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Abstract. This paper assesses the reflectance difference values between the homologous visible and near-infrared 11 

(VNIR) spectral bands of Sentinel-MSI-2A/2B and Landsat-OLI-8/9 sensors for seagrass, algae, and mixed species 12 

discrimination and monitoring in a shallow marine environment southeastern of Bahrain in the Arabian Gulf. To 13 

achieve these, a field survey was conducted to collect samples of seawater, underwater sediments, seagrass (Halodule 14 

uninervis and Halophila stipulacea) and algae (green and brown). As well, an experimental mode was established in 15 

a Goniometric-Laboratory to simulate the marine environment, and spectral measurements were performed using an 16 

ASD spectroradiometer. Measured spectra and their transformation using continuum-removed reflectance spectral 17 

(CRRS) approach were analyzed to assess spectral separability among separate or mixed species at varying coverage 18 

rates. Afterward, the spectra were resampled and convolved in the solar-reflective spectral bands of MSI and OLI 19 

sensors and converted into water vegetation indices (WVI) to investigate the potential of red, green, and blue bands 20 

for seagrass and algae species discrimination. The results of spectral and CRRS analyses highlighted the importance 21 

of the blue, green, and NIR wavelengths for seagrass and algae detection and likely discrimination based on 22 

hyperspectral measurements. However, when resampled and convolved in MSI and OLI bands, spectral information 23 

loses the specific and unique absorption features and becomes more generalized and less precise. Therefore, relying 24 

on the multispectral bandwidth of MSI and OLI sensors is difficult or even impossible to differentiate or to map 25 

seagrass and algae individually at the species level. Instead of the red band, the integration of the blue or the green 26 

bands in WVI increases their discriminating power of submerged aquatic vegetation (SAV), particularly WAVI, 27 

WEVI, and WTDVI indices. These results corroborate the spectral and the CRRS analyses. However, despite the 28 

power of blue wavelength to penetrate deeper into the water, it also leads to a relative overestimation of dense SAV 29 

coverage due to the higher scattering in this part of the spectrum. Furthermore, statistical fits (p  0.05) between the 30 

reflectance in the VNIR homologous bands of SMI and OLI revealed excellent linear relationships (R2 of 0.999) with 31 

insignificant RMSD (≤ 0.0015). Important agreements (0.63 ≤ R2 ≤ 0.96) were also obtained between homologous 32 

WVI regardless of the integrated spectral bands (i.e., red, green, and blue), yielding insignificant RMSD (≤ 0.01). 33 

Accordingly, these results pointed out that MSI and OLI sensors are spectrally similar, and their data can be used 34 

jointly to monitor accurately the spatial distribution of SAV and it’s dynamic in time and space in shallow marine 35 

environment, provided that rigorous data pre-processing issues are addressed.  36 
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1. Introduction 37 

Seagrass meadows are identified as an important key for the characterization of environmental resources in estuarine 38 

and shallow coastal areas, and a fundamental health index allowing the assessment of coastal ecosystems. The 39 

composition and density of their species depend largely on water depth, temperature, salinity, coastal substrate 40 

material, and light penetration (Dierssen et al., 2015). Adapted to grow in shallow seawater down to a depth of 20 m, 41 

where approximately only 11% of surface light reaches the bottom (Duarte and Gattuso, 2008), they play an essential 42 

role in the sustainability of global ecosystem biodiversity in most shallow near-shore areas around the world (Den-43 

Hartog, 1970; Konstantinos et al., 2016). Moreover, the biodiversity of seagrass provides secure habitat and food for 44 

a wide variety of marine micro-organisms, improve the quality of water and protect shorelines against erosion in the 45 

middle and lower intertidal and sub-tidal zones (Roelfsema et al., 2009; Anders and Lina, 2011; Yang and Yang, 46 

2012; Morrison et al., 2014). Like other vegetation cover, seagrass beds play an important role in carbon storage 47 

(Novak and Short, 2020), as well as effective removal of carbon dioxide from the “biosphere-atmosphere” system, 48 

which significantly mitigates the climate change impacts (Duarte et al., 2013; Lyimo, 2016). Although occupying only 49 

0.2% of the world’s oceans (Traganos, 2020), seagrass beds can store twice as much as forests, and sequester around 50 

10% of the total carbon received by the oceans (Fourqurean et al., 2012).   51 

Unfortunately, natural and anthropogenic disturbances and disasters have led to the decline of seagrass around the 52 

world (Green and Short, 2003; Orth et al., 2006; Grech et al., 2012; Wood, 2012) at local and regional scales. 53 

Undoubtedly, these causes substantially destroy the seagrass beds and biota associated in such habitat and unbalance 54 

the ecological functions of coastal zones. Short et al. (2011) showed that seagrass habitat disappeared worldwide at a 55 

rate of 110 km2 per year between 1980 and 2006. Hence, understanding the spatial distribution of seagrass biomass, 56 

its extent, condition, and change over time is essential for their monitoring, management, and protection (Short and 57 

Coles, 2001; Waycott et al., 2009). Such monitoring provides updated and accurate information useful for the 58 

protection of several ecosystems (Leleu et al., 2012), conservation (Hamel and Andréfouët, 2010), coastal risk 59 

assessment (Warren et al., 2016), ecological resources development (Boström et al., 2011), and marine spatial 60 

planning (Saarman et al., 2012; Kibele, 2017). In addition, mapping and inventorying the total aboveground biomass 61 

of seagrass and algae are important for ecosystem health assessment (Short and Wyllie-Echeverria, 1996), alteration 62 

and dynamics in space-time (Neckles et al., 2012), biomass productivity and its contribution to the global biosphere 63 

carbon sink capacity (Waycott et al., 2009), and understanding the impacts of climate change (Hashim et al., 2014). 64 

In the Arabian Gulf, the extreme environmental conditions combined with major seasonal variations in the marine 65 

environment promote the development of three seagrass species including Halodule uninervis which is the most 66 

dominant species, Halophila stipulacea that is less common, and Halophila ovalis, which is widely scattered and 67 

rarely forms relatively dense meadows. Along the western coast of the Arabian Gulf, these three species are reported 68 

and several species of marine algae are described, especially green and brown algae (Erftemeijer and Shuail, 2012). 69 

This natural resource is located in shallow waters with depths ranging from the intertidal zone to 20 m, supporting the 70 

second largest population of dugongs (Dugong dugon) in the world (Preen, 2004); as well as a large population of 71 

Green Turtles (Chelonia mydas) and Hawksbill Turtles (Eretmochelys imbricata) (Thakur et al., 2007). Unfortunately, 72 

these coastal ecosystems are under continuous threats from anthropogenic activities (Waycott et al., 2009), such as 73 
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reclamation and dredging where several coastal developmental projects are constructed and others under construction 74 

(small islands projects development), industrial effluents, oil exploration, pipeline laying, maritime transportation, 75 

intensive circulation of commercial fishing boats, pollution and discharges of seawater desalinization and wastewater 76 

into the sea  (Onuf, 1994; Dunton and Schonberg, 2002; Burfeind and Stunz, 2006; Naser, 2011; Erftemeijer and 77 

Shuail, 2012). Eventually, these activities catalyze the degradation and destruction of seagrass species and related 78 

ecosystems. Therefore, the assessment of seagrass conditions associated with broad scale of benthic species should be 79 

based on relevant and accurate information to measure several health indicators of coastal areas to ensure the 80 

sustainable development of these natural resources.  81 

Previously, photo-interpretation approaches based on aerial photography have been adopted to follow seagrass and 82 

algae species development and assessment in space and time (Ferguson and Wood, 1990; Meehan et al., 2005; Mount, 83 

2007). Afterward, the first generation of satellite remote sensing was used to investigate the seagrass classes’ 84 

composition, differentiation, classification, etc. (Hossain et al., 2014; Komatsu et al., 2020). Unfortunately, these goals 85 

were difficult to achieve accurately because the radiometric and spectral resolutions of sensors lacked the sensitivity 86 

to discriminate among different marine vegetation species and fragmented classes (Mumby et al., 1997; Wicaksono 87 

and Hafizt, 2013). To improve land-water surfaces reflectivity and information extraction, recent developments in 88 

remote sensing science and technology have led to an improvement of sensors performance in spatial and spectral 89 

resolutions, assuming a potential mapping of the marine environment and aquatic vegetation at the species level; 90 

obviously, if species under investigation have distinct spectral signatures. For instance, the Multi-Spectral Instruments 91 

(MSI) onboard Sentinel 2A and 2B, as well as the Operational Land Imager (OLI) sensors onboard Landsat 8 and 9 92 

platforms were designed with a significant improvement of the signal-to-noise ratio (SNR) and radiometric 93 

performances (Knight and Kvaran, 2014). The availability of this new generation of sensors offers innovative 94 

opportunities for long-term high-temporal frequency for Earth surfaces’ observation and monitoring (Mandanici and 95 

Bitelli, 2016). The free availability of their data significantly advances the applications of remote sensing with medium 96 

spatial resolutions (Roy et al., 2014; Wulder et al., 2015; Zhang et al., 2018). Thanks to the improvement of their 97 

spectral, radiometric, and temporal resolutions, they can expand the range of their applications to several natural 98 

resources and environmental domains for monitoring, assessing, and investigating (Hedley et al., 2012a and 2012b). 99 

Moreover, the orbits of these four satellites constellation are designed to ensure a revisiting interval time of less than 100 

2 days (Li and Roy, 2017; Li and Chen, 2020), thereby substantially increasing the monitoring capabilities of the 101 

Earth’s surface and ecosystems (Drusch et al., 2012). Their spectral resolutions and configurations are designed in 102 

such a way that there is a significant match between the homologous spectral bands, i.e. analogous manner for relative 103 

spectral filters position and bandwidths between bands (Drusch et al., 2012; Irons et al., 2012). However, depending 104 

on the sensitivity of the intended application (Flood, 2017), the sensor radiometric drift calibration (Markham et al., 105 

2016), the atmospheric corrections (Vermote et al., 2016), the surface reflectance anisotropy (Roy et al., 2017), and 106 

the sensors co-registration (Skakun et al., 2017; Yan et al., 2018), it is plausible that the natural surface-reflectances 107 

recorded by MSI and OLI sensors over the same target in the marine environment may be different. In addition, the 108 

relative spectral response profiles characterizing the filters (spectral responsivities) of these instruments are not 109 

perfectly identical between the homologous bands, so some differences are probably expected over the recorded land 110 
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or water surfaces reflectance values and, therefore, their data cannot be reliably used together (Bannari et al., 2004; 111 

Van-derWerff and Van-der-Meer, 2016; Bannari, 2019). The importance of these differences depends on the 112 

application (spectral characteristics of the observed target) and on the approach adopted to perform time-series 113 

analyses, mapping, or change detection exploiting these instruments (Flood, 2017). For instance, it is plausible that 114 

the extraction of seagrass and/or algae information in time over shallow water areas using surface reflectances, 115 

empirical, semi-empirical, and/or physical approaches, may affect the comparison of the results. 116 

The main objectives of this research focus on the analysis of Sentinel-MSI and Landsat-OLI homologous visible 117 

and near-infrared (VNIR) bands capability to distinguish and discriminate among seagrass (Halodule uninervis and 118 

Halophila stipulacea), algae (green and brown), and any probable case of mixed species of seagrass and algae sampled 119 

from the southeast area of Bahrain national water. To achieve these, the specific following steps are considered. 1) 120 

Examination of spectral signatures in VNIR wavelengths and their continuum-removal transformations for potential 121 

differentiation among the considered seagrass and algae species and their mixture submerged in seawater at different 122 

coverage rates, as well as considering the sediment-substrate with clear and dark colors. 2) Comparison and analysis 123 

of the difference between the resampled and convolved reflectances in the VNIR homologous bands of MSI and OLI 124 

sensors considering all examined samples. 3) Comparison between MSI and OLI sensors in terms of converting the 125 

reflectances over the considered samples at different coverage rates into several water vegetation indices (WVI). 126 

Finally, 4) efficiency and accuracy analysis of the examined WVI to discriminate between species (seagrass, algae 127 

and mixed) by integrating the green and blue bands instead of the red band. Further, according to these analyses 128 

results, it will be clear whether it possible for these sensors to differentiate between seagrass and algae effectively and 129 

precisely at the species level, or simply and generally to discriminate among submerged aquatic vegetation (SAV) 130 

cover at different density classes. 131 

2. Remote sensing of seagrass and algae detection and mapping: A review 132 

Traditional seagrass in-situ surveys require time and intensive field sampling, which is generally lack the spatial 133 

coverage and precision that are required to detect changes before they become irreversible or very difficult to maintain 134 

year after year (Peterson and Fourqurean, 2001; Yang and Yang, 2012). Over the recent decades, remote sensing 135 

science and sensors technology has played an essential role in seagrass mapping and monitoring (Dean and Salim, 136 

2013; Dierssen et al., 2015). According to literature, the mapping of the characteristics and properties of seagrass and 137 

algae in the marine environment occurs over relatively small areas with limited variations in water depth and clarity 138 

using satellite, airborne, and drone remote sensing sensors (multispectral and hyperspectral). Moreover, field and 139 

laboratory in-situ measurements have been conducted for calibration and validation in several environments around 140 

the world (Larkum et al., 2006; Roelfsema et al., 2009; Hossain et al., 2014; Komatsu et al., 2020; Duffy et al. 2018). 141 

Under laboratory conditions using spectral measurements, Thorhaug et al. (2007) demonstrated the near similarity 142 

in the shape and form of the spectral signatures of three different seagrass species with a very slight difference and 143 

pointed out subtle differences between marine algae (green and brown) and seagrass. In the central west coast of 144 

Florida in the USA, Pu et al. (2012) used in-situ Hyperspectral measurements in the field and laboratory to analyse 145 

the spectral behaviour and the potential discrimination among several seagrass species according to their spatial extent 146 
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and abundance, water depths, and substrate types. They highlighted that the discrimination of seagrass species and the 147 

percentage of SAV coverage are affected by water depth and substrate on the measured spectra. Moreover, Wood 148 

(2012) demonstrated the potential of the synergy between the field spectra and hyperspectral data for seagrass sensing 149 

and mapping in Redfish Bay, Texas in the USA. Exploiting modeled and simulated data, Hedley et al. (2012a) 150 

demonstrated that Sentinel-MSI has an improved capability for detection and discrimination of the marine 151 

environment compared to SPOT-4 and Landsat-ETM+. Furthermore, Fyfe (2003) reported that the spectral signatures 152 

measured on harvested wet leaves (out of water) of different seagrass species were spectrally distinct. However, the 153 

real marine environment conditions are different from wet leaves due to water-column constituents including 154 

phytoplankton, suspended organic and inorganic matter, water depth variability, and optical properties of the 155 

underlying sediments (Pu et al., 2012). 156 

Otherwise, NASA’s Landsat program is the earliest and most commonly used over the past five decades. It consists 157 

of a series of nine satellite missions using four types of multispectral sensors including MSS, TM, ETM +, and OLI 158 

(Bannari and Al-Ali, 2020). These sensors have been used by many scientists to detect and map seagrass beds at local 159 

and regional scales (Phinn et al. 2008; Knudby and Nordlund, 2011; Lyons et al. 2012 and 2013; Kovacs et al. 2018). 160 

Exploring a time-series of 23 annual images acquired over the Eastern Banks of Moreton Bay in Australia, Lyons et 161 

al. (2013) demonstrated how TM and ETM+ data time-series analysis enabled seagrass spatial distribution to be 162 

appropriately assessed spatiotemporally. Moreover, a regional-scale mapping of seagrass habitat in the Wider-163 

Caribbean region was achieved with acceptable accuracies using a total of 40 scenes acquired with TM and ETM+ 164 

sensors, and applying different images processing methods (Wabnitz et al., 2008). In Cam-Ranh Bay in Vietnam, 165 

Chen et al. (2016) investigated the temporal changes of seagrass beds over 20 years (1996 to 2015) by exploiting 166 

multi-temporal Landsat data acquired with TM, ETM+ and OLI sensors. Dekker et al. (2005) demonstrated that TM 167 

and ETM+ instruments did not have sufficient spectral and radiometric resolutions to discriminate among three 168 

seagrass species in a shallow coastal Australian lake. Contrariwise, Dahdouh-Guebas et al. (1999) reported the utility 169 

of TM data associated with ground truth measurements to map accurately the distribution of seagrass and algae on the 170 

Kenyan coast. In addition to the Landsat sensor series, the European satellites such as SPOT-HRV were also used in 171 

combination with in-situ spectroradiometric measurements and quantitative semi-empirical models to assess the 172 

changes in the spatial distribution of seagrass biomass in Bourgneuf-Bay in France over 14 years (Barillé et al. 2010). 173 

Likewise, the potential of the Indian satellite (IRS-ID LISS-III) has been demonstrated for mapping the seagrass 174 

meadows extent in the Gulf of Mannar Biosphere Reserve in India (Umamaheswari et al., 2009).  175 

Furthermore, the first generation of commercial satellites operated by the private remote sensing industry with 176 

very high pixel size and narrow spectral resolutions, such as IKONOS, Quickbird, WorldView, etc., offers 177 

complementary technology for seagrass sensing and mapping. This new technology provides an excellent compromise 178 

between spatial and spectral resolutions for information extraction. In clear water seagrass habitat in the Moreton-Bay 179 

(Australia), the spatial and temporal dynamics of seagrasses (cover, species, and biomass) have been studied from the 180 

leaf to patch scales between 2004 and 2013 integrating nine high spatial resolutions images acquired with WorldView-181 

2, IKONOS, and Quickbird-2 and applying object-image processing approach (Roelfsema et al., 2014). The results 182 

showed the utility of this new spatial technology for time-series analysis and the derivation of seagrass products that 183 
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are very useful in marine ecology management. Moreover, Knudby and Nordlund (2011) highlighted the utility of 184 

IKONOS data for multi-species of seagrass detection in a patchy environment around Chumbe Island in Zanzibar 185 

(Tanzania). Along Zakinthos Island in Greece, Pasqualini et al. (2005) demonstrated that the SPOT-5 data with 2.5 186 

and 10 m spatial resolutions are suitable for seagrass classes’ classification according to the overall accuracies. In 187 

shallow waters of Moreton Bay in Australia, Phinn et al. (2008) have shown that the spatial and spectral resolutions 188 

of multispectral (Quickbird and Landsat-TM) and hyperspectral (airborne CASI) data affects the precision of seagrass 189 

biomass differentiation at the species level, i.e., when the pixel size increases the error is getting higher. Contrary to 190 

these findings, in the Capo Rizzuto area in Italy, Dattola et al. (2018) reported the potential of the high spatial 191 

resolution of WorldView-2 compared to the medium resolution of MSI and OLI for different seagrass species 192 

characterization. In addition, to identify the spatial distribution of seagrass beds in Xincun Bay (Hainan province in 193 

China), Yang and Yang (2009) demonstrated that Quickbird data are more accurate than those of TM and CBERS 194 

(China-Brazil Earth Resources Satellite data) sensors.  195 

In addition to remote sensing sensor technologies, a variety of image processing methods have been employed in 196 

mapping seagrass spatial distribution and coverage. For instance, Marcello et al. (2018) demonstrated the good 197 

performance of support vector machines (SVM) approach compared to spectral angle mapper (SAM) and maximum 198 

likelihood for seagrass classification; moreover, they pointed out the greater aptitude of hyperspectral compared to 199 

multispectral data. Likewise, Peneva et al. (2008) reported that the maximum likelihood classification produced the 200 

highest overall accuracy while SAM yielded the lowest accuracy due to the predominant influence of water-column 201 

optical properties on the apparent spectral characteristics of seagrass and sand bottom in the northern Gulf of Mexico. 202 

For Posidonia oceanica mapping in the Mediterranean region, the random forests method gives more accurate results 203 

than SVM approaches when compared with in-situ observations (Bakirman and Gumusay, 2020). Whereas, using a 204 

high spatial resolution of WorldView-2 imagery acquired over a coastal area in Florida, the neural network classifier 205 

performed better than SVM for seagrass mapping (Perez et al., 2020). According to Uhrin and Townsend (2016), 206 

linear spectral mixture analysis (LSMA) can be used with photo interpretation to generate spatially resolved maps 207 

suitable for seagrass spatial distribution and provide improved estimates of seagrass classes. Nevertheless, Chen et al. 208 

(2016) revealed the difficulty and limitation of LSMA for mapping the fraction of scattered and heterogeneous 209 

seagrass patches that are smaller than the pixel size. At Ritchie’s archipelago within the Andaman and Nicobar group 210 

of Islands, Bayyana et al. (2020) showed that Sentinel-MSI data can detect, and map submerged benthic habitat and 211 

seagrass beds present at a depth of 21 m using random forest, SVM, and K-nearest-neighbour classification algorithms. 212 

Besides, linear regressions were established between the field truth measurements and several vegetation indices 213 

derived from SPOT-XS, Landsat-TM, and CASI Hyperspectral airborne, to measure the density of seagrass in the 214 

tropical Western Atlantic (Mumby et al., 1997). 215 

Since the emergence of remote sensing as a new scientific discipline in the early 1970s, vegetation indices (VI’s) 216 

were involved as radiometric measurements of the spatial and temporal distribution of land vegetation photo-217 

synthetically active. They use the red and near-infrared (NIR) bands, the normalized difference vegetation index 218 

(NDVI) was proposed by Rouse et al. (1974) at the dawn of remote sensing. Since these two spectral bands are 219 

generally present on Earth observation and meteorological satellites, and often containing more than 90% of the 220 
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information relating to vegetation canopy (Bannari et al., 1995), the NDVI had taken a privileged place in the 221 

NASA/NOAA Pathfinder project (James and Kalluri, 1994). Thus, it was daily derived from NOAA-AVHRR data at 222 

the Earth scale. Subsequently, it was also derived every day from MODIS and SPOT-Vegetation data to produce time-223 

series products for global vegetation assessment and monitoring at the regional and global scales. Due to this glorious 224 

history and its simplicity, the NDVI has become the most widely used to assess vegetation canopy. Then, this index 225 

was improved in a new version named soil adjusted vegetation index (SAVI) by Huete (1988) to minimize the artefacts 226 

caused by soil background on the estimation of vegetation cover fraction by incorporating a correction factor “L”. To 227 

overcome the limitations of linearity and saturation, to reduce the noise of atmospheric effects, and to remove the 228 

artefacts of soil optical properties, the enhanced vegetation index (EVI) was proposed also by Huete et al. (2002). 229 

Likewise, the transformed difference vegetation index (TDVI) was developed by Bannari et al. (2002) to describe the 230 

vegetation cover fraction independently to the background artefacts, to reduce the saturation problem, and to enhance 231 

the vegetation dynamic range linearly. These indices (NDVI, SAVI, EVI, and TDVI) were used to establish a close 232 

relationship between radiometric responses and land vegetative cover densities, and they were implemented in the 233 

ENVI image processing system.  234 

In marine applications, several scientists for seagrass and algae discrimination and mapping tested these indices. 235 

The NDVI extracted from SPOT-HRV images coupled with in-situ spectroradiometric data provided satisfactory 236 

results for spatiotemporal change of seagrass beds in Bourgneuf-Bay in France (Barillé et al., 2009). Using 237 

hyperspectral data, Dierssen et al. (2015) reported the potential of NDVI for SAV classes’ discrimination. Similarly, 238 

Zoffoli et al. (2020) demonstrated the capability of NDVI derived from Sentinel-MSI data for seagrass percent cover 239 

estimation and leaf biomass mapping to characterize its seasonal dynamics along the European Atlantic coast. 240 

However, although VNIR bands are generally available in optical remote sensing satellites, it is well known that only 241 

the visible bands can penetrate ocean water deeper than NIR which is largely absorbed by the water surface (Kirk, 242 

1994). Thus, regardless of the concentrations of suspended sediments and/or organic matter, the visible wavelengths 243 

are used to map the marine environment. Indeed, the blue penetrates deeper (~ 37 m) than any other wavelengths, 244 

followed by green (~ 30 m), then red (~ 7 m), and NIR (Fig. 1) penetrates the least, being attenuated in the shallowest 245 

depths around 2.5 m (Komatsu et al., 2020). Accordingly, blue, green, and red are the most suitable for sensing 246 

seagrass and SAV (Silva et al., 2008). Thereby, when vegetation indices are applied in the marine environment 247 

(Davranche et al., 2010; Zhao et al., 2013), always the red band is substituted by that of blue or green. Then, discussion 248 

was initiated on WVI or aquatic vegetation indices (AVI). For instance, when the red was replaced by the green in 249 

NDVI (Yang and Yang, 2009) and by the blue in SAVI (Villa et al., 2013) these versions were named, respectively, 250 

the Normalized Difference Aquatic Vegetation Index (NDAVI or WNDVI) and Water Adjusted Vegetation Index 251 

(WAVI). These two new versions were found more sensitive to seagrass LAI and percentage cover density, and 252 

discriminated better among species of seagrass (Yang and Yang, 2009; Villa et al., 2013). To separate and map 253 

vegetation features over some lake ecosystems in Italy, the NDAVI and the WAVI performed suitably (Villa et al., 254 

2014). As well, for open water features delineation, Mcfeeters (1996) replaced the difference between “NIR and red” 255 

in the NDVI with that between “green and NIR”, and he baptised this new combination the Normalized Difference 256 

Water Index (NDWI). In Taihu and Duck Lakes in China, NDVI and NDWI were used for wetland and SAV pattern 257 
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delineation and classification (Lin et al., 2010; Zhao et al., 2013). Likewise, the visible atmospherically resistant index 258 

(VARI) was proposed by Gitelson et al. (2002a) to estimate the green vegetation fraction. While the triangular 259 

greenness index (TGI) was developed by Hunt et al. (2013) based on the chlorophyll absorption features. The 260 

capability of VARI and TGI was examined by Li (2018) who highlighted the advantage of VARI compared to TGI 261 

for seagrass biomass mapping in Core Banks in North Carolina in the USA. Proposed by Richardson and Wiegand 262 

(1977), the difference vegetation index (DVI) provided satisfactory results for mangrove cover and carbon stock 263 

estimation in the estuary and marine environment (Candra et al., 2016). Moreover, the difference-index between the 264 

blue and the green bands (DIF-BG) showed the best fits between observed and predicted SAV as reported by Mumby 265 

et al. (1997).  266 

 267 

[ Figure 1 ] 268 

3. Materials and Methods 269 

Fig. 2 illustrates the followed methodology, which is based on a field survey to collect samples including seawater, 270 

sediments, seagrass (Halodule uninervis and Halophila stipulacea) and algae (green and brown) from shallow marine 271 

environment at different depths (0.50 to 7 m) of southeast Bahrain. To simulate the marine environment, an 272 

experimental mode was established in a Goniometric-Laboratory and spectral measurements were performed using 273 

an Analytical Spectral Devices (ASD) spectroradiometer over each separate and mixed species at different coverage 274 

rate (0, 10, 30, 75, and 100%), as well as simulating the seabed with dark and clear colors. To assess the spectral 275 

signatures variability that can be found among each separate or mixed species at varying coverage rates, all measured 276 

spectra were analyzed and transformed using continuum-removed reflectance spectral (CRRS) approach (see section 277 

3.4). Then, the spectra were resampled and convolved in the solar-reflective spectral bands of MSI and OLI sensors 278 

using the Canadian Modified Simulation of a Satellite Signal in the Solar Spectrum (CAM5S) (Teillet and Santer, 279 

1991) based on Herman radiative transfer code (RTC), and the relative spectral response profiles characterizing the 280 

filters of each instrument in the VNIR bands. Afterward, convolved spectra were converted into several WVI 281 

integrating the red, green, and blue bands. For comparison and sensor differences quantification, statistical fits were 282 

conducted using linear regression analysis (p < 0.05) between reflectances in homologous bands and between the 283 

examined homologous WVI derived from the two sensors data considering all samples, i.e., seawater, sediments, 284 

seagrass, and algae species (individually and mixed at the considered coverage rates). The coefficient of determination 285 

(R2), difference values, and root mean square difference (RMSD) were calculated for reflectances and all versions of 286 

investigated WVI’s. 287 

 288 

[ Figure 2 ] 289 

3.1. Study Site 290 

The area under investigation in this research is the water boundary of the Kingdom of Bahrain (25º 32’ and 26º00’N, 291 

50º 20’ and 50º 50’E) which is a group of islands located in the Arabian Gulf, east of Saudi Arabia and west of Qatar 292 
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(Fig. 3). The archipelago comprises 33 islands, with a total area of 8269 km2, 9% of it is a land area (778.4 km2). 293 

Along the southeast coast of Bahrain, the continental plateau extends for kilometers with a depth of less than one or 294 

two meters. The main island of Bahrain is surrounded by shoal areas named “Fashts” where depths do not exceed 10 295 

m (Bannari and Kadhem, 2018). These areas generally support a variety of species of seagrass, algae, coral, and 296 

fishes. Moreover, they play an important role in the hydrodynamic regime, which supports diverse biological 297 

ecosystems. Fig. 3 also illustrates the reclamation and dredging operations that have occurred in the study area over 298 

the past three decades where several coastal developmental projects are constructed, and others are in progress. These 299 

anthropogenic activities strongly contribute to the degradation and even to the destruction of seagrass species and 300 

associated coastal ecosystems. 301 

 302 

[ Figure 3 ] 303 

3.2. Field sampling 304 

Seagrass and algae samples were collected on 4th May 2017 from different meadows locations, which are characterized 305 

by a depth range from 0.5 to 7 m in the south and southeast waters of Bahrain (Fig. 4a). Some locations were dominated 306 

with Halodule uninervis (HU), others scattered, or dense patches were a mixture between HU and Halophila 307 

stipulacea (HS). HU is the most dominant species (Fig. 4b), it occurs as dense or scattered meadows patches along 308 

shoreline (Erftemeijer and Shail, 2012). This species is like grass with narrow leaves (around 3 mm in width and 25 309 

cm in length). Whereas, HS (Fig. 4c) has darker green leaves reaching 10 cm in length and it is widely present in the 310 

Arabian Gulf. The brown (BA, Fig. 4d) and green (GA, Fig. 4e) algae were accessible near to shores and shallow 311 

water in general. In addition to the sediments (Fig. 4f) and pure seawater samples, which were collected separately, 312 

samples of each seagrass and algae species were selected and harvested in healthy and fresh conditions from several 313 

stations within the study area. Then, they were stored separately in non-translucent plastic bags with seawater and 314 

immediately placed in a cooler for transportation from the field to the laboratory. This was done to prevent structural 315 

and leaf pigment damages due to the delay between sampling time and spectroradiometric measurements in the 316 

Goniometric-Laboratory.   317 

 318 

[ Figure 4 ] 319 

3.3. Spectroradiometric measurements 320 

Spectroradiometric measurements were acquired in a dark BRDF Goniometric-Laboratory above each separated and 321 

mixed samples (Fig. 5) using an ASD spectroradiometer (ASD Inc., 2015). This instrument is equipped with two 322 

detectors operating in the VNIR and shortwave-infrared (SWIR), between 350 and 2500 nm. It acquires a continuous 323 

spectrum with a 1.4 nm sampling interval from 350 to 1000 nm and 2 nm from 1000 to 2500 nm. The ASD resamples 324 

the measurements in 1-nm intervals, which allows the acquisition of 2151 contiguous hyperspectral bands per 325 

spectrum. The sensor is characterized by the programming capacity of the integration time, which allows an increase 326 

of the SNR and stability. The data were acquired at nadir with a field of view (FOV) of 25° and a solar zenith angle 327 

http://www.tandfonline.com/author/Erftemeijer%2C+Paul+LA
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of approximately 5° by averaging 40 measurements. The ASD was installed on a BRDF Goniometric-System with a 328 

height of approximately 65 cm over the target, which makes it possible to observe a surface of ~ 830 cm2. A laser 329 

beam was used to locate the center of the ASD-FOV. The reflectance factor of each sample was calculated by rationing 330 

target radiance to the radiance obtained from a calibrated “Spectralon panel” according to the method described by 331 

Jackson et al. (1980). Moreover, the corrections were applied for the wavelength dependence and non-lambertien 332 

behavior of the panel (Sandmeier et al., 1998; ASD, 2015; Ben-Dor et al., 2015). The measurements were carried out 333 

above each collected sample including seawater, sediments, seagrass, and algae species as well as mixed species 334 

(seagrass and algae) considering different coverage rates (0, 10, 30, 75, and 100%). Each sample was placed and 335 

measured twice in black and clear-bright (yellow) large bowls, considering two sedimentary substrates (dark and clear-336 

bright) underlying the seagrass and algae samples that were submerged by seawater, i.e., simulating the aquatic 337 

environment. Since the remote sensing of benthic aquatic vegetation is mostly limited to the VNIR ranges (Fig. 1) 338 

only the wavelengths interval between 400 and 1000 nm are considered in our analyses.  339 

 340 

[ Figure 5 ] 341 

3.4. Continuum-removed reflectance spectral (CRRS) transformation 342 

Spectral signatures are processed and transformed using numerous approaches to retrieve information about change 343 

in absorption features (position, depth, width, and asymmetry) of a particular target over a specific bandwidth between 344 

350 and 2500 nm (Van-Der-Meera, 2004). To emphasize these absorption features, many approaches were proposed 345 

including relative absorption-band-depth (Crowley et al., 1989), spectral feature fitting technique, and Tricorder and 346 

Tetracorder algorithms (Clark et al., 2003). These approaches work on the so-called CRRS approach, thus recognizing 347 

that the absorption in a spectrum has a continuum and individual absorption features (Clark et al., 1987; Van-Der-348 

Meera, 2004; Clark et al., 2014). Proposed by Clark and Roush (1984), CRRS transformation and analysis allows the 349 

isolation of individual absorption features in the hyperspectral signature of a specific target under investigation, 350 

analysis, and comparison. It normalizes the original spectra and helps to compare individual absorption features from 351 

a common baseline (Clark et al., 1987). The continuum is a convex hull fit over the top of a spectrum under study 352 

using straight-line segments that connect local spectra maxima. The first and last spectral data values are on the hull; 353 

therefore, the first and last bands in the output continuum-removed data file are equal to 1.0. In other words, after the 354 

continuum is removed, a part of the spectrum without absorption features will have a value of 1, whereas complete 355 

absorption would be near to 0, and with most absorptions falling somewhere in between. The CRRS approach was 356 

used for discriminating and mapping rocks mineralogy (Clark et al., 1990; Clark and Swayze, 1995), land vegetation 357 

cover (Kokaly et al., 2003; Huang et al., 2004; Manevski et al., 2011), and seagrass and SAV (Barillé et al., 2011; 358 

Bargain et al., 2012; Wicaksono et al., 2019; Indayani et al., 2020). In this study, the continuum algorithm 359 

implemented in the ENVI image processing system was used (ENVI, 2012). 360 

3.5. Spectral sampling and convolving in MSI and OLI spectral bands 361 
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Since 1972, the Landsat scientific collaboration program between NASA and USGS constitutes the continuous record 362 

of the Earth’s surface reflectivity from space. Indeed, the Landsat satellites series support five decades of a global 363 

medium spatial resolution data collection, distribution, and archive of the Earth’s surfaces (Bannari et al., 2004; 364 

Loveland and Dwyer, 2012) to support research, applications, and climate change impacts analysis at the global, the 365 

regional and the local scales (Roy et al., 2014 and 2016; Wulder et al., 2015). Benefiting from the acquired space-366 

engineering experience, from the heritage of Landsat instruments, and the advanced development of technology during 367 

the last five decades, the fourth generation of Landsat is composed of two similar sensors with very high spectral and 368 

radiometric sensitivities: OLI-1 and OLI-2 (Markham et al., 2016; Li and Chen, 2020). The OLI-1 carried onboard 369 

Landsat-8 was launched on 11th February 2013, and OLI-2 onboard Landsat-9 was launched on 27th September 2021 370 

(NASA, 2019 and 2021). The OLI sensors collect land-surface reflectivity in the VNIR, SWIR, and panchromatic 371 

wavelength with a FOV of 15° covering a swath of 185 km with 16 days’ time repetition at the equator. The band 372 

passes are narrower to minimize atmospheric absorption features (NASA, 2014), especially the NIR spectral band 373 

(0.865 μm). Two new spectral bands have been added: a deep blue visible shorter wavelength (band 1: 0.433 - 0.453 374 

m) designed specifically for water resources and coastal zone investigation and a new SWIR band (9: 1.360 - 1.390 375 

m) for the detection of cirrus clouds. Moreover, compared to previous TM and ETM+ sensors using only 8 bit, the 376 

OLI design results in more sensitive instruments with a significant improvement of the SNR radiometric performance 377 

quantized over a 12-bit dynamic range (Level 1 data), and raw data are delivered in 16 bit. The high performance of 378 

SNR associated with improved radiometric and spectral resolutions provide a superior dynamic range of radiance by 379 

reducing saturation problems and, therefore, enabling better characterization of land and water surface conditions 380 

(Knight and Kvaran, 2014), especially with orbit reflective radiometric calibration better than 3% (Markham et al., 381 

2014; Gascon et al., 2017). Table 1 summarizes the effective bandwidth characteristics of OLI-1 and OLI-2 sensors.  382 

 383 

[ Table 1 ] 384 

 385 

Otherwise, the Sentinel-2 mission is the result of close collaboration between the European Space Agency, the 386 

European Commission, industry, service providers, and data users. It is composed of two satellites, Sentinel 2A and 387 

2B that were launched in June 2015 and in March 2017, respectively. Both satellites are equipped with identical MSI 388 

sensors to provide continuity to the SPOT missions and to improve the Landsat-OLI temporal frequency (Drusch et 389 

al., 2012). The synergy between the four sensors (MSI-2A, MSI-2B, OLI-1, and OLI-2) significantly increase the 390 

temporal resolution (around 2 days) offering new opportunities for several environmental and natural resource 391 

applications, such as the vigour of vegetation cover, emergency management, water quality, seagrass meadows, and 392 

climate change impacts analysis at local, regional, and global scales. The MSI images the Earth’s surface reflectivity 393 

with a large FOV (20.6º) in 13 spectral bands with several spatial resolutions from 10 to 60-m; four bands with 10-m 394 

(blue, green, red, and NIR-1), six bands with 20-m (Red-Edge, NIR-2, and SWIR), and three bands with 60-m (coastal, 395 

water vapor and cirrus). The swath of each scene is 290 km, permitting global coverage of the Earth’s surface every 396 

10 days. The MSI radiometric performance is coded in 12 bits, ensuring radiometric calibration accuracy of better 397 
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than 3% and an excellent SNR (Markham et al., 2014; Li et al., 2017). Table 1 summarizes the effective bandwidth 398 

characteristics of MSI-2A and MSI-2B sensors.  399 

As discussed above, the measured bidirectional reflectance factors with the ASD have a 1-nm interval allowing 400 

the acquisition of 2151 contiguous hyperspectral bands per spectrum. However, most multispectral remote sensing 401 

instruments measure integrated reflectance over broad bands (equation 1). Consequently, the average of 40 spectra 402 

measured with the ASD over each sample was resampled and convolved to match the solar-reflective spectral 403 

responses functions characterizing the optics and electronics of MSI and OLI instruments in the VNIR spectral bands 404 

(Fig. 6). In this step, the resampling procedure considers the nominal width of each spectral band (Table 1). Then, the 405 

convolution process was executed using the CAM5S transfer radiative code (Teillet and Santer, 1991). This 406 

fundamental step simulates the signal received by the considered sensors at the top of the atmosphere from a surface 407 

reflecting solar and sky irradiance at sea level, considering the filter of each band (Fig. 6), and assuming ideal 408 

atmospheric conditions without scattering or absorption (Zhang and Roy, 2016). Accordingly, the equivalent 409 

convolved reflectance (𝜌(𝜆𝑖 , 𝜆𝑠)𝑖) over each sample was generated at the satellite orbit altitude in homologous VNIR 410 

spectral bands of each sensor (Slater, 1980):  411 

 412 

𝜌(𝜆𝑖, 𝜆𝑠)𝑖 =  
∫  𝑅(𝜆).

𝜆𝑠
𝜆𝑖

𝑆(𝜆)𝑖.𝑑(𝜆)

∫ 𝑆(𝜆)𝑖.𝑑(𝜆)
𝜆𝑠

𝜆𝑖

                            (1) 413 

 414 

Where 𝜌(𝜆𝑖 , 𝜆𝑠)𝑖 is the equivalent convolved reflectance of the band “i” of each sensor, i to s are the spectral 415 

wavelength ranges of the band “i” of each sensor, R() is the corresponding reflectance at wavelength “” measured 416 

by the ASD, and S()i is the corresponding spectral responsivity value of the spectral response function of the band 417 

“i” of each sensor (Fig. 6). It is important to note that the MSI-NIR-2 broadband (band-8: 785 - 900 nm) is not 418 

considered in this study because it is not a real homologous band of OLI-NIR, and it has a greatest reflective band 419 

difference with the OLI-NIR (851–879 nm). The OLI-NIR spectral response function intersects with only 20% of the 420 

MSI-NIR-2 response function. Moreover, the MSI red-edge bands were not considered also as they are not acquired 421 

by the OLI sensor.  422 

 423 

[ Figure 6 ] 424 

3.6. Data Processing 425 

In addition to remote sensing sensor technologies’ improvement and innovation, a variety of processing methods have 426 

been applied for spectral data for mapping and monitoring seagrass and habitats in shallow coastal waters. They were 427 

applied to highlight the seagrass and algae species composition, leaf area index estimation, percentage cover mapping, 428 

etc. They include matched filtering approach (Li et al., 2012), object-based image analysis (Roelfsema et al., 2014), 429 

adaptive coherence estimator and constrained energy minimization (Li et al., 2012), artificial neural network model 430 

(Perez et al., 2020), linear spectral mixture analysis (Uhrin and Townsend, 2016; Chen et al., 2016), spectral angle 431 

mapper (Peneva et al., 2008; Li et al., 2012; Marcello et al., 2018; Wicaksono et al., 2019), classification tree analysis 432 



13 
 

(Wicaksono et al., 2019), random forest (Bayyana et al., 2020), support vector machines (Marcello et al., 2018; 433 

Bakirman and Gumusay, 2020; Perez et al., 2020; Bayyana et al., 2020), and machine learning regression (Traganos, 434 

2020; Bakirman and Gumusay, 2020). Undeniably, these sophisticated and complicated methods require extensive 435 

training information and field endmember measurements. However, the simplicity of empirical and semi-empirical 436 

methods based on vegetation indices are easier to transfer between sensors and can be used as a robust alternative 437 

compared to the complex processing methods; because these methods are based on the knowledge of spectral 438 

absorption features that characterize specifically the target under investigation. Moreover, these methods have the 439 

advantage of being reproducible, easily transferable, and applicable in other geographic regions. Each method has 440 

advantages and limitations, especially in shallow water. In this study, after the spectral analysis and CRRS 441 

transformation, the capability and comparison of the VNIR homologous spectral bands of MSI and OLI sensors were 442 

investigated for seawater, sediments, seagrass, algae, and mixed species discrimination at different coverage rates. 443 

Then, although the literature refers to more than fifty vegetation indices for land vegetation cover monitoring and 444 

characterization (Bannari et al., 1995), only the most popular indices that have been used for seagrass and SAV in 445 

different marine environments around the world were retained in this study. After spectral data pre-processing, 446 

sampling, and convolving, the indices TGI, VARI, and Diff(G-B) were implemented and tested respecting their 447 

original and unchangeable equations. While the NDVI, SAVI, EVI, TDVI, NDWI, and DVI indices were calculated 448 

in three versions by integrating the red, blue, and green bands. The equations of the considered indices are as follow: 449 

 450 

NDVI = (ρNIR −  𝜌𝑅𝑒𝑑) / (𝜌𝑁𝐼𝑅 +  𝜌𝑅𝑒𝑑)   (Rouse et al., 1974)                (2) 451 

SAVI = 1.5 ∗ (ρNIR −  𝜌𝑅𝑒𝑑) / (𝜌𝑁𝐼𝑅 +  𝜌𝑅𝑒𝑑 + 0.5)   (Huete, 1988)               (3)
  

452 

TDVI = 1.5 ∗ (ρNIR −  𝜌𝑅𝑒𝑑)/(√(𝜌𝑁𝐼𝑅
2 + 𝜌𝑅𝑒𝑑 + 0.5)  )

   
(Bannari et al., 2002)                (4) 453 

NDWI = (ρGreen − 𝜌𝑁𝐼𝑅) / (𝜌𝐺𝑟𝑒𝑒𝑛 + 𝜌𝑁𝐼𝑅)   (McFeeters, 1996)              (5) 454 

EVI = 2.5 ∗ (ρNIR − 𝜌𝑅𝑒𝑑)/(𝜌𝑁𝐼𝑅 +  6 ∗ 𝜌𝑅𝑒𝑑  −  7.5 ∗ 𝜌𝐵𝑙𝑢𝑒 + 1) (Huete et al., 2002)              (6) 455 

DVI =  ρNIR −  ρRed        (Richardson and Wiegand, 1977)            (7) 456 

VARI = (ρGreen −  𝜌𝑅𝑒𝑑) / (𝜌𝐺𝑟𝑒𝑒𝑛 +  𝜌𝑅𝑒𝑑  −  𝜌𝐵𝑙𝑢𝑒)    (Gitelson et al., 2002a)              (8) 457 

TGI =  ρGreen −  0.39 ∗ ρRed  −  0.61 ∗ ρBlue          (Hunt et al., 2013)             (9) 458 

Diff(GB) =  ρBlue − ρGreen     (Mumby et al., 1997)                  (10) 459 

 460 

The wavelength ranges of the used VNIR bands for Sentinel-MSI and Landsat-OLI are summarize in Table 1. 461 

3.7. Statistical analyses  462 

As discussed previously, the MSI and OLI relative spectral response profiles characterizing the filters of each spectral 463 

band are relatively different (Fig. 6). To examine the impact of this difference, statistical analyses were computed 464 

using “Statistica” software. The relationships between the product values (reflectances and WVI’s) derived from MSI 465 

against those obtained from OLI were analyzed between homologous bands using a linear regression model (p < 0.05). 466 

As well, the R2 was used to evaluate the strength of this linear relationship. For this process, the resampled and 467 

convolved spectra of all samples’ reflectance data were used, and the homologous values in VNIR bands of MSI and 468 
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OLI were compared using the 1:1 line. Ideally, these independent variable values should have a correspondence of 469 

1:1. Additionally, the root mean square difference (RMSD) between both sensors was derived (Willmott, 1982; Zhang 470 

et al., 2018): 471 

  472 

RMSD =  √∑ (𝑣𝑖
𝑂𝐿𝐼− 𝑣𝑖

𝑀𝑆𝐼)2𝑛
𝑖

𝑛
                                             (11) 473 

 474 

Where RMSD between corresponding Landsat-OLI and Sentinel-MSI variables values (reflectances and WVI’s), “vi” 475 

is the variable under analysis and “i” is the number of variable (i = 1 to n).   476 

4. Results analysis 477 

4.1. Spectral and CRRS analysis 478 

Spectral signatures of seagrass and algae species are measured separately and mixed in black and yellow large bowls 479 

using two sedimentary substrates (dark and bright). They are presented separately for the examined coverage rates, 480 

namely 10, 30, 75, and 100% (Fig. 7, a-d). Overall, the reflectance signatures of seagrass and algae samples are similar 481 

to those of healthy vegetation canopy. These reflectance signatures exhibit slight absorption features near 450 nm and 482 

others stronger between 650 and 700 nm with a minimum at 670 nm caused by the chlorophyll; as well as a significant 483 

reflection between 520 and 600 nm due to carotenoid pigments and high reflectance in the NIR attributed to internal 484 

tissue structure (700 to 900 nm). Differently to land vegetation, the red-edge is not well developed (very weak) 485 

particularly for non-dense seagrass and algae due to high red and NIR absorption by water molecules as shown in Fig. 486 

1. Generally, absorption or reflection of pigmentations between species occurs in different wavelengths but the 487 

strength of absorption gradually increases in the red as the coverage rate increases. 488 

For scattered and low coverage (~ 10 %), the shapes of all spectra are relatively similar, without the possibility to 489 

identify specific absorption features or to separate among species according to their spectra in the visible domain (Fig. 490 

7a). The highest reflectance values vary between 10% and 15% across NIR wavelengths with a difference reflectance 491 

(NIR) around 5%, while in the visible all the reflectance values are below 5% with visible are also ˂ 5%. For this 492 

low and sparse cover, it is observed that the reflectance is influenced by spectral properties of the underlying 493 

sediments, fragments of vegetation, light shading, etc., thus contributing to the confusion between spectral signatures. 494 

Definitely, under such conditions, it is a challenge to distinguish between seagrass and/or algae species based only on 495 

their spectral signatures. Whereas, the measurements acquired over somewhat denser coverage rates (~ 30 %) show 496 

analogous spectral behaviour and patterns with overlap among spectra in visible wavelengths (400 to 700 nm), but a 497 

slight separability between species stands out relatively in NIR (Fig. 7b). 498 

Furthermore, unlike scattered or less dense cover (≤ 30 %), the analysis of the dense and very dense coverage rates 499 

(75 and 100%) showed that the optical properties (darkness or brightness) of the underlying substrate does not have a 500 

significant effect on the measured spectra. For these coverage ranges, the clear and normal behaviour of vegetation 501 

cover spectra are observed. The absorption feature is weak in the blue (450-480 nm) but more accentuated in red (670 502 
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nm), the reflection peak is more highlighted in green (550 nm), and the reflectance values increase notably and 503 

gradually in NIR with the increase of the coverage rate. Although the seagrass has a distinct spectral response 504 

compared to the algae, especially in the green and NIR regions of the spectrum, significant spectral differences are 505 

noted for the HU with the highest reflectance, followed by GA, HS, and BA. This order is probably controlled by the 506 

leaves structures that are specific for each type of seagrass or algae. The reflectance values in the visible are controlled 507 

by the absorption of chlorophyll pigmentations in blue and red wavelengths, and by the carotenoid pigmentations in 508 

the green band. In addition, compared to HS and BA spectra, HU and GA showed relatively strong absorption by 509 

chlorophyll in red wavelengths. This difference is due to the nature of chlorophyll in each species. Indeed, brown 510 

algae contain accessory pigments “fucoxanthin” and chlorophyll “c” (Johnsen and Sakshaug, 2007), while seagrass 511 

are flowering plants, and their leaves contain chlorophyll “b” (Cummings and Zimmerman, 2003). It is observed also 512 

that the BA carotenoid pigments (fucoxanthin) are characterized by spectral features at 630 and 650 nm that are not 513 

present in the spectra of HS, HU, and GA (Fig. 7). However, despite all these spectral characteristics the difference in 514 

reflectance values among all species (individual and mixed) is ≤ 6% in the visible and ≤ 13% in NIR for a very dense 515 

cover (100%). Therefore, these results suggest that it is probably possible for the blue, green, and NIR wavelengths 516 

to discriminate among the considered seagrass and algae species if they are homogeneous with high or very high 517 

densities.  518 

Otherwise, the CRRS transformations are presented in Fig. 7 (e-h) with Sentinel-MSI relative spectral response 519 

profiles characterizing the filters of VNIR bands. The lower CRRS values indicate the greatest potential spectral 520 

separability, which means the identification of the appropriate wavelengths to discriminate among the considered 521 

classes of investigated species. As shown in Fig. 7 (e-h), the CRRS significantly enhances the spectral separability 522 

among the seagrass and algae classes, especially in the visible bands. Two main absorption features are highlighted in 523 

the blue (485-498 nm) and red (~ 670 nm) regardless the species. In the green, one major reflection peak is observed 524 

around 544 nm for HU and GA, one around 530 nm for HS, and three peaks are well distinguished for BA at 578, 525 

595, and 640 nm (Fig. 7h). These differentiation features become clearer as the coverage rates increase especially in 526 

blue and NIR wavelengths. For a low coverage rate (~ 10 %), the strongest absorption depth is that of GA (0.46) 527 

followed by HU (0.58), HS (0.74), and BA (0.78) in the blue (Fig. 7e). While in the red, CRRS pointed out that 528 

regardless of the coverage rate, a strong similarity is observed between HU and GA due to their high content of 529 

chlorophyll pigmentation with a depth of absorption around 0.29. Subsequently followed by HS and BA that are 530 

characterized by less absorption depth (~ 0.50). In these two waveband domains (blue and red), the absorption features 531 

become deeper with increasing coverage density. Likewise, when the cover rate of all species becomes denser (100%), 532 

similar absorption characteristics are exhibited in the red band between HU and GA species; as well as between HS 533 

and BA (Fig. 7h). While in the blue and NIR wavelengths, the CRRS highlights the distinction and differentiation 534 

between species. On the other hand, as the coverage increases from 10 to 100%, the reflection peak in the green 535 

waveband becomes less pronounced due to the high content of carotenoid pigment; also a strong similarity is observed 536 

between HU and GA. Moreover, the curves of CRRS of the mixed species occupy an intermediate position of 537 

absorption features between the homogeneous samples and, therefore, the differentiation between absorption 538 

characteristics becomes very narrow. Accordingly, the discrimination between pure and mixed species becomes very 539 
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difficult or even impossible. Overall, spectral and CRRS analyses highlighted the importance of the blue, green, and 540 

NIR wavelengths for seagrass and algae detection and probable discrimination based on hyperspectral measurements. 541 

These results corroborate the physical concept presented in Fig. 1 that the blue and green electromagnetic radiation 542 

penetrates a deeper vertical column of water. While despite its limited penetration, the NIR shows a certain sensitivity 543 

to the biomass density and its spatial distribution.    544 

 545 

[ Figure 7 ] 546 

4.2. Resampling and convolving in OLI and MSI bands   547 

Fig. 8 illustrates the scatter-plots between the resampled and convolved reflectance values in the VNIR homologous 548 

bands of the MSI and OLI sensors. Simulated at the top of the atmosphere using all considered samples (seawater, 549 

sediments, seagrass, algae and mixed species of both seagrass and algae at unlike coverage rates), they allow the 550 

analysis of the difference in reflectance values () and RMSD due exclusively to dissimilarities in spectral response 551 

function between homologous bands. These scatter-plots reveal a near-perfect fit with 1:1 line expressing an excellent 552 

coefficient of determination (R2 of 0.999) between homologous bands with the slopes and intercepts very near to unity 553 

and zero, respectively. Thus, the derived  values are null for VNIR homologous bands for seawater and are 554 

insignificant for dark and bright substrate sediments in all bands (i.e., 0.009 for green and 0.002 for the coastal, blue, 555 

red, and NIR bands). While, for seagrass and algae (HS, HU, GA, and BA),  vary between 0.003 and 0.02 regardless 556 

of the coverage rate or the considered spectral band. Moreover, the achieved overall RMSD in reflectance between 557 

MSI and OLI homologous bands considering all samples are insignificant (≤ 0.0015) for blue, green, and red bands, 558 

and null for coastal and NIR bands. It is also observed that all the bands are insensitive to the variation of the colors 559 

of the bowls and the sedimentary substrate optical properties. These results pointed out that MSI and OLI sensors are 560 

spectrally similar and can be used jointly for high temporal frequency to monitor seagrass and algae dynamics in time 561 

and space. Therefore, due to this near-perfect spectral similarity between these instruments, our analysis in the 562 

following sections will focus only on the MSI sensor. 563 

 564 

[ Figure 8 ] 565 

 566 

Fig. 9 illustrates the reflectances of seagrass, algae, and seawater resampled and convolved in VNIR bands of MSI or 567 

OLI sensors considering each species separately and all species at different coverage rates. Compared to the measured 568 

hyperspectral signatures (Fig. 7), these broadband spectra are more generalized and less precise because these spectra 569 

lost the specific and unique absorption features of seagrass and/or algae species caused by pigmentations as discussed 570 

above. However, such broadband spectra retain the same spectral pattern as the original spectra. Regardless of the 571 

species, the graphics summarized in Fig. 9 exhibit similar shape and pattern, but with a slight difference in reflectance 572 

values between species in the visible bands. If we consider the species separately (HS, HU, GA, and BA) in different 573 

coverage rates (10, 25, 75, and 100%), the reflectance difference values () are ≤ 0.02; and insignificant ( ≤ 0.002) 574 

for pure seawater and sediments in all VNIR bands. Hence, these species are not spectrally distinguishable particularly 575 
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in the visible whatever the coverage. While, if we consider all samples (seagrass, algae, and mixed) in all coverage 576 

rates (Fig. 9e), the  are equal to 0.03 in coastal and blue bands, 0.05 in green, 0.035 in red and 0.21 in NIR. Except 577 

for the NIR, the calculated  values in the visible are approximately identical to the accuracies achieved from 578 

radiometric calibration and atmospheric corrections. Therefore, relying on the multispectral bandwidth of OLI and 579 

MSI sensors, it is difficult or even impossible to differentiate or to map seagrass and algae individually at the species 580 

level. Accordingly, SAV classes’ discrimination and mapping will be discussed.  581 

 582 

[ Figure 9 ] 583 

4.3. Vegetation indices analysis 584 

In this third part, the NDVI, SAVI, EVI, TDVI, NDWI, and DVI indices were implemented and analysed in three 585 

versions each by integrating the red, blue, and green bands; while the indices TGI, VARI, and Diff(G-B) were 586 

calculated and tested respecting their original and unchangeable equations. In total, 21 combinations of indices were 587 

calculated for each sensor. The statistical analyses (p  0.05) focus on the similarity or dissimilarity between MSI and 588 

OLI homologous indices, and their potential for seagrass and algae discrimination. Except for the TGI and VARI 589 

indices, the results revealed an excellent linear relationship (R2 of 0.999) between MSI and OLI products regardless 590 

of the compared index and the integrated spectral bands (red, green, and blue). Overall, the scatter-plots presented in 591 

Fig. 10 depict a very good fit to the 1:1 line with the slopes and intercepts very near to unity and zero, respectively. 592 

However, despite its near-perfect linearity and insignificant RMSD between MSI and OLI values (0.001), the TGI 593 

show a very weak and limited spatial variability with a range between 0.0 for pure seawater and 0.05 for a very dense 594 

coverage (100%) of seagrass or algae (Fig. 10e). This range cannot allow the differentiation among the marine 595 

environment classes, because this index was not developed for biomass sensing but was designed for crop nitrogen 596 

requirements detection. Likewise, although the scatter-plot of VARI shows an excellent coefficient of determination 597 

(R2 of 0.99), this index overestimates the predicted values by MSI sensor compared to those estimated by OLI, 598 

resulting in the data not fitting the 1:1 line very well (Fig. 10f). Moreover, the difference values of VARI derived from 599 

MSI and OLI data vary between 0.0 and 0.14 depending on the sample species and its coverage rate, with an overall 600 

RMSD of 0.03. This result can be explained by the fact that the VARI uses only the visible ranges of the spectrum 601 

and does not consider the NIR band, which is the most informative about the biomass density. In addition, it was 602 

developed particularly for very dense (100%) wheat crops; moreover, it was designed principally for coarse data 603 

acquired by the SeaWiFS, MODIS, MISR, and MERIS sensors. According to Gitelson et al. (2002b), many factors 604 

potentially decrease the accuracy of the VARI such as vegetation cover species, canopy architecture, and sun 605 

illumination geometry. For wheat and corn species, this index yielded RMSE of around 10% (Gitelson et al., 2002a). 606 

Therefore, the weaknesses raised for these two indices (TGI and VARI) are not caused by the impact due exclusively 607 

to the dissimilarities in spectral response function between homologous bands of MSI and OLI sensors, but due to 608 

their mathematical concepts that are intended for a single and specific application. 609 

Furthermore, the scatter-plots presented in Fig. 10 (a-d) are showing examples of certain indices including NDWI, 610 

WAVI, WEVI, and WTDVI. Overall, the indices are fitting very well the 1:1 line with R2 of 0.99, slopes very near to 611 
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unity and intercepts to zero. The indices show that the derived WVI from MSI and OLI data are predicting similarly 612 

seagrass and algae species in a shallow marine environment. Considering all investigated samples in this study, the 613 

interval difference values between homologous indices vary between 0.0 and 0.01 for all versions of WTDVI, WAVI, 614 

WDVI, and Diff(G-B); while they vary between 0.0 and 0.04 for NDWI, WEVI and NDWI. These differences values 615 

are satisfactory and remain equal or less than the combined inaccuracies of atmospheric corrections and sensor 616 

radiometric calibration. Moreover, the achieved RMSD values between MSI and OLI homologous indices are 617 

insignificant (RMSD ≤ 0.01) for all indices (Table 2) regardless of the integrated spectral band. These analyses pointed 618 

out that MSI and OLI sensors can be combined for high temporal frequency to monitor the dynamic of biophysical 619 

products in time and space in a shallow marine environment.   620 

 621 

[ Table 2 ] 622 

 623 

[ Figure 10 ] 624 

 625 

Fig. 11 summarises the linear regressions (p  0.05) between the best indices and the reflectances in NIR considering 626 

all samples, i.e., seawater, sediments, seagrass, algae, and mixed species classes with different coverage rates (10, 30, 627 

75, and 100%). The computed indices (NDVI, SAVI, EVI, TDVI, NDWI, and DVI) with the blue, green, and red 628 

bands are the most relevant for SAV differentiation and mapping. Firstly, it is observed that the indices NDVI and 629 

NDWI provided similar results with opposite signs, i.e., symmetrically opposed concerning the X-axis. Indeed, 630 

whatever the integrated band, the NDWI results are always symmetrical compared to those of NDVI but with negative 631 

values. However, such results are not showing the truth because negative values are automatically reset to zero by the 632 

image processing system and, therefore, it is probable that the results will be inaccurate. Furthermore, when the red 633 

and blue bands are implemented in the NDVI equation, insignificant fits (R2 of 0.40) were achieved; but improved 634 

results are obtained with the integration of the green band (R2 of 0.63) and the index is named NDWVI. Analogous 635 

results are obtained by Diff(G-B) and VARI indices with R2 of 0.63 (Table 2) when all samples are considered. 636 

Luckily, the statistical fits of these three indices (NDWVI, Diff(G-B), and VARI) becomes significantly improved 637 

when unique species is considered, such as only seagrass or only algae (R2 of 0.85). Whereas, in addition to its 638 

weakness and limited sensitivity to the spatial variability of seagrass and algae, the TGI was irrelevant for SAV 639 

discrimination yielding a very low fits (R2 of 0.20) whatever the considered species. 640 

 641 

[ Figure 11 ] 642 

 643 

As discussed previously, when integrating the blue and green bands, the indices WDVI, WAVI, WEVI, and 644 

WTDVI outperformed all examined indices regardless of the species (seagrass, algae, or mixed), yielding a very 645 

significant coefficient of determination for mixed species (0.89 ≤ R2 ≤ 0.96) (Fig. 11 a-d, and Table 2). Calculated 646 

with blue, green, or red bands, the DVI (noted WDVI) discriminated among SAV classes significantly (R2 ≤ 0.92), 647 

but it underestimates the SAV as shown in Fig. 10-d. However, WAVI, WEVI, and WTDVI offer similar trends 648 
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regardless the considered species (R2 ≤ 0.92 for mixed or seagrass only, and R2 of 0.82 for algae only). Overall, instead 649 

of the red band, the integration of blue and green bands in vegetation indices increases their discriminating power for 650 

SAV (Table 2). These results corroborate the spectral analysis and the CRRS transformations; the blue and green 651 

electromagnetic radiation penetrates deeper through the water allowing more details and information about marine 652 

vegetation discrimination. This finding is consistent with Wicaksono and Hafizt (2013), and Villa et al. (2014) where 653 

the blue band better separates and maps aquatic vegetation features over some lake ecosystems in Italy. However, the 654 

summarized R2 in Table 2 shows that the indices WAVI, WEVI, and WTDVI provided relatively identical results 655 

when integrating the blue or green bands. Nevertheless, the scatter plots in Fig. 11 (a, b, and c) illustrate that when the 656 

green band is considered instead of the blue, the majority of sampled points are located closer to line 1:1, especially 657 

when the coverage rate becomes denser. This can be explained by the fact that despite the power of blue wavelengths 658 

to penetrate deeper into the water, this band also leads to an overestimation of indices values due to its higher scattering 659 

(Fig. 11), mainly in turbid environments. 660 

5. Discussion 661 

Seagrass and algae species showed similar spectral signature curves, but with subtle differences between species. In 662 

general, some relevant wavelengths are observed for the characterization of the considered species of seagrass and 663 

algae including those at or near 450, 500, 520, 550, 600, 620, 640, 670, and 700 nm. They are related to the absorption 664 

features and reflection peaks due to photosynthetic pigmentations of HU, HS, GA, and BA. Spectral and CRRS 665 

analyses highlighted the importance of the blue, green, and NIR wavelengths for probable differentiation between the 666 

considered seagrass and algae types. However, the magnitude of the  values among species is an indicator of the 667 

strength of the absorption feature depths and, therefore, of their discriminating power between species. For instance, 668 

the highest  values among all considered samples (seagrass, algae, and mixed of both) is ≤ 5% across the visible 669 

wavelengths and around 10 to 15% in NIR. Likewise, the CRRS transformations of all spectra of homogeneous and 670 

mixed samples show that the absorption characteristics become all very similar and, thus, the discrimination between 671 

pure and mixed species becomes difficult or even impossible. These results are in agreement with other findings that 672 

have been conducted in many geographic locations worldwide and have considered many seagrass and algae types. 673 

Considering nine tropical species of seagrass, Wicaksono et al. (2019) showed that even hyperspectral data will not 674 

improve discrimination between seagrass and algae at the species level in pixels or sub-pixels due to the subtle 675 

difference in absorption features among them. As well, Phinn et al. (2008) confirmed that the hyperspectral data are 676 

unable to map seagrass biomass at the species level in shallow waters of Moreton Bay in Australia. Using field and 677 

laboratory hyperspectral measurements over several seagrass species on the west coast of Florida, Pu et al. (2012) 678 

reported also that the VNIR wavelengths have relatively low accuracies to discriminate among seagrass community 679 

composition.   680 

Otherwise, the resampled and convolved spectra in VNIR bands of MSI and OLI sensors are similar in all cases, 681 

considering each species separately or the totality of samples at different coverage rates. These spectra are more 682 

generalized and less precise due to the loss of absorption features caused by pigmentations. Hence, regardless of the 683 
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coverage rates, if uniform and homogenize species are considered, the  is ≤ 0.02 in the visible and is ≤ 0.22 in NIR. 684 

While, if all mixed samples and species are considered at the investigated coverage rates,  is ≤ 0.05 in visible bands 685 

and remains stable ( ≤ 0.22) in NIR. These very small values do not allow spectral distinction among species, 686 

particularly in the visible wavebands. Therefore, based on the multispectral bandwidth of OLI and MSI sensors, it is 687 

difficult to differentiate seagrass and algae individually at the species level. Indeed, it is important to remember that 688 

these simulations were conducted in a Goniometric-Laboratory using close range measurements protocol and 689 

supervising rigorously all measured samples, i.e., homogeneous, or mixed. Moreover, in this controlled environment, 690 

the atmospheric scattering and absorption are absent; errors related to the sensor radiometric calibration are also 691 

absent, no wave’s variation, no residual clouds contamination, no sun-glint (specular effects), no variability in water 692 

depth, and no BRDF impact. However, the results obtained are not entirely conclusive and do not provide a clear and 693 

satisfactory distinction among the spectral signatures of the investigated species. The difference among spectral 694 

signatures is surely reduced in the real world when seagrasses and algae are embedded in sediments and overlaid by 695 

water column and constituents including phytoplankton, suspended organic and inorganic matter, variability in water 696 

depth, and remote sensing problems (internal and external). Additionally, the acquired images with Sentinel-MSI (2A 697 

and 2B) and Landsat-OLI (8 and 9) sensors are coded radiometrically in 12 and 16 bits, respectively. These images 698 

cover dissimilar pixels surfaces of 100 m2 for MSI and 900 m2 for OLI, where SAV information can be easily mixed 699 

within pixels. Besides, the FOV of these instruments are different, OLI’s FOV is 15° covering a swath of 185 km, 700 

while the MSI is characterized by a large FOV of 20.6° covering a swath of 290 km, which requires the adjustments 701 

to reduce differences caused by BRDF effects (acquisition and sun illumination geometries). Data quality may also 702 

change due to the sensor’s radiometric performance, SNR, and atmospheric interferences (diffusion and absorption). 703 

Nevertheless, despite the corrections of all these anomalies before the information extraction, biases still occur 704 

generated by errors propagation, which affect the recorded signal at the sensor level and, therefore, the precision of 705 

discrimination between seagrass and algae at the species level. For instance, if we consider the published RMSE 706 

regarding each source of error separately, the calculated total RMSE based on errors propagation theory (equation 12) 707 

will be approximately 0.08 to 0.10 (reflectance unit). Therefore, this total RMSE is greater than the achieved difference 708 

between reflectance values ( ≤ 0.05), especially in the visible bands. Accordingly, it is impossible to differentiate 709 

between seagrass and algae at the species level. Likewise, this total RMSE is solely due to the limitations of remote 710 

sensing methods, but it can also be amplified by environmental restrictions of seagrass habitat, as discussed above and 711 

reported by Wicaksono and Hafizt (2013). 712 

 713 

RMSE-Total = (-Sensor-drift)2 + (-Atmosphere)2 + (-Sun-glint)2 + (-BRDF)2 + (-Water-column)20.5                (12) 714 

 715 

Where: 716 

-Sensor-drift: Sensor radiometric calibration accuracy, ±0.03 (Markhman et al., 2014 and 2016),  717 

-Atmosphere: Atmospheric corrections accuracy, mostly around ±0.03 to ±0.05 in the visible bands (Vermote et al., 718 

2016), 719 

-Sun-glint: Sun glint correction accuracy, ±0.05 (Zorrilla et al., 2019),  720 
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-BRDF: Accuracy of BRDF correction for MSI, ±0.05 to ±0.08 (Roy et al., 2017), 721 

-Water-column: Accuracy of water column correction, ±0.04 (Zoffoli et al., 2014). 722 

 723 

The results of this research accomplished in the Arabian Gulf species based on spectroradiometric measurements are 724 

consistent with other researches carried out in many geographical regions worldwide. Barillé et al. (2009) showed the 725 

degradation of spectral features when resampled into SPOT-HRV visible bands and, therefore, seagrass species could 726 

no longer be discriminated in these wavelengths. This statement is also in agreement with Wicaksono et al. (2017) 727 

who reported that resampled spectra in MSI and OLI bands do not have sufficient spectral information for seagrass 728 

species discrimination for accurate classification. Using MSI and OLI data with respectively 10 m and 30 m pixel 729 

sizes (i.e., each OLI pixel is represented by 9 MSI pixels), Lyons et al. (2011) reported relatively accurate 730 

discrimination between seagrass meadows spots that are very large with homogenous composition and distinct 731 

boundaries between species. While, the differentiation becomes impossible when the analyzed spots are composed of 732 

diverse species and scattered without clear boundary. 733 

Furthermore, to analyze the impact of differences in reflectance exclusively due to dissimilarities in spectral 734 

response function between homologous spectral bands, the scatter-plots between SMI and OLI simulated surface 735 

reflectance values at the top of the atmosphere revealed a very good linear relationship (R2 of 0.999) between VNIR 736 

homologous bands. The slopes and intercepts are nearly equal to unity and zero, respectively. It is also observed that 737 

independently to the sediments substrate (dark and bright) or the color of used bowls (black or yellow), the  values 738 

between VNIR homologous bands vary in the range of 0.003 to 0.02, regardless of the observed species (seagrass, 739 

algae and mixed) or the coverage rate. Moreover, the achieved overall RMSD in reflectance values are very small (≤ 740 

0.0015) for all VNIR bands, i.e., smaller than the uncertainty of the radiometric calibration process (0.03) as 741 

demonstrated by Markham et al. (2016). In other respect, all the derived homologous WVI values fit near-perfectly 742 

with the 1:1 line expressing an excellent coefficient of determination (R2 of 0.99), a slope of 0.99 and intercept equal 743 

to zero. Moreover, the achieved RMSD values between MSI and OLI homologous indices are insignificant (RMSD ≤ 744 

0.01) for all indices regardless of the integrated spectral band (red, green, and blue). These results corroborate the 745 

finding of Wicaksono et al. (2019) who reported that MSI and OLI had similar results for tropical seagrass species 746 

analysis using simulated reflectance spectra and imagery data. Moreover, using simulated data and images acquired 747 

simultaneously with MSI and OLI over a wide variety of land cover types including open shallow water, Mandanici 748 

and Bitelli (2016) showed a very high coefficient of determination (R2 of 0.98) between homologous bands. Therefore, 749 

these results pointed out that the examined sensors, MSI onboard Sentinel-2A/2B and OLI onboard Landsat-8/9, can 750 

be combined for the marine environment and SAV detection, mapping, and monitoring during shorter time intervals 751 

or for consecutive observations. However, rigorous pre-processing issues (sensors calibration, atmospheric 752 

corrections, sun-glint corrections, and BRDF normalization) must be addressed before the joint use of acquired data 753 

with these sensors. Furthermore, we demonstrated that blue and green bands are better than red for seagrass and algae 754 

biomass discrimination, providing the best R2 and the most insignificant RMSD for the investigated indices. Green 755 

rather than the blue band integration is preferable due to its better sensitivity to pigment content within seagrass and 756 

algae tissues, for its ability to penetrate water, and for its low sensibility to atmosphere and water column scattering. 757 
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6. Conclusions  758 

The MSI sensors onboard Sentinel satellites 2A/2B and the OLI instruments installed on Landsat 8/9 satellites are 759 

designed to be similar in the perspective that their data be used together to support global Earth surface reflectances 760 

coverage for science and development applications at medium spatial resolution and near-daily temporal resolution. 761 

However, relative spectral response profiles characterizing the filter’s responsivities of these instruments are not 762 

identical between the homologous bands, so some differences are probably expected in the recorded shallow water 763 

reflectance values for seagrass, algae, and mixed species differentiation and mapping. Based on spectral analysis and 764 

CRRS transformation, the results of the present research pointed out subtle spectral differences between seagrass (HU 765 

and HS), algae (green and brown), or mixed species, particularly in the blue, green, and NIR wavelengths. However, 766 

once resampled and convolved in MSI and OLI homologous VNIR bands, similar patterns to the original spectra are 767 

observed but with severe generalisation and loss of specific absorption features. Therefore, mapping seagrass and/or 768 

algae at the species level in shallow marine waters is a very difficult if not impossible task, either using multispectral 769 

bandwidth of MSI and OLI sensors or even hyperspectral data. Moreover, different from these ideal simulations in a 770 

controlled environment, the mapping would be more difficult in a real marine habitat where various species are mixed 771 

and interleaved with each other, as well as the propagation of internal and external errors related to remote sensing 772 

data. Hence, it is recommended to discuss SAV rather than the mapping seagrass or algae at the species level. 773 

Furthermore, instead of the red band, the integration of the blue and green bands in WVI increases their 774 

discriminating power and ability of map SAV, particularly WAVI, WEVI, and WTDVI indices. These results 775 

corroborate the spectral analysis and the CRRS transformations that the blue and green electromagnetic radiation 776 

allows better marine vegetation differentiation. Nevertheless, despite the power of blue wavelength to penetrate deeper 777 

into the water, it also leads to a relative overestimation of dense SAV coverage due to the higher scattering in this part 778 

of the spectrum, particularly in the turbid environment. Furthermore, statistical fits between SMI and OLI simulated 779 

surface reflectance over the considered samples reveal an excellent linear relationship (R2 of 0.999) between all 780 

homologous VNIR bands. The achieved RMSD values are extremely small between the NIR homologous bands and 781 

insignificant for the other bands (≤ 0.0015). Moreover, independently of the analysed samples, homogeneous (seagrass 782 

or algae) or mixed (seagrass plus algae), good agreements (0.63 ≤ R2 ≤ 0.96) were also obtained between homologous 783 

WVI regardless of the integrated spectral bands (i.e., red, green, and blue), yielding insignificant RMSD (≤ 0.01). 784 

These achieved RMSD values for reflectances or WVI’s are less than the combined errors related to sensor radiometric 785 

calibration and atmospheric corrections. Accordingly, these results pointed out that MSI and OLI sensors are spectrally 786 

similar and can be combined for high temporal frequency to monitor accurately the SAV and its dynamic in time and 787 

space in the shallow marine environment. However, rigorous pre-processing issues such as sensors calibration, 788 

atmospheric corrections, BRDF normalisation, sun glint, and water column corrections must be addressed before the 789 

joint use of acquired data with these sensors.   790 
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Figure 2. Methodology Flowchart  1217 
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 1221 

Figure 3. Study site (Kingdom of Bahrain), photos illustrating dredging operations (a and b), and satellite images of 1222 
the south part of Bahrain before (c) and after (d) artificial islands construction. 1223 

 1224 

 1225 

Figure 4. Diver for sampling operation (a), and underwater photos of the considered seagrass and algae species: HU 1226 

(b), HS (c), BA (d), GA (e), and bright sediments (f). 1227 
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 1228 

 1229 

Figure 5: Dark Goniometric-Laboratory for ASD measurements.  1230 

 1231 

 1232 

Figure 6. Sentinel-MSI and Landsat-OLI relative spectral response profiles characterizing the filters of each spectral 1233 

band in the VNIR. 1234 
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 1237 

Figure 7. Spectral signatures of seagrass and algae samples at different coverage rates (a: 10%, b: 30%,, c: 75%, and 1238 

d: 100% ) and their CRRS transformations. 1239 
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 1243 

Figure 8. Scatter-plots of reflectances sampled and convolved in MSI and OLI homologous spectral bands. 1244 
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 1255 

Figure 9. Seagrass, algae, and seawater reflectances resampled and convolved in VNIR bands of Sentinel-MSI (or 1256 

Landsat-OLI): HS (a), HU (b), GA (c), BA (d), and all samples (e).  1257 
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 1259 

Figure 10. Scatter-plots of homologous WVI derived from MSI and OLI simulated data. 1260 
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 1262 

Figure 11. Linear regressions (p  0.05) between WVI and reflectance in NIR considering all samples, and integrating 1263 

the red, green, and blue bands. 1264 

 1265 

Table 1. The Sentinel-MSI and Landsat-OLI effective bandwidths and characteristics ( wavelength, SNR = signal 1266 
to noise ratio, L ref () = reference radiance, E

0
() = Extra-atmospheric irradiance, ). 1267 

Spectral  

Bands 

Sentinel-MSI Landsat-OLI 

λ Centre  

(nm) 

∆λ  

(nm) 

Pixel  

Size (m) 
SNR 

L ref () 

(w/m2/Sr/m) 
λ Centre 

(nm) 

∆λ  

(nm) 

Pixel  

Size (m) 
SNR 

E
0
() 

(w/m2/m) 

Coastal 443 20 60 129 129  443 16 30 130 1895.6 

Blue 490 65 10  154  128 482 60 30 130 2004.6 

Green 560 35 10  168  128 561 57 30 100 1820.7 

Red 655 30 10  142  108 655 38 30 90 1549.4 

NIR-2 865 20 20  72  52.5 865 28 30 90 951.2 

SWIR-1 1609 85 20  100  4 1609 85 30 100 247.6 

SWIR-2 2201 187 20  100  1.5 2201 187 30 100 85.5 
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 1270 

Table 2. R2 (p ˂ 0.05) between vegetation indices integrating red, blue, and green bands and the reflectances in NIR 1271 

for all considered samples, and the RMSD between indices derived from MSI and OLI sensors data. 1272 

Index 
Used 

band 
R2 

RMSD * 

in % 
Index 

Used 

band 
R2 

RMSD * 

in % 
Index 

Used 

band 
R2 

RMSD * 

in % 

NDVI 

R 0.40 1.0 

TDVI 

R 0.90 0.3 

DVI 

R 0.92 0.2 

G 0.63 0.5 G 0.92 0.2 G 0.93 0.1 

B 0.43 1.0 B 0.93 0.2 B 0.95 0.1 

SAVI 

R 0.85 0.3 

EVI 

R 0.89 0.9 

NDWI 

R 0.40 1.0 

G 0.89 0.2 G 0.92 0.3 G 0.63 0.5 

B 0.90 0.2 B 0.96 0.3 B 0.43 1.0 

TGI 0.20 0.1 Diff(G-B) 0.63 0.1 VARI 0.63 3.0 

* is the RMSD between indices derived from MSI and OLI simulated data. The bold type highlight the significant R2. 1273 
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