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Abstract 10 

An effective and computationally efficient method is presented for data assimilation in a high-11 

resolution (child) ocean model, which is nested into a coarse-resolution good quality data assimilating 12 

(parent) model. The method named Data Assimilation with Stochastic-Deterministic Downscaling 13 

(SDDA) reduces bias and root mean square errors (RMSE) of the child model and does not allow the 14 

child model to drift away from reality. The basic idea is to assimilate data from the parent model 15 

instead of actual observations. In this way, the child model is physically aware of observations via the 16 

parent model. The method allows to avoid a complex process of assimilating the same observations 17 

which were already assimilated into the parent model. The method consists of two stages: (1) 18 

downscaling the parent model output onto the child model grid using Stochastic-Deterministic 19 

Downscaling, and (2) applying a simplified Kalman gain formula to each of the fine grid nodes. The 20 

method is illustrated in a synthetic case where the true solution is known, and the child model forecast 21 

(before data assimilation) is simulated by adding various types of errors. The SDDA method reduces 22 

the child model bias to the same level as in the parent model and reduces the RMSE typically by a 23 

factor of 2 to 5.  24 

 25 

Introduction 26 

Fine resolution ocean modelling is becoming a ubiquitous practice to resolve important mesoscale 27 

and sub-mesoscale features such as eddies, fronts, boundary currents and localised upwellings which 28 

play important roles in ocean dynamics, see e.g. (GFDL, 2021;   Dufour et al., 2015; Shapiro et al, 2010;   29 

T. Meunier et al, 2012.)  Such localised models can be run by relatively small groups due to availability 30 

of good quality ocean models such as ROMS or NEMO to the wider oceanographic community (ROMS, 31 

2021; NEMO, 2021). Local fine resolution models require initial and boundary conditions which can be 32 

obtained from good quality, but coarser resolution models run by major ocean modelling centres such 33 

as Mercator Ocean International (France) or Met Office (UK) via Copernicus Marine Service (CMEMS, 34 

2021).   35 

Due to inevitable approximations in the equations, numerical schemes, parameterisation and 36 

uncertainties in input data, ocean models tend to drift from reality. A process called data assimilation 37 

(hereafter DA) is often regarded as a way of keeping a model ‘on the tracks’ by constantly correcting 38 

it with fresh observations (DARC, 2021; Lorenc, 1986).  DA is considered a cornerstone of all ocean 39 

analysis and forecasting efforts, where the rigorous and systematic combination of ocean 40 
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observations and ocean models yields an optimal estimate of the ocean state, see e.g. (Bell et al, 2000; 41 

Moore et al, 2019). Numerical models of the ocean are able to assimilate oceanographic observations, 42 

creating a dynamically consistent, complete and accurate description of atmosphere and ocean, see 43 

e.g. (Ciavatta et al, 2018; Carrassi et al, 2018). Modern data assimilation is a complex process involving 44 

statistics, methods of dynamical systems and numerical optimization, with an additional difficulty 45 

which arises due to increasing sophistication of the environmental models. While the DA problem can 46 

be formulated precisely, the solution is challenging because of the vast number of degrees of freedom 47 

of the ocean state simulated by operational ocean models that represent many complex non-linear 48 

processes (Moore et al, 2019; Dobricic and Pinardi, 2008; Ghil and Malanotte-Rizzoli, 1991). Thus, 49 

despite data assimilation being nowadays ubiquitous in geosciences, it has so far remained a topic 50 

mostly reserved to experts (Kubryakov et al, 2012; Carrassi et al, 2018). 51 

 The purpose of this paper is to develop a simple and computationally efficient method of DA which 52 

can be implemented by smaller academic and operational centres which do not have resources of the 53 

same scale as the major ocean forecasting institutions. The basic idea suggested in this study is to 54 

assimilate data from a good quality but coarser resolution parent model instead of observations.  The 55 

parent model is assumed to be data-assimilating itself, ensuring that the observations, however 56 

indirectly, will not allow the fine resolution (hereafter called child) model to deviate significantly from 57 

the true state of the sea. In other words, the coarse model can be regarded as a physically aware 58 

method for incorporating a sparse number of observations into a fine resolution regular grid. 59 

While in principle a number of existing methods could be used for the model-to-model DA, this study 60 

uses the Stochastic-Deterministic Downscaling (Shapiro et al, 2021) as its core element. The model-61 

to-model DA algorithm (hereafter called Data Assimilation with Stochastic-Deterministic Downscaling, 62 

or SDDA) is described in the Data and Methods section. This section also describes the synthetic 63 

idealised case where the true solution is known. Section Results uses the synthetic case for 64 

demonstrating the performance of the SDDA method. The strengths and limitations of the SDDA 65 

methods are discussed in the final section of the paper in comparison with the commonly used 66 

combination of Hollingworth-Lönnberg and variational DA (VAR, also known as Optimal Interpolation) 67 

methods (Hollingsworth and Lönnberg, 1986; Kalnay, 2003).  68 

 69 

Data and methods 70 

This section presents the algorithm used for Data Assimilation with Stochastic-Deterministic 71 

Downscaling and describes how the idealised cases are set and processed. 72 

The algorithm 73 

The proposed algorithm is designed for assimilating data from an ocean model of coarser resolution 74 

parent model, into a finer resolution child model.  75 

 A common approach to data assimilation into ocean (or atmospheric) model is based on minimising 76 

the cost function J given in Eq (1) 77 

𝐽(𝒙) = (𝒙 − 𝒙𝑏)𝑇𝐁−1(𝒙 − 𝒙𝑏) + (𝑦 − 𝐻(𝒙))
𝑇

𝐑−1(𝑦 − 𝐻(𝒙))      (1) 78 

where 𝒙 is the (unknown) vector of best estimates of the true values, 𝒙𝑏  is the model forecast before 79 

data assimilation, 𝒚 is the vector of observed values, H is the operator which projects data from the 80 

model grid onto the locations of observations, 𝐁 and 𝐑 are error covariance matrices for the model 81 

and observations respectively. In this paper we use the notation recommended in (Ide et al, 1997). 82 
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The value of 𝒙 = 𝒙𝑎
 which minimises the cost function J is called the analysis, it is closest in an RMS 83 

(root-mean-square) sense to the true state 𝒙𝑡 (Bouttier and Courtier, 1999) This approach works well 84 

for a relatively small (compared to model output) number of data. When the number of observations 85 

is large, the matrices used in Eq (1) become very large and their inversion causes significant 86 

computational problems.   For example, Bouttier and Courtier (1999) state that ‘except in analysis 87 

problems of very small dimension (like one-dimensional retrievals), it is impossible to compute exactly 88 

the least-squares analysis.’ 89 

However, this study is related to assimilation of large amounts of data from one model to another. 90 

For this purpose, an alternative cost function JS is proposed, namely 91 

𝐽𝑆(𝒙′) = (𝒙′ − 𝒙′𝑏
)

𝑇
𝐁−1(𝒙′ − 𝒙′𝑏

) + (𝑆′(𝒚) − 𝒙′)𝑇𝐑−1(𝑆′(𝒚) − 𝒙′)       (2) 92 

where the primed variables denote deviations of the respective variable from their statistical mean, 93 

and the statistical mean is designated by angle brackets 94 

𝒙’ =  𝒙−< 𝒙 > 95 

𝒙’ =  𝒙𝑏−< 𝒙𝑏 >        96 

𝑆’(𝒚) = 𝑆(𝒚)−< 𝑆(𝒚) > 97 

 98 

Here 𝒚 is the vector of data from the parent model, and S is the operator which projects (downscales) 99 

the data from the parent model onto the fine grid of the child model. The best estimate for the true 100 

value x is obtained by minimising the cost function 101 

∇𝐽𝑆 = 𝟎 102 

Taking into account that matrices 𝐁 and 𝐑 are symmetric so that 𝐁𝑇 = 𝐁 and 𝐑𝑇   = 𝐑 one gets the 103 

equation 104 

∇𝐽𝑆( 𝒙′𝑎
) = (𝒙′𝑎

− 𝒙′𝑏
)

𝑇
(𝐁−1 + (𝐁−1)𝑇) −  (𝑆′(𝒚) − 𝒙′𝑎

)
𝑇

(𝐑−1 + (𝐑−1)𝑇) =    105 

2(𝒙′𝑎
− 𝒙′𝑏

)
𝑇

𝐁−1 − 2(𝑆′(𝒚) − 𝒙′𝑎
)

𝑇
𝐑−1 = 𝟎    (3) 106 

 107 

where 𝒙′𝑎  is the fluctuation of the analysis vector around its statistical mean. 108 

Taking the transpose of Eq (3) and dividing by two one gets 109 

 110 

𝐁−1(𝒙′𝑎 − 𝒙′𝑏)= 𝐑−1(𝑆′(𝒚) − 𝒙′𝑎)                     (4)                                                                                            111 

Let us introduce the error correlation matrices 𝐂B and 𝐂R for the child and downscaled parent 112 

models: 113 

𝐁 = 𝐕B𝐂B, 𝐑 = 𝐕R𝐂R  114 
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where  𝐕B,  𝐕𝑅   are the diagonal matrices containing respective error variances at each fine grid 115 

node. The inverted diagonal matrices are also diagonal. Equation (4) then becomes  116 

 117 

𝐂B
−1𝐕B

−1(𝒙′𝑎 − 𝒙′𝑏) = 𝐂R
−1𝐕R

−1(𝑆′(𝒚) − 𝒙′𝑎)             (5) 118 

 119 

Correlation matrices both for the child and downscaled parent models relate to the same resolution 120 

and the same area of the ocean, hence it is reasonable to use the same correlation function, e.g. a 121 

Gaussian of a certain length scale and therefore the same correlation matrix for both models, i.e. 122 

𝐂B = 𝐂R = 𝐂 . After pre-multiplying Eq (5) by 𝐂 and re-arranging the terms, one gets 123 

 124 

(𝐕B
−1 + 𝐕R

−1)𝒙′𝑎 = 𝐕B
−1𝒙′𝑏 + 𝐕R

−1𝑆′(𝒚)                                     (6) 125 

 126 

or   𝒙′𝑎 = (𝐕B
−1 + 𝐕R

−1)−1(𝐕B
−1𝒙′𝑏 + 𝐕R

−1𝑆′(𝒚))                       (7) 127 

 128 

Using the commutative properties of diagonal matrices and the following identity  129 

 130 

   (𝐕B
−1 + 𝐕R

−1)−1 = 𝐕R(𝐕B + 𝐕R)−1𝐕B,                                      (8) 131 

 132 

the solution for the analysis state given by Eq (7) can be re-written as  133 

𝒙′𝑎 = (𝐕B
−1 + 𝐕R

−1)−1(𝐕B
−1𝒙′𝑏 + 𝐕R

−1𝑆′(𝐲)) =  𝐕R(𝐕B + 𝐕R)−1𝒙′𝑏 +134 

𝐕B(𝐕B + 𝐕R)−1𝑆′(𝒚)                                                                                 (9) 135 

 136 

Eq (9) can be interpreted as a zero-dimensional Kalman gain formula applied to the fluctuations of 137 

state variables in the parent and child models at each fine grid node independently.  The term ‘zero-138 

dimensional’ reflects the fact that in this case, the matrices used in the Kalman gain formula have the 139 

size of 1x1, i.e. are reduced to a scalar. For a single 𝒙’𝑖  element of the state vector 𝒙’  Eq (9) gives 140 

   𝑥𝑖
′𝑎 =

𝑉𝑅𝑖𝑖

𝑉𝑅𝑖𝑖+𝑉𝐵𝑖𝑖
𝑥𝑖

′𝑏 +
𝑉𝐵𝑖𝑖

𝑉𝑅𝑖𝑖+𝑉𝐵𝑖𝑖
𝑆′(𝑦)𝑖                                           (10) 141 

For the 𝑆’ operator, which downscales the fluctuations of the field variable from the coarse to fine 142 

grid, we use the Stochastic-Deterministic Downscaling (SDD) method developed in (Shapiro et al, 143 

2021). This method calculates the weighting coefficients required for downscaling from coarse to fine 144 

grid by adopting the original algorithm of optimal interpolation (Gandin, 1959, Gandin 1965) and 145 

statistical properties of field variable estimated from the parent model outputs.  As a result, it 146 

generates lower errors during downscaling than if using interpolators with prescribed coefficients 147 
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such as linear or polynomial. The spatial correlation matrix 𝐂 is not explicitly included in expressions 148 

(9) and (10), but it is used at the downscaling stage of data assimilation, hence the covariances 149 

between data at the parent model grid are implicitly present in the operator 𝑆′. The ensemble 150 

statistical means at each grid node which are required by the SDD method are estimated using the 151 

ergodic hypothesis (Stull, 1998), i.e.  by spatial averaging over a small trial area around the node at 152 

the same time point, see (Shapiro et al 2021) for details. 153 

Equation (10) performs data assimilation on the fluctuations, however, the statistical means for the 154 

parent and child model are, in a general case, different.  There are at least two options of how to 155 

obtain the mean for the analysis. Option one is to apply to the means the same Kalman filter as for 156 

fluctuations. The problem here is that variances of statistical means are unknown, and hence the 157 

weighting coefficients in Eq (9) or Eq (10). Option two is to assume that the parent model is of good 158 

quality, and it has been debiased as much as possible during its own data assimilation cycle. Therefore, 159 

it is reasonable to replace the (potentially biased) statistical mean from the child model with the 160 

statistical mean of the parent model. 161 

This gives the final equation for calculation of the analysis state 162 

𝒙𝑎 = 𝐕R(𝐕B + 𝐕R)−1𝒙′𝑏 + 𝐕B(𝐕B + 𝐕R)−1𝑆′(𝒚)+< 𝑆(𝒚) >     (11)  163 

Or for an element of the state vector at a particular fine grid node 𝑖 (𝑖 = 1 … 𝑁) where 𝑁 is the 164 

number of grid nodes in the child model one gets 165 

𝑥𝑖
𝑎 =

𝑉𝑅𝑖𝑖

𝑉𝑅𝑖𝑖+𝑉𝐵𝑖𝑖
𝒙′𝑏

𝑖 +
𝑉𝐵𝑖𝑖

𝑉𝑅𝑖𝑖+𝑉𝐵𝑖𝑖
𝑆′(𝑦)𝑖 +< 𝑆(𝑦) >𝑖                      (12) 166 

To summarise, the SDDA model-to-model data assimilation procedure includes two steps. Firstly, to 167 

downscale the parent model output from the coarse grid onto the child model fine grid using the SDD 168 

method. The result is that at each fine grid node there are two values of the same state variable. The 169 

best estimate of the true field is obtained at the second step by combining these two values using a 170 

zero-dimensional Kalman filter. This algorithm is computationally efficient as it does not require 171 

inversion of large matrices or solving a very large system of algebraic equations at the second step, 172 

something that is required if using the variational methods based on Eq (1). The inversion of 173 

correlation matrices to obtain the weight coefficients for the SDD step can be done only once at the 174 

beginning of the model run, as these coefficients do not depend on time. Another benefit of the 175 

described method is that the correlation matrices for the downscaling of the parent model have a 176 

relatively small rank and condition number, and their inverse counterparts can be calculated without 177 

the need of any type of matrix regularisation, just using double precision for the computer 178 

representation of the variables. This is due to the fact that the SDD method assumes local 179 

homogeneity and isotropy of statistical properties of the field variable and that the correlation 180 

function is set to zero for distances larger than a threshold value. More details on the philosophy and 181 

the algorithm of the SDD method can be found in (Shapiro et al, 2021). 182 

Synthetic Idealised case 183 

In this section the SDDA algorithm is illustrated in a synthetic idealised case where the true solution is 184 

known. The task is to generate an analysis state using the fine-resolution (child) model forecast and 185 

the output from a good quality data assimilating parent coarse model which will be used instead of 186 

actual observations. It should be noted that, even if both coarse and fine model were perfect, there 187 

would be some unavoidable discrepancies, or representativeness errors, between the two models due 188 

to different meshes they use (Bouttier and P. Courtier, 1999). 189 
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The parent model output is simulated by sampling the true solution (a prescribed function) on the 190 

parent model coarse grid, to which random noise might be added. The fine-resolution forecast is 191 

simulated by sampling the same true solution on the fine grid, adding random noise, bias, and some 192 

spatial shift. The latter is to simulate the ‘double penalty effect’ which is common to fine resolution 193 

models, see e.g. (Zingerlea and Nurmib, 2008). 194 

Three distinct examples are considered, all of them relate to data assimilation of one field variable at 195 

a single computational surface, whether it be a geopotential (‘horizontal’) level, such as used in Bell 196 

et al. (2000), or a curved level such as used in sigma (Mellor and Blumberg, 1985) or multi-envelope 197 

vertical coordinate system (Bruciaferri et al, 2018). The properties of the SDDA method are analysed 198 

for: (i) an ocean front, (ii) an isolated isotropic eddy, (iii) a system of densely packed anisotropic 199 

mesoscale eddies. In all examples the parent model has resolution of ∆𝑥𝑝 = ∆𝑦𝑝 = 10 km, and the 200 

child model has resolution of ∆𝑥𝑝 = ∆𝑦𝑝 = 10  km. For all the examples, the correlation function 201 

which is used to calculate the covariance matrix 𝑪 was set to zero for distances greater than twice the 202 

correlation length of 𝐿 = 17 km, and the trial area used to calculate local spatial averages was a square 203 

of 68 x 68 km2 centred at each node. 204 

 205 

  206 

a) Ocean front 207 

 208 

An ocean front is a narrow area separating two water masses, and it has significant impact on 209 

horizontal and vertical exchanges, see e.g. (Fedorov,1986).  This example is set in a square domain of 210 

200x200km, and the front extends in the meridional (𝑦) direction at the centre of the domain. 211 

The true solution is set to be in the form 212 

𝐹 = A tanh (
𝑥

𝐿𝑥
)              (13) 213 

Where A is the amplitude of the front and 𝐿𝑥 is its half-width. For this exercise = 1 , and 𝐿𝑥  ranges 214 

between 6 and 40 km. 215 

b) Isolated mesoscale eddy 216 

Mesoscale eddies are a ubiquitous feature of the World Ocean. Originally, they were thought to exist 217 

only next to jet currents such as the Gulf Stream, however since the 1960s-1970s it became clear that 218 

mesoscale eddies exist nearly anywhere in the ocean.  Most of the kinetic energy of the ocean is 219 

contained in mesoscale eddies (Robinson, 1983). In this example an isotropic eddy is placed in the 220 

centre of a domain of 200×200 km and the true solution is set to be in the form 221 

 222 

𝐹 = A exp {− [(
𝑥

𝐿𝑒
)

2
+ (

𝑦

𝐿𝑒
)

2

]}      (14) 223 

Where 𝐴 is the amplitude of the eddy and 𝐿𝑒 is its radius. For this exercise 𝐴 = 1, and 𝐿𝑒  ranges 224 

between 6 and 46 km. 225 

 226 
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c) Multiple mesoscale eddies 227 

For this example, let us consider a square domain 1000×1000 km and take the true solution for a 228 

variable 𝐹 in the form of multiple anisotropic mesoscale eddies 229 

 230 

𝐹 = sin (
𝜋𝑥

𝐿𝑥
) 𝑠𝑖𝑛 (

𝜋𝑦

𝐿𝑦
)       (15)   231 

where 𝐿𝑥  is the eddy ‘radius’ in the 𝑥-direction, and 𝐿𝑦 = 105   km is the eddy ‘radius’ size in the 𝑦-232 

direction. Let us consider the range of eddy sizes 𝐿𝑥  between 12 and 24 km. At 𝐿𝑥  =24 km the parent 233 

model can be classed as eddy-permitting as it has 2.4 grid point over the smaller ‘diameter’ of the 234 

eddy. At 𝐿𝑥 =12 km the parent model is not even eddy-permitting but only showing an ‘embryonic’ 235 

representation of the eddy. The child fine-resolution model is eddy resolving for any 𝐿𝑥  within the 236 

chosen range of eddy sizes.  237 

 238 

Results  239 

The SDDA data assimilation method detailed in the section Algorithm above was applied to the 240 

simulated child model forecast in order to create analysis for the next forecasting cycle. The results 241 

for four examples are presented in this section: an ocean front, an isolated single eddy, a set of 242 

multiple eddies. 243 

A) Ocean front 244 

This example uses Eq (13) for the representation of an ocean front in the meridional direction. Fig.1 245 

shows a map of the true solution F for a sharp ocean front at 𝐿𝑥=6 km (see Fig.1(a)) ,  its representation 246 

by the parent model ( Fig.1(b)) , by child model forecast  before data assimilation (Fig. 1(c))  as well as 247 

transects across the front. The following parameters of added errors are used to simulate the child 248 

model forecast before data assimilation: normally distributed noise with standard deviation 0.15, 249 

positive bias of 0.3, and shift of the field by 4 km to the west. 250 

 251 

  
(a) (b) 
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Fig. 1: Ocean front of width 𝐿𝑥 = 6 km. (a) True field on the fine mesh, (b) parent model output, (c) 252 

simulated child model before data assimilation, (d) transects of the previous fields along the line at 253 

𝑦 = 100 km.  254 

 255 

Even at a resolution of 10 km that does not resolve the structure of the front (half-width of 6 km) the 256 

parent model gives a reasonable representation of areas outside the front where the changes in the 257 

state variable are smooth- see Fig. 1(b). However, as expected, the width of the front is exaggerated 258 

due to insufficient resolution. The child model forecast shown in Fig. 1(c) is noisy and clearly shifted 259 

westward relative to the true state. 260 

Fig.2 shows the results of assimilation of output from the parent model using the SDDA method. 261 

 262 

  
(a) (b) 

  
(c) (d) 

https://doi.org/10.5194/os-2021-77
Preprint. Discussion started: 18 August 2021
c© Author(s) 2021. CC BY 4.0 License.



9 
 

  
(c) (d) 

 263 

Fig. 2. Assimilation results for the ocean front shown in Figure 1: (a) child model after SDDA 264 

assimilation, (b) difference between the assimilated model and the true field, (c) difference between 265 

the non-assimilated and assimilated child models, (d) zonal transects of the previous fields along a 266 

line at 𝑦 = 100 km. 267 

The analysis state (after assimilation) removes the spatial shift and bias and reduces the noise even 268 

for such a sharp front where the resolution of the parent model is inadequate. For comparison, Fig.3 269 

shows the improvement provided by the SDDA assimilation for fronts of different sharpness, with 𝐿𝑥  270 

= 10, 20, 30 and 40 km.  In all examples the errors in non-assimilating child model forecasts are 271 

simulated by adding bias = 0.3, random normally distributed noise with standard deviation (STD) = 272 

0.15 and spatial shift of 4 km to the west. 273 

 274 

 275 

 276 

 277 

 278 

 279 

 280 

 281 
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(a) (b) 

  
(c) (d) 

Fig.3. Results of SDDA assimilation for fronts of different sharpness: (a) 𝐿𝑥 =  10 km, (b) 𝐿𝑥 =  20 282 

km, (c) 𝐿𝑥 =  30 km, (d) 𝐿𝑥 =  40 km. The curves present data for the true field (black), non-283 

assimilated noisy child model (red) and child model after SDDA assimilation (blue). 284 

Comparison of panels (a)-(d) in Fig. 3 and panel (d) in Fig. 2 shows that the improvement due to data 285 

assimilation from the parent model is achieved both for sharp fronts not resolved by the parent model 286 

and for smooth fronts.  287 

Fig.4 shows how the bias and RMSE of the child model against the true state change with the 288 

sharpness of the front before and after data assimilation. 289 

 
 

(a) (b) 
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Fig. 4. Plots of bias (a) and RMSE (b) for the Ocean Front case with different front sharpness for non-290 

assimilated (black) and assimilated (blue) child models. 291 

 292 

After applying the SDDA method, the bias is practically removed with the remaining values being of 293 

the order 5 10-3 or less. The RMSE calculated against the true state is more than four times lower than 294 

before data assimilation as shown by the red line in Fig.4(b). 295 

Similar properties are demonstrated in the example of a single eddy. 296 

B) Single eddy 297 

Fig.5 shows a map of the true solution F for an axisymmetric mesoscale eddy with the radius of 𝐿𝑒 =298 

16 km, its representation by the parent coarse model and by the child model before data assimilation. 299 

It also shows transects across the eddy centre. The parameters of added errors are the same as in the 300 

previous example: normally distributed noise with a standard deviation of 0.15, positive bias of 0.3, 301 

and shift of the field by 4 km to the west. 302 

 303 

 304 

 305 

 306 

 307 

 308 

 309 

  
(a) (b)  

 
 

(c )  (d) 
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Fig.5.  Results of SDDA assimilation for a single isolated eddy: (a) true field sampled on the fine grid, 310 

(b) child model before data assimilation, (c) child model after SDDA data assimilation, (d) transects 311 

showing the same fields as in (a-c). 312 

 313 

The SDDA method reduces errors nearly to zero outside of the eddy and greatly reduces them inside 314 

the eddy (Fig 5 (b,d)). The bias is eliminated from 0.3 before data assimilation to 0.002 or less after 315 

assimilation. The reduction of RMSE for various values of eddy radius in the range of 6 to 46 km is 316 

shown in Fig 6. 317 

 318 

Fig. 6  Dependence of RMSE for different eddy sizes: before data assimilation (black), afte SDDA 319 

assimilation (blue), the ratio of RMSE after and before data assimilation (red) 320 

 321 

The next example illustrates the qualities of the SDDA method for a domain of 1000×1000 km 322 

packed with anisotropic eddies.  323 

 324 

C) Multiple eddies  325 

Fig.7 shows maps of the field variable F from the parent and child models with the following 326 

parameters of added errors to simulate child model forecast before data assimilation: normally 327 

distributed noise with a standard deviation of 0.15, positive bias of 0.3, and spatial shift of the field by 328 

4 km to the west. 329 

 330 
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(a) (b) 

  
 

(c) (d) 

Fig. 7. Maps of the field variable before data assimilation for multiple eddy case with 𝐿𝑥 =12km:  (a) 331 

True field on fine grid, (b) True field on parent grid, (c) Non-assimilated model, (d) Difference 332 

between non-assimilated model and true field.   333 

Fig.7(b) shows that the parent model generally underestimates the true field shown in Fig.7(a) due to 334 

representativity errors. The difference between the non-assimilated child model forecast and true 335 

state shown in Fig. 7(d) is substantial showing the RMSE =0.61 which is about 30% of the range of the 336 

true field. The anatomy of the differences between the true state, and outputs from parent (coarse) 337 

and non-assimilated child models are shown on a zoomed-in section of the zonal transect in Fig.8. The 338 

largest errors produced by non-assimilated model are due to spatial shift and bias. The errors 339 

produced by the parent model are exclusively due its insufficient resolution as we assume that 340 

otherwise the parent model is perfect. 341 

 342 

https://doi.org/10.5194/os-2021-77
Preprint. Discussion started: 18 August 2021
c© Author(s) 2021. CC BY 4.0 License.



14 
 

 
Fig. 8. Transects of true field on the fine grid (black) and outputs from the parent (green) and non-343 

assimilated child (red) models  344 

 345 

The SDDA method presented in the previous section is then applied to assimilate the data from the 346 

parent model into child model forecast.  347 

Fig.9 shows the results of data assimilation (analysis) and a map of differences between the 348 

assimilated child model and true field. 349 

  

(a) (b) 

Fig.9.  Maps for the multiple eddies case with width 𝐿𝑥 = 12 km:  (a) SDDA assimilated model, (b) 350 

Difference between SDDA assimilated model and true field. Parameters of the non-assimilated model 351 

are the same as in Fig.7 and Fig.8. 352 

 353 

The details of the improvement achieved by SDDA data assimilation are shown on a zoomed-in zonal 354 

transect in Fig. 10. 355 
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(a) (b) 

Fig.10. Transects at 𝑦 =  40 km for the multiple eddies case with 𝐿𝑥 = 12 km. (a) Transects of SDDA 356 

model output (blue), true solution (black), parent model (green) and the non-assimilated child 357 

model(red); (b) differences between assimilated (blue) and non-assimilated (red) models and the true 358 

solution. 359 

 360 

Data assimilation partially reduces the spatial shift which simulated the double penalty effect common 361 

to fine-resolution models. The reduction of spatial shift is due to the properties of the SDD component 362 

of the SDDA, see (Shapiro et al, 2021) for details. The significant reduction of the bias is due to the 363 

assimilation part of the SDDA algorithm, however it also causes some reduction in the amplitudes of 364 

the eddies – see Fig. 10(a).  The remaining errors shown in Fig. 10(b) are mainly due to incompletely 365 

corrected spatial shift and random noise in the non-assimilated model. The RMSE of the assimilated 366 

model is lower at 0.25 vs. a non-assimilated value of 0.61, and the bias is reduced by orders of 367 

magnitude from 0.3 to - 1.3 10-5.  368 

Fig.11 shows the results of the sensitivity analysis with different sizes of eddies and levels of various 369 

sources of errors in the non-assimilated child model forecast- noise, bias, and shift. 370 
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Fig. 11 Ratio of RSME values of the child model relative to the true solution after and before SDDA 371 

data assimilation as a function of eddy radius in the zonal direction 𝑥. Ratios are calculated for 372 

different combinations of errors generated by the child model – random noise (STD equal to either 373 

zero or 0.15), spatial shift (zero or 4 km), and bias (zero or 0.3). Percentages are shown with respect 374 

to the amplitude of the true signal. The first number in the legend shows the level of noise, the 375 

second shows the bias, and the third one shoes the spatial shift. 376 

 377 

In this example, the SDDA method works best when the only source of error is the bias which is 378 

removed nearly completely. The second-best results are achieved when only random noise and bias 379 

are present but not the spatial shift. The RMSE ratio for cases containing errors due to spatial shift 380 

grows slightly at larger eddy sizes. This is due to the fact that a relatively small shift of 4 km does not 381 

distort large eddies to the same extent as small eddies even in the non-assimilated model. Generally, 382 

the curves in Fig.11 show that after application of SDDA data assimilation algorithm the RMSE is 383 

reduced by half or better. Bias between the child and parent models is reduced by orders of 384 

magnitude. Assuming that the parent data assimilating model is unbiased, it means that the fine 385 

resolution model becomes unbiased after application of SDDA data assimilation process. 386 

 387 

D) Effect of errors in the parent model 388 

The next example shows the quality of the SDDA method when the parent model is still noisy even 389 

after its own data assimilation cycle. To investigate how such noise impacts on the reduction of RMSE 390 

in the child model when the SDDA data assimilation is applied, a quite large random noise was added 391 

to the parent model output with a standard deviation of 0.1, i.e. 10% of the signal. The results for the 392 

ocean front and multiple eddies examples are shown in Fig.12 and Fig.13. 393 
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(a) (b) 

 394 

Fig. 12. Ocean front case of 𝐿𝑥 = 14 km, with noisy parent model (added noise STD = 0.1) and noisy 395 

non-assimilated child model (added noise STD = 0.15, bias = 0.3 and shift of 4km to the west). (a) 396 

Transects at 𝑦 = 100 km of assimilated (blue), non-assimilated (red) child models and the true field 397 

(black);  (b) RMSE calculated for non-assimilated (black) and assimilated (blue) child models and the 398 

ratio between them at different front stepnesses. 399 

The transect in Fig.12 shows that after SDDA, the front is well represented with small random noise 400 

even when the parent model is quite noisy. The improvement is five to ten-fold and is consistent 401 

across the range of front widths from 6 to 46 km. 402 

 403 

 

 
 

 

a) b) 

Fig.13. Multiple eddy case of 𝐿𝑥 = 14 km with noisy parent model (added noise STD= 0.1) and noisy 404 

non-assimilated child model (added noise STD = 0.15, bias = 0.3 and shift of 4 km to the west). (a) 405 

Transects at 𝑦 = 100 km of true field (black), parent (green), assimilated (blue) and non-assimilated 406 

(red) child models, (b) RMSE for different eddy sizes and the ratio between them. 407 

 408 

In case of multiple eddies, the improvement is less dramatic, however for eddy diameters larger than 409 

12 km the RMSE is improved approximately by half. For eddy sizes 10 km and less the improvement 410 

due to assimilation of the parent model is limited, which is expected as such eddies are strongly 411 

distorted by the parent model of only 10 km resolution.  412 
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 413 

Discussion 414 

The presented examples show the data assimilation cycle using the SDDA method when the data used 415 

for assimilation are not coming from observation as in the common assimilation methods but from a 416 

coarser parent model. The examples relate to a synthetic situation when the true values of the state 417 

variable are known. The forecast by fine-resolution child model is simulated by sampling the true field 418 

on the model’s fine grid and adding various sources of errors-random noise, bias, and spatial shift. The 419 

output from the coarser parent model is regarded as computer generated ’observations’ and is 420 

simulated by sampling the true field on the coarser grid to which random noise can be added. In 421 

practice, the parent model is assumed to be a good quality, dynamic ocean model assimilating 422 

observational data. Therefore, the actual field measurements are used in the SDDA method indirectly 423 

– instead of assimilating observation, the child model assimilates data from the coarse model, which 424 

in turn assimilates data from observations.  425 

The data from the parent model is assimilated by a two-step SDDA process into the forecast produced 426 

by the child model to produce the analysis state which is then used as initial condition for the next 427 

forecasting cycle. The first step of the SDDA method is the application of Stochastic-deterministic 428 

downscaling presented in (Shapiro et al, 2021). As a result, at each fine grid point there are two 429 

generally different values of the field variable. The second step is to combine these values separately 430 

at each grid point using a suitable data assimilation method. A comprehensive overview of data 431 

assimilation methods is given in the paper by Carrassi et al (2018). In this paper, a zero-dimensional 432 

Kalman filter is used, similar to what have been done in atmospheric chemistry (Adhikary et al, 2008).  433 

For the full 2D or 3D field this is equivalent to have a strictly diagonal background error covariance 434 

and ‘observation’ error covariance matrices.  435 

The gain formula used in Kalman filter requires the knowledge of error variances. There are a number 436 

of approaches to estimate the variances in an ocean model, e.g. the Canadian, the NMC and the H-L 437 

methods. These methods do not separate completely the variances of child model and observations 438 

due to model errors and the natural variability of the ocean state among other reasons. In this paper 439 

the variances are assessed using a widely used ergodic hypothesis, see e.g. (Stull, 2003), and the 440 

ensemble statistical mean at each grid node is estimated by spatial averaging in a small trial area 441 

around the node at the same time point. Such scheme is fast and does not consume significant 442 

computational resources.  If necessary, it can be extended by including data from preceding time 443 

points, however these data may not be statistically independent and hence the potential 444 

improvement requires further study. 445 

The mechanism of improvement of fine model outputs by the SDDA method can be seen from the 446 

analysis of spectral characteristics of the downscaled parent model, fine model forecast (before data 447 

assimilation) and analysis (after data assimilation) in Fig.14. The bias represented by the peak at zero 448 

wavenumber is removed at the data assimilation step of SDDA. Noise in the range below Nyquist 449 

wavenumber is reduced by melding the noisy child model forecast with the clean parent model data. 450 

It should be noted that the SDD downscaling honours the data of the parent model on the child nodes 451 

that coincide with a coarse grid node. A small peak between the coarse and fine grid Nyquist 452 

wavenumbers is an artefact created at the SDD step, see (Shapiro et al, 2021) as seen from the 453 

spectrum of the downscaled field. Other than this peak, the downscaled field has much lower level of 454 

noise than the child model forecast. Reduction of noise at wavenumbers higher than the parent model 455 

Nyquist frequency is due to the low level of noise generated at the downscaling step of the process. 456 
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 457 

 458 

  
(a) (b) 

 459 
 460 

Fig.14. Amplitude spectra on a zonal transect at y=40 km for the example of multiple eddies of 𝐿𝑥 =461 

16 km. The STD of noise in the non-assimilated child model is 0.15, bias is 0.3 and the spatial shift is 4 462 

km to the west. The spectra are calculated for the true field, the child model forecast (before 463 

assimilation) and analysis (after assimilation). (a) Spectra in the full range of wave numbers, (b) 464 

zoomed in area for low wave numbers. 465 

 466 

The qualities of the SDDA method can be illustrated by comparison with existing data assimilation 467 

techniques applied to mode-to-model data assimilation. Let us consider the combination of H-L 468 

(Hollingsworth and Lonnberg, 1986) and variational methods, which is considered to be the most 469 

commonly used estimation technique, see e.g. (Stewart et al, 2014; Carrassi et al 2018). There are a 470 

number of variants of this method, here we applied the ‘practical’ algorithm described in the textbook 471 

by Kalnay (2003), which will be named hereafter as the ‘standard’ method.  The ‘standard’ method 472 

consists of the following stages:  calculate innovations (differences between observations and model) 473 

at each observational point, estimate the covariances between innovations at different locations, fit 474 

the best-fit curve (usually Gaussian) using all covariances except at zero distance, estimate the model 475 

and observation error variances using the value where the best-fit curve intersects the r=0 vertical line 476 

on the covariance plot.  In the practical implementations of this algorithm the model and observation 477 

error variances are assumed spatially homogenous (Kalnay, 2003).  The model variances and the best-478 

fit curve are used to create the background error covariance 𝐁-matrix, and the diagonal observational 479 

error covariance 𝐑-matrix. Due to spatial homogeneity, all diagonal elements in B and R matrices are 480 

the same but different between matrices. The H-L method requires combination of innovations into 481 

spatial bins, so that all innovations within a certain bin are allocated to the same distance from the 482 

central point. In practice the covariances are calculated by averaging individual products of 483 

innovations over a period of time instead of statistical averaging assuming the ergodic hypothesis 484 

(Stull, 2003).  In the model-to-model DA approach the role of observations is played by the output 485 

from the parent data assimilating model. 486 

For comparison between the SDDA and ‘standard’ methods we have selected the ‘multiple eddies 487 

example’ (as in section Results, subsection C). The covariances required to build the 𝐁 and 𝐑 matrices 488 
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were estimated as follows. We generated 150 random realisations of the child model outputs which 489 

were the sum of for the true field given by Eq (15) with 𝐿𝑥 =  40 km and 𝐿𝑦 = 105 km  in a subdomain 490 

of 300×300 km, and the following errors: (i) random noise with standard deviation of 0.15;  (ii) random 491 

spatial shift with a standard deviation of 4 km, (iii) constant positive bias of 0.3. Random components 492 

were normally distributed with zero mean. Due to significantly larger computing resources required 493 

by the ‘standard’ method compared to SDDA, the ‘standard’  DA was done in the reduced domain 494 

300×300 km instead of 1000×1000 km for the SDDA method. The bins required for the H-L method 495 

were 1 km in size.  496 

The innovations were computed as 𝒅 =  𝐇𝒙𝒃  −  𝒚,  where 𝐇 is a subsampling matrix operator 497 

composed only of ones and zeroes. Following the ‘standard’ method we used a simple isotropic 498 

Gaussian function for the covariance of innovations at every parent model grid point 𝒙:  499 

 500 

𝐶𝑥(𝑟) = 𝑎 𝑒𝑥𝑝(−𝑟2/𝐷2)         (16) 501 

 504 
 505 

where 𝑎 and 𝐷 are fitting parameters. The binned covariances and the fitting curve are shown in 502 

Fig.15. 503 

 506 

 507 

 
  

(a)  (b) 
 508 

Fig. 15. (a)  Estimates of background and observational error covariances for multiple eddy field with 509 

𝐿𝑥 = 40 km and 𝐿𝑦 = 105 km and the corresponding fitting curves. The error variances estimated at 510 

r=0 are used as diagonal elements of the background matrix B (equal to 0.031) and the 511 

‘observational’ matrix 𝑹 (equal to 0.016 ), the length scale D=17km;  (b) the zonal transect at 𝑦 =512 

40 km showing the true field (black line), parent model (dashed green), child model noisy forecast 513 

before DA (dashed red), analysis state after ’standard’ DA (magenta), and analysis after SDDA (blue). 514 

 515 

Despite the parent model is assumed ‘perfect’, i.e. it has no errors relative to the true field, the H-L 516 

method gives the error variance of approximately 50% of the noisy child model value. The 𝐁 matrix is 517 

then constructed using a variance (the diagonal) equal to 0.031 (see Fig 15 (a)) and the Gaussian 518 
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formula Eq (16), and the diagonal matrix 𝐑 is build using a value for its variance (diagonal   elements) 519 

of 0.016.  520 

The 𝐁 and 𝐑 matrices were used to carry out the variational DA cycle to the simulated child model 521 

forecast with the following parameters: multi eddy field with 𝐿𝑥 = 12 km, 𝐿𝑦 = 105 km, random 522 

noise with STD=0.15, bias=0.3, spatial shift=4 km to the west. The analysis state is estimated using the 523 

following equations of the ‘standard’ method (Kalnay, 2003, page 155) 524 

𝒙𝑎 = 𝒙𝑏 + 𝐖[𝒚 − 𝐻(𝒙𝑏)] = 𝒙𝑏 + 𝐖𝒅 525 

𝐖 = (𝐁−1 + 𝐇𝑇𝐑−1𝐇)−1𝐇𝑇𝐑−1 526 

The transect in Fig.15(b) shows the analysis state for eddies with 𝐿𝑥 = 12 km and 𝐿𝑦 = 105 km 527 

obtained by the ‘standard’ method together with the true solution, parent model output, noisy child 528 

model forecast (before DA) and, for comparison, the analysis state obtained by the SDDA method. 529 

The bias and RMSE relative to the true solution for the child model forecast and the analysis state 530 

after ‘standard’ and SDDA data assimilation process is shown in Table 1 531 

Table 1. Errors in the child model outputs before and after Data Assimilation 532 

 Forecast (before DA) ‘standard’ DA SDDA 

Bias 0.300 -0.0066 0.000 

RMSE 0.608 0.5268 0.250 

 533 

Fig. 16 shows the map of the analysis state produced by the SDDA and the standard methods.  The 534 

errors are removed more efficiently in the areas of low values of the field variable 𝐹. 535 

  
(a) (b) 

Fig. 16. The child model output after DA using (a) the ‘standard’ method, (b) the data assimilation 536 

with Stochastic-Deterministic Downscaling (SDDA). The SDDA produces less noise. 537 

 538 

The analysis presented above shows that the SDDA method is not the only one which can be applied 539 

to model-to-model data assimilation, the ‘standard’ method also gives reasonable results. However, 540 

when compared with the ‘standard’ DA method, the SDDA gives better accuracy- stronger reduction 541 
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in the RMS errors and a complete removal of bias. The SDDA also is more computationally efficient. 542 

We had no restrictions or limitations in computing the analysis for 1000×1000 km domain at 2.5 km 543 

resolution when using the SDDA on our office PC. However, we were not able to carry out the 544 

‘standard’ DA for a domain greater than 300×300km on the same PC due to computing resource 545 

restrictions. In terms of speed of calculations, it took about 2 minutes to complete one full DA cycle 546 

including calculation of the covariance matrix and weighting coefficients using the SDDA method in 547 

the multiple eddy example. On the other hand, the standard method took 24 minutes, including the 548 

creation of 𝐁 and 𝐑 matrices and calculation the analysis state.  549 

Conclusion 550 

This paper suggests a data assimilation approach where the data are assimilated into a high-resolution 551 

model from a coarser good quality data assimilating model, not directly from observations. An 552 

efficient and simple algorithm for model-to-model variational data assimilation method named Data 553 

Assimilation with Stochastic-Deterministic Downscaling (SDDA) is developed. The theoretical 554 

background behind the SDDA algorithm is discussed, and its application is illustrated in a number of 555 

idealised synthetic situations which resemble real world practice in fine-resolution ocean modelling. 556 

The results demonstrate that the model-to-model data assimilation is an efficient way of improving 557 

the accuracy of fine resolution model. Such approach allows to avoid a repetition of a complex and 558 

resource-hungry assimilation of actual observations which has already been done in the parent model. 559 

It is likely that the same basic idea of model-to-model data assimilation would work also for other 560 

methods currently used in observational data assimilation. In this paper, the SDDA was compared with 561 

a commonly used Hollingsworth-Lönnberg method and shown to be more accurate and 562 

computationally significantly less expensive.  563 
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