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Authors response: We thank reviewer #2 for his valuable comments and for highlighting the 

importance of the work presented in this study in the context of the global carbon budget.  

 

We addressed all comments raised by the reviewer and provide a point-by-point answer below (in 

blue). Changes and additions to the original manuscript have been introduced using the Word’s 

“track changes” option and the line numbers noted in our answers refer to the revised manuscript 

with the track change option. We also took this opportunity to correct several typos in the 

manuscript. 

 

 

On behalf of the co-authors, 

Alizée Roobaert 

 

 

Reviewer #2 Evaluations:  

 

Roobaert et al. assess the skill of the MOM6-COBALT model for representing the seasonal cycle of 

pCO2 in coastal regions and develop a methodology for interrogating the processes driving seasonal and 

regional differences.  They use the model output to interrogate the drivers of the seasonal signal in three 

regions where model skill is high.  This study makes good use of data products for assessing the skill of 

models in reproducing seasonal coastal dynamics and the unique information that models can bring to 

coastal carbon research, however, a few issues should be addressed before publication. 

• R2C1: 1) In the method to assess the different processes controlling seasonal pCO2 

variability, the assumption that the coefficients (explained in lines 195-206) are constant 

in time needs to be explained.  

Are the coefficients truly constant in time if the goal is to understand how processes like freshwater 

discharge (a spring event in many regions) impact pCO2?  Doesn’t a spring-time river runoff event, for 

example, change the relationship between DIC, ALK, SSS, etc, which would not be reflected in 

coefficients derived from average conditions over 1998-2015? 

R2R1: We agree with the reviewer that residual biases between our regression-based 

reconstruction and the model pCO2 can be attributed to strong seasonal signal in river discharge. 

The coefficients we use are indeed constant in time. We evaluated the impact of using coefficients 

that are both time and space varying and found that it further reduces biases tied to river 

discharge in the Amazon plume for instance. This improvement is, however, marginal compared 

to using the simpler approach we chose here (space-varying only). These residual biases are 

probably caused by the non-linearities associated with the large seasonal changes that the 

Takahashi linearization approach cannot capture even with time-varying coefficients. We agree 

with the reviewer that this is however an important point to make in the manuscript. We therefore 

added a panel to Figure S1 that shows the pCO2 in the model and the pCO2 reconstructed using 

the three different methods (traditional space varying coefficients from Sarmiento and Gruber, 

space varying regression method used here, and space and time varying regression method) at a 

point in the Amazon plume and added a paragraph to the method section that discusses this point 

which now reads as follows (lines 200-230):  

“In this study, we refine the estimation of the coefficients so they can be used for the wide range of DIC/ALK ratios that can 

be encountered in the coastal waters. This includes conditions when the DIC/ALK ratio is close to 1, such as in regions with 

significant freshwater discharge like those found near estuarine mouths or on polar shelves subject to sea-ice melting, when pH 

is around 7.5 (Egleston et al., 2010). In these cases, the traditional approximation method using mean DIC, ALK, SSS and SST 

fields breaks down (see Eq. (S1-S2) and Figure S1 in the Appendix). To circumvent this important limitation, we computed 

the coefficients of the pCO2 dependency using a regression approach based on the CO2SYS program (Lewis and Wallace, 
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1998). At each point in space, pCO2 was computed using the 1998 - 2015 average of DIC, ALK, SSS and SST with CO2SYS 

(method 14 in CO2SYS Matlab program, Millero, 2010). The 
∂pCO2

∂DIC
 coefficient was then computed as the slope of the linear 

regression between pCO2 and DIC obtained by allowing DIC to vary around the local mean DIC value while keeping other 

tracers (ALK, SST, SSS) constant. The DIC range used to compute the slope was set to the ± 2 standard deviation of the 1998-

2015 monthly values at that location with an upper bound at ± 60 µmol kg-1 (see Appendix for further details). The same 

approach was repeated to compute the coefficients for the pCO2 dependence on ALK, SST and SSS, respectively. Our 

methodology leads to coefficients that are constant in time but space dependent. In Fig. S1, we compare the coastal pCO2 

reconstructed from the traditional decomposition (using the space varying empirical coefficients reported by Sarmiento and 

Gruber, 2006) with those computed here using the CO2SYS regression. For the global coastal ocean, we find a large bias 

(global mean rmse of fitting pCO2 anomaly in Eq. (2) = 14.6 µatm), which is especially pronounced at high latitudes. In contrast, 

the decomposition method based on our methodology reduce drastically the biases (global mean rmse = 2.8 µatm) in coastal 

regions and allows a more robust reconstruction of the pCO2 variability. 

We further evaluated how using coefficients that are both time and space varying could reduce the residual biases between our 

pCO2 decomposition (using space dependent coefficients that are constant in time) and the pCO2 simulated in the model that 

are found in regions with large freshwater discharge, such as the mouth of the Amazon River or Arctic coastal waters. We 

compare the pCO2 seasonality simulated by the model to the pCO2 reconstructed by the three methods (space varying 

coefficients from Sarmiento and Gruber (2006); regression-based space varying coefficients; and regression-based space and 

time varying coefficients) using a point in the Amazon River plume (points at 310.25°E - 1°N, Fig. S1d and S1e). At this 

location, the use of the regression-based coefficients greatly improves the recovery of the simulated pCO2 compared to using 

the traditional coefficients of Sarmiento and Gruber (2006), reducing the rmse from 83 µatm to 24 µatm. The use of both space 

and time dependent regression-based coefficients further reduces this bias, bringing down the rmse from 24 uatm to 18 uatm. 

This additional improvement is however marginal, motivating our choice to use the simpler approach of the space dependent 

only coefficients.” 

Updated figure S1:  

 

Figure S1: Evaluation of ocean pCO2 reconstruction methods using the same SST, SSS, DIC and ALK fields but 

different methods to derive the pCO2 sensitivity coefficients (
𝛛𝐩𝐂𝐎𝟐

𝛛𝐃𝐈𝐂
, 
𝛛𝐩𝐂𝐎𝟐

𝛛𝐀𝐋𝐊
, 
𝛛𝐩𝐂𝐎𝟐

𝛛𝐒𝐒𝐓
 and 

𝛛𝐩𝐂𝐎𝟐

𝛛𝐒𝐒𝐒
): (a) ocean pCO2 simulated by 

MOM6-COBALT, (b) bias in reconstructed pCO2 using the approach widely used in the open ocean to compute 

sensitivity coefficients (Sarmiento and Gruber, 2006; Takahashi et al., 1993) and (c) bias in reconstructed pCO2 using 
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the regression-based approach developed in this study to compute space varying sensitivity coefficients (using the 

CO2SYS program, see section 2.3 for details). (d) The difference in bias between the traditional and regression-based 

approaches shows a strong reduction in biases when using the regression-based method. Biases (in µatm) are quantified 

using the root mean square error (RMSE) between the pCO2 simulated by the model and the pCO2 reconstructed from 

simulated monthly SST, DIC, ALK and SSS (Eq. 2). (e) time series of seasonal pCO2 anomaly at 310.25°E, 1°N (star on 

panel d) simulated by the MOM6 model (black), and reconstructed using the space varying coefficients of Sarmiento 

and Gruber 2006 (blue), using the space varying regression-based coefficients used in this study (red), and space and 

time varying regression-based coefficients (purple). See text in method section for further details. 

 

 

• R2C2: 2) In the methodological limitations section (3.1.4) it is mentioned the coastal-SOM-

FFN climatology does have limitations in reproducing pCO2 variability in some regions.  Since 

this is the case, for the regions where there are SOCATv6 data (lines 325-326 state there are 45 

grids with sufficient data), the paper should include model-SOCATv6 comparisons, 

especially for seasonal amplitude. 

Right now, Figure 4 does show SOCATv6 annual mean but Figure 5 does not show seasonal amplitude 

from SOCATv6, and seasonal amplitude is, as the authors state, underrepresented by coastal-SOM-

FFN.  Figures 4 and 5 should both include SOCATv6 as well as the residuals between model and 

SOCATv6 (for the regions where there is observational data).  This is also an issue with the 

supplemental tables, where Table S1 presenting annual mean does include SOCATv6 but S2 presenting 

seasonal amplitude does not.  The paper should include a more robust assessment of model-SOCATv6 

seasonal amplitude comparisons, given seasonality, not annual mean, is the central focus of the study. 

R2R2: In this comment, the reviewer highlights that the pCO2-based product is limited in poorly 

sampled regions and that a more direct comparison of the pCO2 seasonality simulated by the 

model against the SOCATv6 database would be valuable. This idea is also echoed in several later 

comments from the reviewer regarding a suggestion to update Fig. 4 (R2C5), the addition of a 

seasonal evaluation based on 45 grid cells with continuous SOCATv6 data (R2C6) or the addition 

of seasonal pCO2 cycles from SOCATv6 in Fig. 6 (R2R12).  

We looked at pCO2 measurements extracted from time-series at mooring stations that could 

provide validation datasets for our model. A recent literature review (Sutton et al., 2019) provides 

an extensive overview of these stations, but as illustrated on this map extracted from the NOAA 

website (https://www.ncei.noaa.gov/access/ocean-carbon-data-

system/oceans/Moorings/ndp097.html) the vast majority of these stations fall outside of the 

geographic limits of our coastal domain and data collection at mooring stations in the coastal 

domain, such as along the north American coast only began, at the earliest (2004), mid-way 

through the time period represented by our study (1998-2015). 

 

 

 

 

 

 

 

https://www.ncei.noaa.gov/access/ocean-carbon-data-system/oceans/Moorings/ndp097.html
https://www.ncei.noaa.gov/access/ocean-carbon-data-system/oceans/Moorings/ndp097.html
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Figure from https://www.ncei.noaa.gov/access/ocean-carbon-data-system/oceans/Moorings/ndp097.html 

Nevertheless, following the reviewer’s suggestion we addressed the reviewer’s concern by 

expanding our validation of the results using raw SOCATv6 data. 

1) First, we updated our Fig. 6 and now present at the spatial resolution of 0.25 degree, the number 

of climatological months where at least one pCO2 measurement is available based on the 

climatological seasonal cycle derived from the SOCATv6 database (new Fig. 6a). We believe this 

map provides valuable insight to the reader regarding both the spatial and temporal heterogeneity 

of the data coverage of the SOCATv6 database.   

2) At the MARCATS scale, we selected 11 MARCATS with a good spatio-temporal coverage of 

the SOCATv6 database and for which is it possible to obtain a complete climatological seasonal 

cycle (see our new Fig. 6). The 11 MARCATS regions are the Californian Current (M2), Tropical 

E Pacific (M3), the Gulf of Mexico (M9), the East coast of US (M10), S Greenland (M15), 

Norwegian Basin (M16), NE Atlantic (M17), Iberian upwelling (M19), Moroccan upwelling (M22), 

China Sea and Kuroshio (M39) and New Zealand (M36). For each of these MARCATS, we 

calculated climatological seasonal pCO2 cycles derived from the model, SOCATv6 and the coastal-

SOM-FFN product (new Figs. 6b-l). For these regions, we calculated the bias between the seasonal 

amplitude of MOM6-COBALT and the one of SOCATv6 as well as their respective Pearson 

correlation coefficient. All these new values have been added to the updated Table S2 (see at the 

end of this document) in bracket to provide the reader with additional information regarding the 

model performance wherever there were enough field data to evaluate the model against Socatv6. 

Note that we did not perform the SOCATv6-model seasonal evaluation (bias and Pearson 

correlation coefficient) for the others MARCATS because of the lack of temporal coverage (new 

Fig. 6a). This is also the reason why we did not update Fig. 5 with a map of the seasonal pCO2 

amplitude from SOCATv6 as proposed by R2.  

3) Finally, we selected 4 sites that are that are significantly smaller than the MARCATS scale and 

located in regions where the seasonal evaluation against SOCATv6 is not possible at the 

MARCATS scale. These sites are located off the Antarctic Peninsula, on the Queensland Plateau 

in NE Australia, in coastal waters of Papua New Guinea and of Terra Nova (see black boxes in 

new Fig. 6a). These sites present a complete seasonal climatological pCO2 signal derived from 

SOCATv6 which can be compared to the model. The seasonal cycles for these four sites have been 

added to the updated Fig. 6 (panels m-p).   

https://www.ncei.noaa.gov/access/ocean-carbon-data-system/oceans/Moorings/ndp097.html
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Updated Fig. 6: 

 

Figure 6: (a) SOCATv6 temporal coverage evaluated as the number of months (1 to 12) where at least one pCO2 measurements 

is available (see details in methods). Seasonal pCO2 cycle (µatm) derived from SOCATv6 (bar in grey), coastal-SOM-FFN (in 

blue), and  and simulated by MOM6-COBALT (in red) for several MARCATS (b-l) and four coastal sites of smaller spatial 

extent than MARCATS (m-p). The location of the four coastal sites is represented in black boxes in panel (a).  (a) the East 

coast of the U.S (M10), (b) the Norwegian Basin (M16), (c) the West coast of North America (M2) and for (d) New Zealand 

(M36). Month 1 corresponds to January. For consistency of y axis between panels, the value of 276 µatm is not represented in 

panel (p) for month 5 for the SOCATv6 data. 

Overall, as a consequence of this new evaluation strategy, Fig. 4 (see R5C5), Fig. 6, and Table S2 

have been updated as well as the following sections of the manuscript: 

Lines 164-170: 

“We use two metrics to evaluate SOCATv6 spatial and temporal coverage. First, we evaluate the spatial coverage at the 

MARCATS scale by computing the percent surface area sampled by SOCATv6 data for each MARCATS. A 50 % spatial 

coverage means that SOCATv6 data are available in 50 % of the 0.25° x 0.25° cells included in this specific MARCATS (this 

metric is used in Fig. 1a). Second, we evaluate the ability of SOCATv6 to capture the seasonality at the grid cell scale by 

computing the number of months where at least one SOCATv6 pCO2 measurement for each 0.25° x 0.25° grid cells. A 8-

months temporal coverage means that 8 out of the 12 months are sampled at least once in this grid cell (this metric is used in 

Fig. 6a).” 
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lines 349-392: 

“Our analysis reveals that the seasonal amplitudes simulated by MOM6-COBALT are systematically larger than the ones 

estimated by the coastal-SOM-FFN product (Fig. 5a-b, red colors in Fig. 5c and positive biases in Table S2) for all coastal 

regions belonging to EBC, WBC, Indian and tropical margins. For the majority of polar and subpolar margins and for some 

marginal seas, the model simulates lower seasonal pCO2 amplitudes (blue colors in Fig. 5c and negative biases in Table S2).  

Note that the seasonal evaluation is only performed against the coastal-SOM-FFN product because only few 0.25° coastal cells 

(approximately 45) in the Socatv6 database contain complete continuous pCO2 time series. Quantitatively, absolute biases 

between the modelled and coastal-SOM-FFN amplitudes do not exceed 20 µatm except for marginal seas where larger 

discrepancies are calculated (6 of the 9 marginal MARCATS, Table S2). The monthly mean pCO2 seasonal cycle simulated by 

MOM6-COBALT is also well in phase (Pearson correlation coefficients > 0.5) with the one extracted from coastal-SOM-FFN 

in 34 out of the 45 MARCATS (red colors in Fig. 5d and Table S2). The agreement is especially good in the best monitored 

MARCATS regions (MARCATS where > 50 % of the area is covered by SOCATv6 observations, Table S1). For instance, in 

regions with good data coverage such as along the East coast of the U.S (M10), the Norwegian Basin (M16), the Californian 

Current (M2), the Leeuwin Current (M33), or the Brazilian Current (M6), the Pearson correlation coefficient is higher than 0.9 

(Table S2). In contrast, the seasonal pCO2 cycle simulated by MOM6-COBALT substantially diverges from that of the coastal-

SOM-FFN in four poorly monitored marginal seas and in a few of the EBCs, Indian margins, subpolar margins, and tropical 

margins (Pearson correlation coefficient < 0.5, Table S2 and blue colors in Fig. 5d).. 

The model pCO2 seasonal evaluation against SOCATv6 is only performed in 11 MARCATS namely the Californian Current 

(M2), Tropical E Pacific (M3), the Gulf of Mexico (M9), the East coast of US (M10), S Greenland (M15), Norwegian Basin 

(M16), NE Atlantic (M17), Iberian Upwelling (M19), Moroccan upwelling (M22), China Sea and Kuroshio (M39) and New 

Zealand (M36). The modeled seasonal cycle is in good agreement with that one derived from SOCATv6 (Fig. 6b-n, Table S2) 

with absolute biases < 20 µatm for all of the 11 selected MARCATS and Pearson correlation coefficients close to 0.5 or higher 

except for the Iberian Upwelling (M19, Pearson value of 0.2) and in the New Zealand shelf (M36, value of 0.3). We did not 

perform the SOCATv6-model seasonal evaluation for the other MARCATS because the vast majority of grid cells only include 

data for less than 4 climatological months (Fig. 6a). However, agreement is especially good in the best monitored MARCATS 

regions (MARCATS where > 50 % of the area is covered by Socatv6 observations, Table A1). For instance, in regions with 

good data coverage such as along the East coast of the U.S (M10, Fig. 6a), the Norwegian Basin (M16, Fig. 6b), the Californian 

Current (M2, Fig. 6c), the Leeuwin Current (M33), or the Brazilian Current (M6), the Pearson correlation coefficient is higher 

than 0.9 (Table A2). In contrast, the seasonal pCO2 cycle simulated by MOM6-COBALT substantially diverges from that of 

the coastal-SOM-FFN in four poorly monitored marginal seas (M12, M21, M28, M29) we also evaluated the simulated pCO2 

seasonality against SOCATv6 in regions where this evaluation is not possible to be performed at the MARCATS scale. To do 

so, we selected four  sites of smaller spatial extent than MARCATS for which we calculated climatological seasonal pCO2 

signals from the SOCATv6 dataset and compared them with the model pCO2. These sites are located off the Antarctic 

Peninsula, on the Queensland Plateau in NE Australia, in coastal waters of Papua New Guinea and of Terra Nova (see black 

boxes in Fig. 6a). In those regions, the absolute biases on the seasonal amplitude between MOM6-COBALT and SOCATv6 

(Figs. 6m-p) are less than 20 µatm and the phase in the seasonal cycles present a good agreement with a Person correlation 

coefficient value of 0.8 except for the Papua New Guinea (value of 0.5). Note that the model-SOCATv6 seasonal evaluation 

in Terra Nova presents a good agreement although the MARCATS scale (Sea of Labrador, M11) evaluation to which this 

region belongs to reveals a low agreement, showing that a poor agreement between coastal-SOM-FFN and the model does not 

equate to poor model skill when these regions are under sampled by SOCATv6. 

and in a few of the EBCs, Indian margins, subpolar margins (e.g., New Zealand, Fig. 6d) and tropical margins (Pearson 

correlation coefficient < 0.5, Table A2 and blue colors in Fig. 5d).” 

Lines 446-451: 

“This lack of observations could partly explain why MOM6-COBALT-coastal-SOM-FFN pCO2 biases exceed 20 µatm in 

these regions.  The seasonal model evaluation against raw SOCATv6 is limited at the MARCATS scale and mainly performed 

against coastal-SOM-FFN due to the very few coastal regions that contain a continuous climatological seasonal pCO2 cycle 

(Fig. 6a) in the SOCATv6 database. This study highlights the regions (Fig.1a, e.g., Indian ocean margins, Peruvian upwelling, 

marginal seas) where new observational data are most urgently needed, specifically collected  during periods of the years that 

are currently not covered to improve our understanding of the CO2 exchange between coastal regions and the atmosphere at 

the regional and global scales.” 

• R2C3: 3) The ESRL atmospheric data are not properly cited. 
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First, ESRL does not provide pCO2 as stated in line 115. The atmospheric community measures and 

provides xCO2.  The authors need to properly cite the ESRL data source (not the current citation of Joos 

and Spahni) and explain how atmospheric pCO2 was calculated. 

R2R3: We thank the reviewer for drawing our attention to this issue in the original text. It should 

read xCO2 instead of pCO2 from ESRL. xCO2 was converted to pCO2 using atmospheric pressure 

and water vapor pressure by the model. The ESRL xCO2 is from the NOAA Marine Boundary 

Layer (MBL) (https://gml.noaa.gov/ccgg/mbl/index.html). We modified the description and added 

the following two references.  

Conway, T.J., P.P. Tans, L.S. Waterman, K.W. Thoning, D.R. Kitzis, K.A. Masarie, and N. 

Zhang, 1994, Evidence for interannual variability of the carbon cycle from the NOAA/CMDL 

global air sampling network, J. Geophys. Res., 99, 22831-22855. 

GLOBALVIEW-CO2: Cooperative Atmospheric Data Integration Project - Carbon Dioxide. 

CD-ROM, NOAA ESRL, Boulder, Colorado [Also available on Internet via anonymous FTP 

to ftp.cmdl.noaa.gov, Path: ccg/co2/GLOBALVIEW], 2011. See version history 

(gml.noaa.gov/ccgg/globalview/co2/co2_version.html). 

We modified the text lines 116-120: 

“The ocean model is forced by the 55-km horizontal resolution Japanese atmospheric reanalysis (JRA55-do) version 1.3 at a 

3-hour frequency between 1959 and 2018 (Tsujino et al., 2018), and the atmospheric pCO2 concentration data (xCO2) from the 

Earth System Research Laboratory (Joos and Spahni, 2008) (Conway et al., 1994; GLOBALVIEW‐CO2, 2004). The xCO2 is 

converted to pCO2 using atmospheric and water vapor pressures by the model.” 

Minor issues: 

• R2C4: Line 45: This statement seems to be Northern Hemisphere biased.  

Given this study used a SOCAT-based data product, Southern Hemisphere coastal regions are extremely 

underrepresented and many areas are likely not well characterized. 

R2R4: The study by Roobaert et al. (2019) is indeed indirectly based on the SOCAT data product. 

However, we would like to stress out that we used the data product of Laruelle et al. (2017) which 

is a continuous pCO2 climatology in space and time that fills out coastal regions devoid of data 

and underrepresented in the SOCAT database. This choice was motivated by the need to work 

with a pCO2 field that included the entirety of the world’s coastal ocean and would thus not be 

skewed by the current spatial heterogeneity of the SOCAT database. In their analysis of the FCO2 

seasonality, Roobaert et al. (2019) show a 6-month shift on the seasonal signal between “low” 

latitudes (40° N - 40° S) and high latitudes (> 60°). The latter latitudinal band has a more intense 

CO2 sink occurring in summer both in the Northern and Southern hemispheres (see panels (a) 

and (d) in Fig. 5 of Roobaert et al. 2019). The more intense global coastal sink that occurs in 

summer that we associated only with the Northern Hemisphere, is in our view not a bias due to 

an under-representation of the southern hemisphere but only from the differing areal distribution 

of the coastal regions. Indeed, as shown by panel (c) of Fig. 4 of Roobaert et al., a large majority 

of the coastal surface lies in the high latitude of the Northern Hemisphere.  

  

https://gml.noaa.gov/ccgg/mbl/index.html
http://gml.noaa.gov/publications/2839/
http://gml.noaa.gov/publications/2839/
ftp://ftp.cmdl.noaa.gov/ccg/co2/GLOBALVIEW
https://gml.noaa.gov/ccgg/globalview/co2/co2_version.html
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Fig. 5 of Roobaert et al. (2019)                                                                                Fig. 4 of Roobaert et al. (2019) 

We believe that the phrasing of the following sentence (lines 43-48) in the manuscript might have 

led to a misunderstanding that we hope this updated version will prevent: 

“This study identified that at the annual timescale, the global coastal ocean acts as an atmospheric CO2 sink (-0.2 ± 0.02 Pg C 

yr-1) with a more intense CO2 uptake occurring in boreal summer because of the disproportionate contribution of high latitude 

coastal regions in the Northern Hemisphere which cover 25 % of the total coastal area and are characterized by an intense CO2 

sink in summer. This study identified that at the annual timescale, the global coastal ocean acts as an atmospheric CO2 sink (-

0.2 ± 0.02 Pg C yr-1) with a more intense CO2 uptake occurring in summer because of the disproportionate influence of high 

latitude coastal seas in the Northern Hemisphere.” 

 R2C5: Line 290 / Figure 4: As stated earlier, it would be easier to see the model-data difference if 

a residual plot was included rather than ask the reader to compare Fig 4a and 4b. 

R2R5: We agree with the reviewer’s comment, which is directly connected to R2C2. We modified 

Fig. 4 and added a new panel (panel c) which represents the difference between the annual mean 

pCO2 from MOM6-COBALT (Fig. 4a) and SOCATv6 (Fig. 4b). We also updated the text when 

we refer to this figure. 

Updated Fig. 4 

 

Figure 4: Spatial distributions of the annual mean pCO2 (µatm) generated by (a) MOM6-COBALT, (b) extracted from 

the SOCATocatv6 database, and  (c) model bias as difference between panels (a) and (b) in µatm (red/blue colors 

correspond to regions in which the pCO2 simulated by MOM6-COBALT is higher/lower than SOCATv6). (d) Spatial 

distribution of the annual mean pCO2 from the coastal-SOM-FFN product (Laruelle et al., 2017). (ed) Model bias as 
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difference between panels (a) and (dc). in µatm (red colors correspond to regions in which the pCO2 simulated by 

MOM6-COBALT is higher than coastal-SOM-FFN). 

 

• R2C6: Line 326: Many of these 45 grid cells with continuous pCO2 time series are likely 

buoy locations.  Added to SOCAT in 2015, these continuous time series are an essential 

feature of SOCAT for seasonal assessments like this study and make a strong case for a 

more thorough model-data comparison as mentioned previously. 

R2R6: We agree with the reviewer that a model-SOCATv6 seasonal analysis was missing in our 

original manuscript. We considered this comment and our new evaluation strategy regarding this 

issue is described in detail in the R2R2 response.  

• R2C7: Line 352-353: In some places like here the regions are only stated by their 

associated numbers, however, it is easier for the reader to understand the results if stated 

by their name and number as in lines 356-357. 

R2R7: We agree with R2C7 and modified some lines in the text accordingly.  

Lines 316-320: “The regions where the bias exceeds this threshold include two EBC’s (the Californian (M2) and the 

Peruvian upwelling (M4) Currents), two marginal seas (the Seas of Japan, M40, and Okhotsk, M41), and one Polar (the 

Antarctic shelves, M45), subpolar (NW Pacific, M42) and Tropical East Atlantic (M23) shelf.” 

lines 343-346: “These regions belong mainly to EBCs (3 out of the 6 EBC MARCATS), marginal seas (3 out of the 9 

marginal seas MARCATS), the remaining four being either polar (the Canadian Archipelago (M13) and the N Greenland ( 

M14)), subpolar (NW Pacific, M42) or Indian margins (the Bay of Bengal, M31).” 

lines 408-411: “Note that these MARCATS but the Siberian (M43) and Antarctic,  (M45) shelves, the NE Pacific (M1), 

the Tropical E Atlantic (M23) and the Tropical W Indian (M26) also present an annual mean pCO2 bias < 20 µatm in the 

MOM6-COBALT-Socatv6 SOCATv6 and coastal-SOM-FFN-Socatv6 SOCATv6 comparisons (Table S1)” 

Line 480: “Interestingly however, some regions reveal significant biases in the major environmental fields but not in the 

pCO2 (e.g., Tropical W Atlantic, M7) while in other regions, the reverse is observed (e.g., the Mediterranean (M20) and W 

Arabian , (M27) Seas and in New Zealand (M36)).” 

• R2C8: Lines 388-390: This seems to be an important result of the study that should be 

included in the Conclusion section.” 

R2R8: We agree with the reviewer’s remark and introduced an explicit reference to this results 

in the updated version of the conclusion section in lines 595-600: 

“This study highlights the regions (Fig.1a, e.g., Indian ocean margins, Peruvian upwelling, marginal seas) where new 

observational data are most urgently needed, specifically data collected during different periods of the year that are currently 

missing to improve our understanding of the CO2 exchange between coastal regions and the atmosphere at the regional and 

global scales.” 

• R2C9: Section 3.2.1: Cai et al. 2020 find that different processes drive variation in pCO2 

in different subregions of US East Coast.  How do these model-based results compare with 

their data-based assessment of drivers? 

(See: Cai, W.-J., et al. (2020). Controls on surface water carbonate chemistry along North American 

ocean margins. Nature Communications, 11(1), 2691. https://doi.org/10.1038/s41467-020-16530-z) 

https://doi.org/10.1038/s41467-020-16530-z
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R2R9: We thank the reviewer for drawing our attention to this recent publication. The study of 

Cai et al. (2020) investigates the dynamics of the carbonate system along the continental margin 

of North America, thus including 2 of the MARCATS for which we provide a detailed analysis of 

the drivers controlling the seasonality of pCO2 (the California current, M2, and the east coast of 

the US, M10). However, the work of Cai et al. mostly focusses on spatial variations and 

comparisons between the different coastal regions surrounding North America. In their study, the 

main references to the seasonal variability of pCO2 (see page 9 in particular) focusses on the 

Atlantic coast of North America using a time-varying box model. In this region, the authors 

describe seasonal variations of pCO2 similar to the ones reported in our study (with a pCO2 

increase from spring to summer and a decrease during fall leading to minimum pCO2 values in 

winter). The brief description of the factors controlling these variations is also in line with the 

findings of our study with a thermally driven seasonality that is dampened by biological uptake. 

In the revised version of our manuscript, we now include 2 references to Cai et al.’s study in the 

section 3.2.1: 

Line 515: “This thermal effect was already identified by Signorini et al. (2013) in their observational study and further 

confirmed by (Cai et al., (2020).” 

Lines 540-542: ‘The importance of the thermal and circulation effects as well as the presence of a strong biological 

drawdown are in line with results from past studies (e.g., Laruelle et al. (2015), Shadwick et al. (2010, 2011),  and Signorini et 

al. (2013) and (Cai et al., (2020)).” 

• R2C10: Lines 575-583: Description of the xCO2 data source is missing from this section. 

R2R10: The source of the xCO2 data (i.e. Convey et al., 1994; GLOBALVIEW-CO2 project 

report) has now been introduced into the manuscript has requested by the reviewer.   

We also added lines 645-647: “The coastal-SOM-FFN pCO2 datasets description and dataset can be downloaded from 

Laruelle et al. (2017) and the atmospheric CO2 concentration data (xCO2) derived from the Earth System Research Laboratory 

(Conway et al., 1994; GLOBALVIEW‐CO2, 2004).” 

R2C11: Figure 3: This is another figure that could benefit from showing a MOM6-COBALT vs 

SOCATv6 comparison for pCO2. 

R2R11: As stated in our answer to comment R2C5 which suggests that a map presenting the 

difference between the annual mean pCO2 of MOM6-COBALT and that of SOCATv6 would be 

a valuable addition to Fig. 4, we find it difficult to add a panel comparing pCO2 derived from 

SOCATv6 vs that one simulated by the model. 

Indeed, all the panels in Fig. 3 display a comparison of the absolute values of different variables 

derived from observations versus those simulated by the model. This comparison is carried out at 

the MARCATS scale using continuous climatologies in space, i.e. each MARCATS is fully covered 

both in terms of observational data and by the model. Adding a panel comparing the absolute 

pCO2 between SOCATv6 and MOM6-COBALT does not seem adequate given that the SOCAT 

data are spatially discontinuous. In addition, in several MARCATS, no data exist in the SOCATv6 

database. The pCO2 values derived from SOCATv6 would therefore not represent the mean value 

of MARCATS like those obtained in the pCO2 coastal-SOM-FFN vs MOM6-COBALT 

comparison (panel f in Fig. 3). We did however significantly strengthen our model evaluation 

strategy (see detailed answer in R2C2) and believe we now provide substantially more material to 

the reader to be convinced of the ability of our model to adequately capture the seasonality of 

pCO2. 
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• R2C12: Figure 6: If any of these regions have continuous pCO2 time series in SOCATv6, 

SOCATv6 should also be included. 

R2R12: We agree with the comment. This is now part of our new strategy for the model evaluation 

as discussed in our response to R2R2. Figure 6 was updated accordingly.  

Supplementary correction: 

Color bar of panel (d) in Fig. 5 has been changed for a better visibility. 

We also replaced “model skill” by “model to coastal-SOM-FFN agreement” in the manuscript to 

emphasize the fact that a low agreement does not equate a poor model skill in regions with low 

data density. 

Updated Fig. 5 

 

 

  



12 
 

Updated Table S2: 

Table S2: Seasonal evaluation of MOM6-COBALT against observations (SST, SSS, nutrients and pCO2) for each 

MARCATS. The observational SST and SSS fields are from the NOAA OI SST V2 (Reynolds et al., 2007) and the EN4 

SSS (Good et al., 2013). The observational nutrients derived from the World Ocean Atlas version 2018 (Garcia et al., 

2019).The evaluation is performed on their seasonal amplitude which is expressed as the bias between the RMS of their 

amplitude. A positive value indicates higher values simulated by MOM6-COBALT compared to observations. The 

seasonal evaluation is also performed on their seasonal cycles which is represented by the Pearson correlation 

coefficient. A Pearson correlation coefficient value of 1 indicates that both signals are perfectly in phase with one another 

while a value of -1 represents a complete phase shift. Pearson correlation coefficient < 0.5 for pCO2 are highlighted in 

red. The seasonal pCO2 simulated by MOM6-COBALT is evaluated against coastal-SOM-FFN and for some 

MARCATS against SOCATv6 (in bracket).  

MARCATS 
number 

(Mx) 

MARCATS 
 name 

MARCATS 
category 

Evaluation against data 
Evaluation against 
coastal-SOM-FFN 

(SOCATv6) 

Bias RMS Pearson correlation coefficient 
Bias 
RMS 

Pearson 
correlation 
coefficient 

SST 
(°C) 

SSS 
(-) 

Nutrients (µmol 
kg-1) SST SSS  

Nutrients 
pCO2 (µatm) 

NO3 PO4 SiO4 NO3 PO4 SiO4 

               

2 
Californian 

Current 
EBC 0.0 0.0 -0.1 0.0 -0.4 1.0 

-
0.3 

-0.2 0.2 -0.1 
16.2 

(17.6) 
1.0 (0.9) 

4 
Peruvian 
upwelling 
Current 

EBC 0.1 0.0 0.0 0.0 -0.2 1.0 0.8 0.7 0.7 0.8 6.6 -0.4 

19 
Iberian 

upwelling 
EBC 

-
0.2 

0.0 -0.8 0.0 -0.7 1.0 0.7 1.0 0.9 0.6 
15.6 
(9.3) 

0.8 (0.2) 

22 
Moroccan 
upwelling 

EBC 
-

0.1 
0.0 -0.3 0.0 -0.7 1.0 0.8 0.6 0.6 -0.1 

8.7 
(7.7) 

0.9 (0.5) 

24 SW Africa EBC 0.1 0.0 -0.3 
-

0.1 
-0.9 1.0 0.7 0.9 0.0 -0.4 4.2 0.9 

33 
Leeuwin 
Current 

EBC 0.0 0.0 -0.1 0.0 -0.1 1.0 1.0 0.2 0.0 0.0 12.7 0.9 

27 W Arabian Sea 
Indian 

margins 
-

0.1 
0.0 -1.0 

-
0.1 

-1.1 1.0 0.7 0.9 0.8 0.5 3.6 0.3 

30 E Arabian Sea 
Indian 

margins 
0.0 

-
0.1 

0.1 0.0 -0.9 1.0 0.9 0.7 0.2 0.0 6.2 0.7 

31 Bay of Bengal 
Indian 

margins 
0.1 0.5 2.0 

-
0.1 

-1.8 1.0 0.9 0.5 0.7 -0.1 13.5 -0.2 

32 
Tropical E 

Indian 
Indian 

margins 
-

0.1 
0.0 -0.1 0.0 -0.9 1.0 0.8 -0.7 0.0 -0.5 5.4 0.9 

9 Gulf of Mexico 
Marginal 

sea 
-

0.3 
0.0 -0.4 

-
0.1 

-0.5 1.0 0.6 0.1 0.1 -0.7 
12.9 
(10) 

1.0 (0.9) 

12 Hudson Bay 
Marginal 

sea 
-

0.2 
0.0 0.9 0.0 0.9 1.0 0.1 0.0 

-
0.4 

0.6 -46.4 0.4 

18 Baltic Sea 
Marginal 

sea 
-

0.5 
-

0.1 
-0.1 0.0 -2.0 1.0 0.9 0.9 0.9 0.6 -44.4 0.9 

20 
Mediterranean 

Sea 
Marginal 

sea 
-

0.1 
0.0 0.1 0.0 -0.2 1.0 0.6 0.7 0.5 0.0 20.6 1.0 

21 Black Sea 
Marginal 

sea 
-

1.3 
0.1 3.1 0.2 1.2 1.0 0.9 0.6 0.6 0.5 

-
116.9 

-0.5 

28 Red Sea 
Marginal 

sea 
0.0 

-
0.2 

-0.1 0.0 -0.3 1.0 0.2 0.4 0.5 -0.1 -0.4 -0.9 

29 Persian Gulf 
Marginal 

sea 
-

0.2 
0.0 0.1 0.0 -0.1 1.0 0.9 0.0 0.5 0.7 30.7 -0.9 

40 Sea of Japan 
Marginal 

sea 
-

0.6 
0.0 -1.3 

-
0.1 

-3.0 1.0 1.0 0.9 1.0 0.6 28.0 0.9 

41 Sea of Okhotsk 
Marginal 

sea 
-

0.4 
0.1 -1.1 

-
0.1 

-6.2 1.0 0.9 1.0 0.9 1.0 -6.5 0.7 

13 
Canadian 

Archipelago 
Polar 

-
0.4 

0.0 0.6 0.0 -0.9 1.0 0.8 0.9 0.7 0.9 -18.0 0.9 

14 N Greenland Polar 0.2 0.1 -0.3 0.0 -0.6 1.0 0.8 1.0 0.9 0.8 -9.0 0.8 

15 S Greenland Polar 0.1 0.0 0.1 0.0 -1.0 1.0 0.6 1.0 1.0 0.9 
-8.5 

(-8.8) 
1.0 (1.0) 

16 
Norwegian 

Basin 
Polar 0.0 0.0 -0.5 0.0 -0.4 1.0 0.9 1.0 1.0 0.9 

-6.1 
(-4.1) 

0.9 (0.7) 
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43 
Siberian 
Shelves 

Polar 
-

0.4 
-

0.4 
0.9 

-
0.1 

-4.0 1.0 0.6 0.5 0.4 0.6 -15.7 0.9 

44 
Barents and 

Kara seas 
Polar 

-
0.2 

-
0.3 

0.1 0.0 -1.1 1.0 0.6 0.9 0.9 0.6 -7.4 0.7 

45 
Antarctic 
Shelves 

Polar 0.2 0.1 2.0 0.1 1.3 1.0 0.9 1.0 0.9 0.6 13.3 1.0 

1 N-E Pacific Subpolar 
-

0.1 
-

0.1 
-1.2 

-
0.2 

-5.6 1.0 0.9 0.9 0.9 0.8 -4.5 0.8 

5 
Southern 
America 

Subpolar 
-

0.1 
0.0 -1.4 

-
0.1 

-0.3 1.0 0.9 0.9 0.9 0.7 -6.4 0.8 

11 
Sea of 

Labrador 
Subpolar 

-
0.2 

-
0.1 

0.3 0.0 -0.5 1.0 1.0 0.9 0.9 0.9 0.8 0.2 

17 NE Atlantic Subpolar 0.0 0.1 -0.8 0.0 -0.7 1.0 1.0 1.0 1.0 1.0 
-8.2 

(-
12.5) 

0.6 (0.6) 

34 S Australia Subpolar 0.2 0.0 0.3 0.0 -0.2 1.0 0.6 0.9 0.7 0.2 12.8 0.9 

36 New Zealand Subpolar 0.0 0.0 0.4 0.0 -0.3 1.0 0.7 0.8 0.8 0.6 
6.2 

(2.8) 
-0.5 (0.3) 

42 NW Pacific Subpolar 
-

0.2 
0.0 -2.6 

-
0.3 

-6.7 1.0 1.0 1.0 1.0 0.9 -19.2 1.0 

3 
Tropical E 

Pacific 
Tropical 0.0 0.0 -0.5 0.0 -1.3 0.9 1.0 0.0 

-
0.4 

0.3 
3.1 (-
3.3) 

0.3 (0.4) 

7 
Tropical W 

Atlantic 
Tropical 0.0 0.6 0.5 

-
0.1 

-1.8 0.9 0.9 0.4 0.0 -0.4 9.6 1.0 

8 Caribbean Sea Tropical 
-

0.1 
0.0 -0.2 0.0 -0.8 1.0 1.0 -0.2 

-
0.2 

-0.8 2.2 1.0 

23 
Tropical E 
Atlantic 

Tropical 
-

0.1 
0.2 -0.5 0.0 -0.5 1.0 1.0 0.6 0.8 -0.5 1.5 0.6 

26 
Tropical W 

Indian 
Tropical 0.0 0.1 0.0 0.0 -0.7 1.0 1.0 -0.6 0.5 0.3 5.6 0.9 

37 N Australia Tropical 0.0 0.0 0.0 0.0 -0.2 1.0 1.0 0.6 0.2 0.7 5.2 1.0 

38 SE Asia Tropical 
-

0.2 
0.1 0.0 0.0 -1.0 1.0 1.0 -0.2 

-
0.3 

-0.1 8.9 0.2 

6 
Brazilian 
Current 

WBC 
-

0.1 
0.0 -0.5 

-
0.1 

-0.9 1.0 
-

0.2 
0.8 0.7 -0.4 7.5 0.9 

10 
East coast of 

US 
WBC 

-
0.5 

0.0 0.0 0.0 -0.3 1.0 1.0 0.9 0.9 0.8 
12.4 
(5.7) 

0.9 (0.9) 

25 
Agulhas 
Current 

WBC 0.0 0.1 -0.1 0.0 -1.0 1.0 1.0 0.4 0.1 0.3 8.1 1.0 

35 
E Australian 

Current 
WBC 0.2 0.0 0.1 0.0 -0.3 1.0 0.6 1.0 0.9 0.6 7.4 1.0 

39 
China Sea and 

Kuroshio 
WBC 

-
0.2 

0.0 -0.6 0.0 -1.3 1.0 0.9 1.0 0.9 0.9 
13.2 
(9.1) 

0.9 (0.4) 
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