κρ,GMAO

is in much worse agreement with microstructure (green curves in Fig. A1). The large values of κρ,GMAO are not due to a few750

isolated locations. κρ,GMAO is too large below about 250 meters depth (solid green curve in Fig. A1). The average profile of

κρ,GMAO is generally constant or decreases with depth, as opposed to the average profiles of κρ,GEOS5 and microstructure,
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which generally increase with depth. Potential reasons for the large disagreements between κρ,GMAO and microstructure

include dynamical adjustments due to the GMAO S2S Ocean Analysis’ analysis increments, inconsistencies between the

model’s atmosphere and ocean due to the strong relaxation to sea surface temperatures, fixed zero net water input for global755

sea level, and numerics such as the techniques applied to damp the waves created from assimilating some observations.

B2 Model- vs finescale parameterization-derived κρ comparisons

While comparisons with microstructure reveal general agreement with the average profile of κρ,GEOS5–except near the surface

and at deep depths–we also want to assess whether there are deficiencies in the average geographic distribution of κρ,GEOS5

by comparing the output of GEOS-5 with the κρ,Argo product. Comparing the κρ,GEOS5 field with the κρ,Argo results in760

better agreement than the similar comparisons between κρ,GMAO and κρ,Argo. For example, κρ,GEOS5 only disagrees with

κρ,Argo by more than a factor of 3 over 36.6% of grid points with available data (Fig. A2b), while the disagreement doubles

in percentage (79.1%) for κρ,GMAO (Fig. A2a). The errors in κρ,GEOS5 are smaller than κρ,GMAO. Thus, when the objective

of the GMAO S2S Ocean Analysis is to minimize the misfit between the model and observations of temperature, salinity, and

some surface characteristics, κρ can be better represented without any observational constraints; i.e., the GMAO S2S Ocean765

Analysis improves temperature and salinity misfits for the wrong reasons.

The regions with the largest disagreement between κρ,GEOS5 and κρ,Argo are along the equator, in the Southern Ocean, in

the Labrador and Irminger Seas, and in the Gulf Stream and Kuroshio Extensions (Fig. A2b). Along the equator the values

of κρ,GEOS5 tend to be larger than the observational product, but the discrepancy changes sign slightly poleward in the near-

equator tropics. Inadequate resolution and parameterization of diapycnal mixing can cause too little mixing to occur in these770

regions as well as in the Southern Ocean and along mid-ocean ridges (MacKinnon et al., 2017). The values of κρ,GEOS5 are

smaller than the observations both in regions where deep convection is prevalent and in the vicinity of the Antarctic Circumpolar

Current (ACC). In the Gulf Stream Extension region, the Malvinas Current region, part of the Kuroshio Extension region, and

the Indian Ocean sector of the ACC above 500 meters depth, the values of κρ,GEOS5 are too large. This is because κρ,GEOS5

can be much increased inside the mixed layer depth, which can be deeper than 250 meters due to vertical convection. One775

possible source of these errors in the abyssal κρ is the improper treatment of remote internal tide-induced mixing, discussed

in Melet et al. (2016), but several other processes can impact κρ in the upper water column. For example, the wind-driven

near-inertial waves (Alford et al., 2016) can be important near the surface in many locations, and internal tide breaking is

important near the seafloor at low latitudes in the Northern Hemisphere (Arbic et al., 2004; Nycander, 2005; Melet et al., 2013;

MacKinnon et al., 2017) and beneath the ACC, where lee wave breaking is important (Nikurashin and Ferrari, 2011; Scott780

et al., 2011; Naveira Garabato et al., 2013; Melet et al., 2014; Wright et al., 2014; Trossman et al., 2013, 2016; Yang et al.,

2018). MacKinnon et al. (2017) discusses other candidates for more accurate representation of κρ. Identifying the sources of

errors in κρ,GEOS5, particularly in the abyss, is beyond the scope of the present study. We emphasize the much greater errors

in κρ,GMAO and next examine whether the analysis increments could be one source of these larger errors (either directly or by

way of altering the velocity field).785
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B3 Relationships between steric sea level budget terms

There are distortions in temperature and salinity fields from applying analysis increments, violating conservation principles and

potentially causing the model to undergo baroclinic adjustment (Stammer et al., 2016). Thus, we examine whether the velocity

field itself changes because of the analysis increments. To do this, we show the relationship between the analysis increments

and resolved advection terms in the steric sea level budget for the GMAO S2S Ocean Analysis in Fig. A3a. The Pearson790

correlation coefficient between the analysis increments and resolved advection terms in the steric sea level budget is about

−0.3. The magnitudes of the analysis increments are determined by the temperature, salinity, and sea surface height fields, and

the analysis increments and the resolved advection term in the GMAO S2S Ocean Analysis are comparable in size for both heat

and salt tendencies–the largest terms in each budget in their zonal averages at most latitudes. However, previous studies have

shown that analysis increments induce changes in the velocity field via dynamic adjustment (Stammer et al., 2016; Pilo et al.,795

2018). The correlation between the analysis increments and resolved advection terms shown in Fig. A3a are consistent with the

findings of these previous studies. The analysis increments, by a similar argument, could induce physically inconsistent air-sea

exchanges through changing the temperature and salinity fields in the top model layer. We next show that these factors at least

partially cause errors in κρ,GMAO. The Pearson correlation coefficients between the diapycnal diffusion terms and the analysis

increment terms in the heat and salt budgets over all locations are about 0.7 (Fig. A3b), suggesting that the analysis increments800

are associated with errors in κρ,GMAO. Problems with the physical consistency of air-sea exchanges–due to relaxation of sea

surface temperatures and requiring net zero water input–could also contribute to the errors in κρ,GMAO. However, it is possible

that instead of the air-sea exchanges impacting the diapycnal diffusivities directly, the analysis increments affect both the air-sea

exchanges and diapycnal diffusivities, as the changes in temperature and salinity at depth also change the mixed layer depths,

which perturb the diapycnal diffusivity profiles and therefore their contribution to steric sea level through the altered thermal805

expansion/haline contraction coefficients. The correlation between the surface flux and diapycnal diffusion terms in the heat

and salt tendency budgets are fairly well correlated–Pearson correlation coefficient of about −0.4 (Fig. A3c), suggesting that

there is an association between the surface flux errors and errors in κρ,GMAO. Given these correlations and the way analysis

increments and physical inconsistencies of air-sea exchanges are implemented in the GMAO S2S Ocean Analysis, errors in

κρ,GMAO must be caused by analysis increments (and possibly adjustments of air-sea exchanges) rather than the other way810

around.
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Figure A1. κρ profiles (panel a; units in m2 s−1) averaged over the full-depth microstructure locations from the observations (black curve)

presented in Waterhouse et al. (2014) (see their Fig. 6), the Whalen et al. (2015) Argo-derived product for three depth bins (magenta X’s),

the temporally-averaged output of a free-running coupled earth system model simulation (GEOS-5 - red curve), and the temporally-averaged

output of an equivalent run with data assimilation (GMAO S2S - green curve). Also shown are (panel b) κρ profiles from the free-running

GEOS-5 simulation averaged over 40− 50oN in the North Atlantic Ocean and averaged over all January months (lighter colors), ..., and all

December months (darker colors). The base-10 logarithms of the geometric averages are shown in each panel.
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Figure A2. Shown are (a) the base-10 logarithms of the ratios of the time-averaged κρ,GMAO to κρ,Argo, and (b) the base-10 logarithms of

the ratios of the time-averaged κρ,GEOS5 to κρ,Argo. Each panels shows an average over 250-2000 meters depth. White areas in the ocean

indicate insufficient Argo data to derive κρ,Argo. The green X’s indicate regions where the disagreement between κρ,GMAO or κρ,GEOS5

and κρ,Argo is greater than a factor of 3.
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Figure A3. Scatterplots between several of the most locally dominant tendency terms in the steric sea level budget of the GMAO S2S Ocean

Analysis, averaged over the entire run’s time period (2012-2017): shown are (panel a) the analysis increment (abscissa) versus the resolved

advection (ordinate) terms, (panel b) the analysis increment (abscissa) versus the vertical diffusion (ordinate) terms, and (panel c) the surface

flux (abscissa) versus the vertical diffusion (ordinate) terms. The more yellow colors indicate a greater density of dots in the scatterplots.

The more blue colors indicate a lower density of dots in the scatterplots. Also listed in each panel are the correlations between each of the

comparisons.
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Data availability. The data used in this study will be available through zenodo upon publication, but in the meantime, they are available at:

https://www.dropbox.com/s/z4w7ihzdg3hpebr/ECCOoxygenkappa.tar.gz?dl=0 . Also, the GMAO S2S Ocean Analysis output is available at:

ftp://gmaoftp.gsfc.nasa.gov/pub/data/kovach/S2S_OceanAnalysis/ . The hydrography-derived diapycnal diffusivities from the finescale pa-

rameterization used in this study, courtesy of Eric Kunze, are available by logging in as a guest at: ftp://ftp.nwra.com/outgoing/kunze/iwturb/815

. The microstructure data used in this study are available at: https://microstructure.ucsd.edu/ .
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Figure 1. Shown are the vertical gradients of oxygen concentrations (units in ml/l/m) from the World Ocean Atlas (2013) (panels a,c,e) and

the base-10 logarithms of the dissipation rates (units in W kg−1) from Whalen et al. (2015) (panels b,d,f). Panels a-b show an average over

250-500 meters depth. Panels c-d show an average over 500-1000 meters depth. Panels e-f show an average over 1000-2000 meters depth.

White areas in the ocean indicate insufficient data.
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Base-10 logarithm of ECCOv4r3 diapycnal diffusivity (depth-averaged) [m2 s-1]
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Figure 2. Shown is the base-10 logarithm of κρ,ECCO (units in m2 s−1), depth-averaged over all depths below the average mixed layer

depth to exclude very large values within the mixed layer. Black X’s indicate locations where there are microstructure measurements used in

this study.
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b) O2 (ECCOv4r3 inital condition) minus O2 (WOA 2013) [ml/l]
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a) O2 (ECCOv4r3 inital condition) [ml/l]

c) O2 (ECCOv4r3 inital condition) 
versus O2 (WOA 2013) [ml/l]

Figure 3. Shown are (a) the depth-averaged oxygen concentrations’ initial conditions in ECCO (units in ml/l), (b) the depth-averaged oxygen

concentrations’ initial conditions in ECCO minus the depth-averaged observational climatologies from the World Ocean Atlas (2013) (units in

ml/l) at locations where observations were sampled, and (c) the point-wise comparisons between the oxygen concentrations’ initial conditions

and the observational climatologies from the World Ocean Atlas (2013) (units in ml/l), which are used for the ECCO adjoint sensitivity

experiments in the model’s cost function. White areas in panel b in the ocean indicate insufficient data to calculate a depth-average.
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a) Diapycnal diffusivities from ECCO, compared to microstructure and Argo [m2 s-1] b) Diapycnal diffusivities from ECCO, compared to de Lavergne (2020)  [m2 s-1]

Figure 4. Panel a: shown are κρ profiles averaged over all microstructure observation locations (shown in Fig. 2) from the first iteration of

the optimization (E-CTRL0 - grey curve), and from the (final) fifty-ninth iteration of the optimization (E-CTRL - blue curve). Also shown is

the average of κρ profiles from the full-depth microstructure observations (black curve) presented in Waterhouse et al. (2014) (see their Fig.

6; also see Fig. 5 of the present study) with one spatial standard deviation flanking the average (dashed black curves) and an approximate

factor of three uncertainty flanking the average (dotted black curves), and the average of κρ (magenta X’s) at each of the depth bins in the

Whalen et al. (2015) product. At each location, the simulated profiles are extracted and the base-10 logarithms of the geometric averages of

the observed and ECCO-estimated κρ (units in m2 s−1) are shown. Panel b: shown are κρ profiles averaged over the entire ocean from the

fifty-ninth iteration of the optimization (E-CTRL - blue curve) and from the de Lavergne et al. (2020) tidal mixing product (black curve).

41



BBTREw BBTREe NATRE LADDER

GRAVILUCK DIMES-DP DIMES-West

SOFine

RidgeMix

INDOMIX

HOMEDoMOREIZU

GEOTRACES

Fieberling

OUTPACETOTO

Figure 5. In each panel, shown are κρ profiles averaged over 16 example microstructure observation campaigns (see Fig. 2): from the first

iteration of the optimization (E-CTRL0 - grey curve), from the (final) fifty-ninth iteration of the optimization (E-CTRL - blue curve), and

from the full-depth microstructure observations (black curve) presented in Waterhouse et al. (2014) (see their Fig. 6). Approximate factor of

three uncertainties flanking the κρ profiles from microstructure are shown with dashed black curves.
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  b) Diapycnal diffusivities ratio
(log10(ECCOv4r3/Argo), 250-500 m)

   d) Diapycnal diffusivities ratio
(log10(ECCOv4r3/Argo), 500-1000 m)

    f) Diapycnal diffusivities ratio
(log10(ECCOv4r3/Argo), 1000-2000 m)

Figure 6. Shown are (a,c,e) the base-10 logarithms of κρ,Argo (units in m2 s−1) and (b,d,f) the base-10 logarithms of the ratios of the time-

averaged κρ,ECCO to κρ,Argo. Panels a-b show an average over 250-500 meters depth. Panels c-d show an average over 500-1000 meters

depth. Panels e-f show an average over 1000-2000 meters depth. White areas in the ocean indicate insufficient Argo data to derive κρ,Argo.
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                f) Diapycnal diffusivities ratio
        (log10(ECCOv4r3/tides), 1000-2000 m)

               d) Diapycnal diffusivities ratio
        (log10(ECCOv4r3/tides), 500-1000 m)

             b) Diapycnal diffusivities ratio
       (log10(ECCOv4r3/tiides), 250-500 m)  a) Diapycnal diffusivities from tidal mixing (250-500 m)

  c) Diapycnal diffusivities from tidal mixing (500-1000 m)

  e) Diapycnal diffusivities from tidal mixing (500-1000 m)

Figure 7. Shown are (a,c,e) the base-10 logarithms of κρ,tides (units in m2 s−1) and (b,d,f) the base-10 logarithms of the ratios of the time-

averaged κρ,ECCO to κρ,tides. Panels a-b show an average over 250-500 meters depth. Panels c-d show an average over 500-1000 meters

depth. Panels e-f show an average over 1000-2000 meters depth.
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b) Sign of adjoint sensitivities (misfit: oxygen concentrations)

d) Sign of adjoint sensitivities (misfit: oxygen concentrations)

a) Sign of adjoint sensitivities (misfit: diapycnal diffusivities)

c) Sign of adjoint sensitivities (misfit: diapycnal diffusivities)

Figure 8. Adjoint sensitivity sign comparisons: Results from Eκ–using the Whalen et al. (2015) and Kunze (2017) products–(panels a and

c) and EO (panels b and d) are shown for the adjoint sensitivities (units in s m−2) with respect to κρ: averaged over 250-2000 meters depth

(panels a-b) and zonally averaged (panels c-d). The red regions indicate that the adjoint sensitivities are positive (∂J/∂κρ > 0) and blue

regions indicate negative adjoint sensitivities. κρ,Argo and κρ,CTD are the only quantities used in the misfit calculation of an adjoint run

shown in panels a and c. The climatological oxygen concentrations from the World Ocean Atlas (2013) are the only observations used in

the misfit calculation of a separate adjoint run shown in panels b and d. The adjoint sensitivities in panels a and c are computed offline

(i.e., not using ECCO, but by plugging in the value the model reads in for the base-10 logarithm of κρ and comparing that with the above

observationally-derived base-10 logarithm of the κρ products using the finescale parameterization via Eq. 2). The adjoint sensitivities in

panels b and d are computed online (i.e., using ECCO, which uses the base-10 logarithm of κρ as a control variable). The white regions are

locations with bathymetry or insufficient observations. The adjoint sensitivities are calculated over just one year (1992).
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Percent of volume in water column with agreement in adjoint sensitivities
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Figure 9. Adjoint sensitivity sign comparisons: Shown are the percents of volume over the water column for each horizontal location (panel

a) and percent of volume over all longitudes for each depth and latitude (panel b) where the sign of ∂J/∂κρ agrees between Eκ–using the

Whalen et al. (2015) and Kunze (2017) products–and EO . The white areas are locations where the disagreements between κρ,ECCO and

κρ,Argo supplemented with κρ,CTD are within three times the value fo the observationally-derived κρ so these were excluded.
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Figure 10. Adjoint sensitivity sign comparisons: Same as Figure 8, but with the de Lavergne et al. (2020) product, κρ,tides.
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Figure 11. Adjoint sensitivity sign comparisons: Same as Figure 10, except using the de Lavergne et al. (2020) product, κρ,tides.
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Figure 12. Shown are scatterplots between the adjoint sensitivities from EO and Eκ where they are both negative (panels a, c, and e) and

where they are both positive (panels b, d, and f), where Eκ has its adjoint sensitivities calculated with: the tidal mixing product κρ,tides

(panels a-b), Argo-derived κρ (κρ,Argo and κρ,CTD; panels c-d) or microstructure-inferred κρ (panels e-f). Only the adjoint sensitivities

where the differences between κρ,ECCO and observational κρ products are statistically significant (greater than a factor of three) and where

the differences between oxygen concentrations from ECCO and those from the World Ocean Atlas (2013) are statistically insignificant

(within 2% of the latter) are included. The correlations for all of the data points shown in each panel are listed. Also listed below each panel

are the maximum possible correlations from a Monte Carlo-based approach in which 10,000 random samples of κρ within the uncertainties

of the observational κρ products are used to recompute the adjoint sensitivities for Eκ.
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Table 1. The latitude and depth ranges of each observationally-derived product from a parameterization used in this study. The longitude

range for each dataset spans (180oE,180oW ). Also listed is the time period of the observations each product is based on and the range of

values in each product (to the nearest order of magnitude in units of m2s−1).

data source range [m2s−1] latitude range depth range time period

Argo (κρ,Argo) (10−7,10−2) (75oS,75oN) (250,2000) 2006-2014

Ship-based CTD hydrography (κρ,CTD) (10−8,10−3) (77.35oS,78.70oN) (173,6044.5) 1981-2010

Climatology and seafloor (κρ,tides) (10−8,10−2) (90oS,90oN) (surface,seafloor) N/A

Table 2. Listed are the ECCO simulations performed and analyzed in the present study as well as the observationally-derived data or

measured data included in each simulation. Either observationally-derived data or measured data are included in the experiments through

its misfit calculation (Eq. 1). Here, κρ,obs denotes an observationally-derived κρ product derived from a parameterization (κρ,Argo and

κρ,CTD or κρ,tides) or inferred from microstructure (κρ,micro), ε= κρN
2/0.2 indicates an observationally-derived dissipation rate (N2 is

the stratification from the World Ocean Atlas or WOA (2013)), and O2 is the climatology of measured oxygen concentrations from WOA

(2013). The misfits for the experiments with κρ and ε are calculated using Eq. 2.

experiment observationally-derived data measured data

E-CTRL N/A see Section 2.2.1

Eκ κρ,obs N/A

EO N/A O2 [WOA, 2013]

Eε κρ,obs T/S [WOA, 2013]

Table 3. The control variables that ECCO inverts for and optimizes. Some of these control variables are initial conditions only (indicated with

the “initial condition” column). Other control variables are time-varying (indicated with the “time-varying” column). The rest are not initial

conditions, but also are time-independent. Also noted is whether the control variable’s field is two-dimensional or three-dimensional–there

are no control variables that vary in both time and over all locations and depths of the ocean.

control variable initial condition? time-varying? dimensions

sea surface heights yes no 2

ocean velocities yes no 3

temperatures yes no 3

salinities yes no 3

Redi coefficients (Redi, 1982) no no 3

Gent-McWilliams coefficients (Gent and McWilliams, 1990) no no 3

background κρ no no 3

surface forcing fields no yes 3
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Table 4. Listed are the percent volumes where the signs of the adjoint sensitivities agree between Eκ–for both the Whalen et al. (2015)

and de Lavergne et al. (2020) products–and EO for different regions of the ocean. The boundaries of subtropical/equatorial regions are set

to be at 20oN/S. The boundaries of subtropical/subpolar or subtropical/Southern Ocean regions are set to be 50oN/S. The tropical Oxygen

Minimum Zones (OMZs) are where oxygen concentrations are less than 2 ml/l between 20oS and 20oN. The percentages are only calculated

where sufficient observations are available to derive κρ and where the difference between the model-calculated and observationally-derived

κρ is greater than the uncertainty (i.e., three times the observationally-derived κρ). In parentheses are the same, except for the dissipation

rates, ερ =N2κρ/0.2, where N2 is the stratification and 0.2 is an empirical coefficient (see, e.g., Gregg et al. (2018)).

region percent agreement (Whalen et al., 2015) percent agreement (de Lavergne et al., 2020)

Global 60.8% (59.9%) 51.4% (58.8%)

Subtropics 72.3% (72.9%) 53.2% (58.7%)

Tropical OMZs 61.2% (60.2%) 58.3% (56.5%)

Subtropical South Pacific 76.9% (79.2%) 53.0% (56.8%)

Tropical Pacific 57.9% (54.9%) 57.2% (56.3%)

Subtropical North Pacific 60.4% (59.6%) 48.3% (44.3%)

Southern 49.5% (47.9%) 32.0% (28.4%)

Indian 67.8% (68.7%) 58.8% (56.8%)

Subtropical South Atlantic 44.6% (35.8%) 33.1% (30.7%)

Tropical Atlantic 62.1% (62.1%) 69.5% (54.5%)

Subtropical North Atlantic 84.7% (85.4%) 56.7% (55.2%)

Subpolar North Atlantic 12.7% (12.8%) 37.4% (36.3%)
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