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Abstract. The balance between ocean mixing and stratification influences primary productivity through light limitation and

nutrient supply in the euphotic ocean. Here, we apply a hierarchical clustering algorithm (Ward’s method) to four factors

relating to stratification (wind energy, freshwater index, watercolumn-averaged vertical eddy diffusivity, and halocline depth),

as well as to depth-integrated phytoplankton biomass, extracted from a biophysical ocean model of the Salish Sea. Running the

clustering algorithm on four years of model output, we identify distinct regions of the model domain that exhibit contrasting5

wind and freshwater input dynamics, as well as regions of varying watercolumn-averaged vertical eddy diffusivity and halocline

depth regimes. The spatial regionalizations in physical variables are similar in all four analyzed years. We also find distinct

interannually consistent biological zones. In the Northern Strait of Georgia and Juan de Fuca Strait, a deeper winter halocline

and episodic summer mixing coincide with higher summer diatom abundance, while in the Fraser River stratified Central Strait

of Georgia, shallower haloclines and stronger summer stratification coincide with summer flagellate abundance. Cluster-based10

model results and evaluation suggest that the Juan de Fuca Strait supports more biomass than previously thought. Our approach

elucidates probable physical mechanisms controlling phytoplankton abundance and composition. It also demonstrates a simple,

powerful technique for finding structure in large datasets and determining boundaries of biophysical provinces.

1 Introduction

Marine phytoplankton form the basis of the oceanographic food web and are responsible for approximately half of global15

carbon fixation (Field et al. (1998)). To predict changes in global ecosystem functioning, it is necessary to understand the

underlying controls on marine productivity. Primary productivity in the near-surface ocean is controlled by the availability

of macro- and micro-nutrients and light, as well as temperature, which are in turn controlled by the interplay of stratifying

processes and sources of mixing.

The breakdown of the surface ocean stratified layer may reduce the availability of light for phytoplankton, inhibiting growth20

(e.g. Sverdrup (1953)), or contrastingly bring nutrients from deeper waters to nutrient-depleted surface waters, thus stimulating

growth. The interplay of different stratification regimes exerts control on the structure of ocean ecosystems (e.g. Legendre

(1981)), and changes in regime have been linked to shifts in phytoplankton community composition (e.g. Huisman et al.

(2004)).
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The importance of phytoplankton in biogeochemical cycling, as well as their position at the base of the food web and25

impact on higher trophic levels, globally motivates the study of phytoplankton distribution and dynamics. Coastal regions

are more productive than the open ocean (e.g. Longhurst et al. (1995)). Simultaneously, these regions typically have more

complex mixing, circulation, and stratification dynamics than the open ocean, making resolution of phytoplankton biomass

patterns difficult. Finally, because both ocean stratification patterns and phytoplankton biomass dynamics may be expected to

shift under anthropogenic climate change (Richardson (2008)), there exists a need to characterize their dynamic structure and30

identify key drivers.

1.1 Oceanographic Setting

The Salish Sea is a semi-enclosed fjordlike estuary on the British Columbia coast, composed of the Strait of Georgia (SoG),

Juan de Fuca Strait (JdF), and Puget Sound (Fig. 1). The SoG is connected to the open ocean by Juan de Fuca Strait to the

south and Johnstone Strait to the north, with Juan de Fuca Strait serving as the site of primary seawater exchange with the open35

ocean (Khangaonkar et al. (2017)). The Salish Sea receives freshwater input from over 200 rivers, but the primary freshwater

source is the nival-glacial Fraser River (Pike et al. (2010)), which drives salinity-induced stratification in the CSoG and a strong

estuarine exchange (Giddings and MacCready (2017)). Salinity stratification is opposed by wind and tidal action. Strong winds

in the fall and winter months lead to mixing of surface and intermediate water masses. The SoG contains two deep basins

(North and Central), with the Fraser River plume sitting on top of the Central basin. Deep SoG water is relatively unmixed,40

except during deep water renewal events (Masson (2002)).

This coastal ocean is a region of ecological and cultural importance, providing habitat to important megafauna, including the

Southern Resident killer whales (Orcinus orca) and the local salmon populations. The ongoing significant decline of the local

Coho and Chinook salmon (Preikshot et al. (2013)) has been implicated as a factor in the low reproductive success of the killer

whale populations (Wasser et al. (2017)), which depend on these salmon as a food source. The health of fish populations in the45

Pacific Northwest has been linked to spring bloom timing and phytoplankton abundance (e.g. Malick et al. (2015); Boldt et al.

(2019)). Thus, potential population declines in upper trophic levels further motivate the understanding of factors controlling

the base of the food web.

The physical environment of the Salish Sea is well known, with functionally-distinct physical-oceanographic regions (Thom-

son (1981); LeBlond (1983); Pawlowicz et al. (2020)). An ongoing subject of interest in this coastal sea is the relationship50

between known physical, and presumed ecological, regions. Three prominent parts of the Salish Sea - Juan de Fuca Strait

(JdF), the Northern Strait of Georgia (NSoG), and the Central SoG (CSoG) have been defined by distinct stratification regimes

and watermass characteristics, and available biological observations and model results (e.g. Masson and Peña (2009); Suchy

et al. (2019); Peña et al. (2016)) are typically discussed in the context of these differing physical environments. However, in

situ sampling of phytoplankton biomass remains relatively sparse and episodic, and may not capture inherently dynamic phy-55

toplankton biomass fluctuations, and remote sensing approaches can provide only surface chlorophyll concentrations. Here,

we aim to use an unsupervised cluster analysis of a well-resolved submesoscale mechanistic biophysical model to consider the

linkages between the regional physical oceanography of the system and its phytoplankton biomass dynamics.
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1.2 Application of clustering methods to a modelling framework

Clustering methods have demonstrated utility in identifying underlying structures in large observational datasets and are com-60

monly used in ecological and biological observational studies. In recent years, the application of clustering to physical and

biogeochemical ocean models has become more common (e.g. Sonnewald et al. (2020); Follows et al. (2007); Sun et al.

(2021)), though these approaches are not yet in widespread use. The quantity of data motivates the use of clustering methods

in a modelling context - even in our relatively spatially limited sub-mesoscale resolution model, one year of output of a single

variable at hourly resolution is quite sizeable (∼ 60 GB and ∼ 3× 1010 individual values); the output of global circulation65

models is considerably larger. Well-tuned, high-resolution numerical models of complex natural systems are uniquely poised

to provide insight regarding physical oceanographic regimes and overarching patterns, especially in diverse regimes where

sampling efforts are sparse and often seasonally biased to fair weather. However, interpreting (even visualising) large volumes

of data poses a unique challenge; common approaches, such as monthly-averaged map snapshots, may represent an oversim-

plification and fail to show the patterns present in the underlying system. By extracting small-data key metrics throughout the70

model domain, we reduce the size of the problem we are considering while keeping the key characteristics of the system that

we are studying. We can then cluster these metrics in the hopes of revealing discrete dynamical regimes in complex regions.

Furthermore, the clustering method is an objective classification of the system in the sense that it makes no prior assumptions

about the locations of any oceanographic features that it finds.

Here our main goal is to investigate how physical dynamics in the Salish Sea objectively define regions of distinct phy-75

toplankton biomass and functional group composition. We extract model-available proxies for four separate factors related

to watercolumn stratification: wind energy, freshwater index, watercolumn-averaged vertical eddy diffusivity, and halocline

depth, and one indicator of primary productivity (depth-integrated phytoplankton biomass separated by functional group). We

then cluster each factor individually in order to discuss the three major regions of the Salish Sea in the context of the spatial

patterns in the yearly signals of these factors, as well as to consider their interannual variability. We finally compare spatial80

patterns in stratification factors to spatial patterns in phytoplankton biomass and discuss possible linkages between the two.

2 Methods

2.1 The SalishSeaCast biophysical model

We use SalishSeaCast, a regional oceanographic model developed for the Salish Sea (Soontiens et al. (2016); Soontiens and

Allen (2017)) using version 3.6 of the NEMO regional ocean modeling engine (Madec et al. (2017)). The physical model solves85

the Reynolds-averaged Navier-Stokes equations on an Arakawa-C grid, with a 2 second barotropic timestep, a 2 second vertical

advection timestep, and a 40 second baroclinic timestep. Major physical model modifications since first implementation are

summarized in Olson et al. (2020).

The model domain (Fig. 1) is 898 (v) by 398 (u) horizontal cells with approximately 500 m horizontal resolution and 40

vertical z -layers ranging from 1 m resolution at the surface to 27 m resolution at the bottom. SalishSeaCast has two open90
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boundaries, at JdF and Johnstone Strait, which are forced with eight tidal constituents and sea surface height predictions from

NOAA’s storm surge forecast at Neah Bay, in JdF near the seaward entrance. The model is forced with over 150 rivers; the

Fraser River runoff is taken from the Environment and Climate Change Canada flow gauge at Hope, BC, and the remaining

rivers, as well as the Fraser River downstream of Hope, are forced by a monthly climatology (Morrison et al. (2012)). At-

mospheric forcing, including winds and solar radiation, is derived from the High Resolution Deterministic Prediction System95

(HRDPS), a nested 2.5 km resolution operational atmospheric model (Milbrandt et al. (2016)). The HRDPS model output is too

coarse to accurately resolve atmospheric conditions in the northern inlets, but its wind fields have shown good agreement with

observations throughout the Strait of Georgia (Moore-Maley and Allen (2022)). Coupled to the physical model is a NPZD-type

biological model (SMELT - Salish Sea Lower Trophic Ecosystem Model, Olson et al. (2020)), which is described in summary

below.100

The SMELT biological model represents the transfer of matter, using nitrogen as currency, between three classes of primary

producers (diatoms, small flagellates, and the ciliate mixotroph M. rubrum), three classes of nutrients (nitrate, ammonia, and

silicic acid), three classes of detritus (particulate and dissolved organic nitrogen, and biogenic silica) and one class of micro-

zooplankton, with mesozooplankton grazing as a closure term. The growth rate of all three primary producer classes depends

on the availability of nutrients, light, and on temperature. The diatom class is assigned the highest maximum growth rate and105

the highest optimal light level and is the only class to take up dissolved silica – in the gleaner-opportunist framework, we con-

sider it an opportunist class (Grover (1990); Grover et al. (1997)). Small flagellates (representing phytoplankton groups such

as cryptophytes) have the lowest maximum growth rate while competing better at low nitrogen levels, low light, and higher

temperature. Small flagellates have the lowest minimum nutrient requirement, and we consider them the gleaner class in the

gleaner-opportunist framework. The mixotroph M. rubrum has intermediate growth parameters while grazing on the flagellate110

class in addition to photosynthesizing. Details of phytoplankton growth rate and nutrient and light level preference are available

in Olson et al. (2020). A summary of minor updates to the model tuning since publication in Olson et al. (2020) is provided in

Appendix B.

SalishSeaCast has been run operationally since 2014, and results from a 2013 to 2021 hindcast are available at https://

salishsea.eos.ubc.ca/erddap/index.html. The entire model system, including run environment, is documented at115

https://salishsea-meopar-docs.readthedocs.io. In Appendix A we provide an evaluation of the model salinity, temperature,

nitrate, dissolved silica, and chlorophyll against available observations for the years and model version analyzed, separated

according to the major clusters found (Fig. A1-A2). In summary, the model shows consistently high skill in across all clusters

(Tables A1-A2), with Willmott skill scores for temperature and salinity ranging from 0.957-0.971 and 0.959-0.971 respectively,

while comparisons with log-transformed total chlorophyll data yield scores of 0.599-0.712.120

2.2 Stations and clustering signals

We analyzed four years of daily output from a hindcast of SalishSeaCast (2013-2016), using an unsupervised clustering al-

gorithm (Ward’s Euclidean Distance Method, see section 2.3). We developed model-available year-long timeseries proxies

(“signals") for four different factors relating to stratification and mixing activity (wind strength, freshwater influx, vertical
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Figure 1. SalishSeaCast model domain coloured by one day of surface diatom concentration (April 1, 2016), highlighting major geographic

subregions and features. The Strait of Georgia is often subdivided into the Central Strait of Georgia (CSoG) and Northern Strait of Georgia

(NSoG), with the divide between the two subregions occurring approximately near the southern tip of Texada Island.
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eddy diffusivity, and halocline depth) and one for an indicator of biological productivity (total depth-integrated biomass of125

three phytoplankton functional groups from the model’s NPZD module). These signals were extracted for each year at each

of 571 model “stations" spaced 10 model grid points apart (∼5 kilometers, Fig. 2). This spacing was chosen as a compromise

between resolution and computing time, and we believe it well represents the different regions of the Salish Sea while being

computationally manageable.

Several possible clusterings resulting from our analysis were visualized and compared for major differences (see Section130

2.3). Results show the typical cluster structure for all four years for each individual factor (Section 3), while an example

visualization of all possible clusterings of one year of one of the variables is available in Fig. C1. Here, we describe the signals.

Wind strength

The wind forcing used (HRDPS, see model description) has 2.5 km spatial resolution and hourly temporal resolution, and is135

used operationally by Environment Canada in the Canadian Pacific region. The skill of the HRDPS wind product in this region

when compared to local meteorological stations has been evaluated by a previous study and accurately reproduces the clima-

tology of observed wind magnitudes and directions (Moore-Maley and Allen (2022)). We first interpolate this product onto the

model grid and then extract hourly windspeed. Here we are interested in the impact of wind on mixing of the watercolumn.

Therefore, because wind energy available for mixing scales with the cube of wind speed (Fischer et al. (1979)), we use the140

cube of wind speed as our signal. To take advantage of the hourly resolution of the wind product, we use the daily average of

cubed hourly wind speed (Fig. 2a).

Vertical eddy diffusivity

The vertical eddy diffusivity (VED) represents the strength of mixing in the system (Soontiens and Allen (2017)) and depends

on the choice of vertical turbulence closure scheme. SalishSeaCast uses a k-ε configuration of a generic length scale turbulence145

model to estimate sub-gridscale turbulent processes (Umlauf and Burchard (2003)), with background vertical eddy viscosity

and diffusivity both set to 10−6 m2 s−1. We report a daily depth-averaged value (Fig. 2b). Though average vertical eddy

diffusivity reflects all sources of mixing and stratification present in the system, it is dominated by barotropic tidal activity, and

we expect it to be highest at tidal mixing hotspots (Crean (1978)).

Freshwater index150

The freshwater index (Fig. 2c) is intended as a proxy for freshwater influence on the watercolumn at a given station, and is

expressed as the salinity difference between the mean of the surface 4 meters of the watercolumn and the salinity at depth 50 m,

in units of g kg−1. This metric may be thought of as a salinity stratification metric. Where the watercolumn is shallower than

50 meters, the salinity at 50 m at the nearest model point that is 50 m deep is used. Similar metrics have been used as indicators

of stratification in the region (Suchy et al. (2019); Masson and Peña (2009)), but were typically based on the difference in water155
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Figure 2. Example yearly signals of clustered physical and biological factors from one station in the CSoG (red star), year 2014. The physical

signals are as follows: a) wind energy (m3s−3), b) watercolumn-averaged vertical eddy diffusivity (m2 s−1), c) freshwater index (g kg−1), d)

halocline depth (m). The biological signal is watercolumn-integrated phytoplankton biomass (mmol N m−2), separated by functional group

(diatoms, ciliates, and flagellates). The remaining 570 stations used in the clustering are shown as blue points. Depth-integrated phytoplankton

biomass signals are combined in series for clustering (see Figure 8).

density between the surface and the deep waters; here we isolate the impact of salinity alone by using a salinity-based metric.

As salinity dominates stratification in this region (LeBlond (1983)), we expect clusters derived from a salinity-based clustering

to be broadly similar to those derived from a density-based clustering. The value of 50 m was chosen because the majority of
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the Salish Sea is more than 50 meters deep; however, we do not expect the results to change dramatically if a different depth

were to be chosen.160

Halocline depth

The halocline depth (Fig. 2d) is defined as the depth of the maximum salinity gradient in the water column, which is estimated

by finding the salinity difference of two adjacent cells in the vertical dimension and reporting the depth at the midpoint of the

two cells that have maximum salinity gradient in the watercolumn at a given station.

Phytoplankton biomass165

We extract daily-average depth-integrated phytoplankton biomass (mmol N m−2) for each of the three phytoplankton func-

tional groups to form three signals (Fig. 2e)). These signals are then connected in series to form an overall phytoplankton

biomass signal that differentiates by functional group - thus, functional group identity, not just total phytoplankton biomass,

is a factor in our clustering. Furthermore, our chosen metric of functional-group-differentiated phytoplankton biomass will

capture functional-group specific responses to different habitat characteristics.170

2.3 Clustering method

We use Ward’s method (Ward Jr (1963)), a type of hierarchical clustering method, to cluster our data. Broadly, clustering

methods are a subset of unsupervised machine learning methods used to reveal the underlying structure of a dataset by grouping

similar data points. In hierarchical clustering methods, every datapoint is initially a single-point data cluster. At each step of the

clustering, the two ‘closest’ clusters are merged into a new cluster; this process is repeated until all points have been merged175

into a single cluster. Metrics of closeness vary between hierarchical clustering methods - while some methods use variations of

the definition of the physical distance between clusters as a clustering criterion, Ward’s method analyzes changing intracluster

variance, or the “loss of information” (Wishart (1969)) if they were to merge into a single cluster. In Ward’s method, at each

step, the clusters whose merging results in the lowest increase in intracluster variance are combined.

Many hierarchical clustering methods exist; of these we chose Ward’s method because the algorithm is straightforward180

to implement and compares favourably to other hierarchical clustering methods with regards to performance in identifying

structure in known clusterings (e.g. Mangiameli et al. (1996)). We perform hierarchical clustering using Ward’s method on

each of the five signals independently. For each signal, the clustering is done four times (once for each of the four years

2013-2016), and the results for the four years are then compared to assess interannual variability in the patterns found.

Cluster number selection185

A common challenge in the application of clustering methods is the selection of cluster number, as the clustering algorithm

can produce anywhere between 2 and N clusters (where N is the number of stations with signals being clustered). Typical

approaches include choosing a cluster number where the difference in the mean signals of the found clusters when going from
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cluster number N to cluster number N+1 is maximized. In our case, attempts to use objective metrics to determine cluster

number, such as the Davies-Bouldin, Silhouette, or Calinski-Harabasz criteria (Maulik and Bandyopadhyay (2002)) typically190

identified only two clusters in a given dataset (not shown). Though these may be the most prominent clusters, meaningful

structure in the data persists at larger cluster numbers. Ultimately, our approach was to visualize several possible clustering

outputs, with cluster number N varying from 2 to 15, and to visually compare how the spatial structure of the patterns changed

with increasing cluster number (e.g. Fig. C1). In all variables, the same typical structure emerged at a relatively low cluster

number (eg, N = 3-5) and persisted with increasing cluster number in all years. To facilitate comparison of clusters between195

years, we chose a cluster number of N=5 for all years for all variables being clustered, and are confident that the structures

described are robust to a selection of a variety of cluster numbers.

Interannual cluster persistence

Visually, it is immediately apparent that similar spatial structure in the clusterings of a single variable persists interannually. To

formalize the interannual persistence of a single cluster between years, as well as spatial commonality of different variables,200

we establish a simple nondimensional cluster commonality metric (CC). For two clusters A and B, the cluster commonality

CCAB is defined as:

CCAB =
|A∩B|

0.5(|A|+ |B|)

For any two clusters, CC varies from 0 (clusters of any size with no stations in common) to 1 (two clusters of equal size with

all stations in common) and may be used to compare clusters of unequal sizes. We use this metric to compare the persistence205

of clusters of individual variables between years, as well as the cluster persistence between different variables in a given year

(Fig. C2).

3 Results

We describe the main physical-oceanographic subregions in the domain (CSog, NSoG, and JdF) determined by clustering

the physical factors and interpret our results in the context of previous work. We also consider some tidal mixing hotspots210

highlighted in the derived map of vertical eddy diffusivity. Our results here typically extract the main known general physical-

oceanographic features of this coastal sea. We then describe the observed spatial regions in biomass, which are remarkably

cohesive, in the context of these physical factors. In the discussion, we propose some mechanisms through which the physical

factors likely shape the biological structures seen here.

3.1 Central Strait of Georgia215

The physical-oceanographic dynamics of the CSoG are dominated by stratification due to Fraser river runoff, which is easily

visible in the derived clustering of the freshwater index (Fig. 3). Spatially, in all four years of our analysis, the highest freshwater

index is seen near the mouth of the Fraser River and in Howe Sound (cluster 1/gold), and then radially decreases in bands
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(cluster 2/grey, cluster 3/sky blue) outward from this maximum. The tendency of the surface Fraser River plume to move north

from the mouth of the Fraser due to the Coriolis force (Liu (2014)) is also easily observable in this visualisation. The stratifying220

tendency of the Fraser river (and of other major rivers) is then reflected in the clustering of the halocline signals (Fig. 4). The

CSoG (cluster 3/sky blue) has consistently shallow haloclines with only limited seasonal variability (∼5m in summer to ∼7m

in winter). These shallow, stable haloclines also persist in most of the Puget Sound, owing to the influence of the Skagit River,

and in the northern fjords with large rivers at their head (Toba Inlet, Bute Inlet, and Howe Sound), and the influence of these

rivers is reflected in the clustering of the freshwater index. Because rivers other than the Fraser are forced by climatology in225

the model, the potential effects of the interannual variability of their hydrographs are not seen here.

In the wind clustering, the boundary between the CSoG and NSoG is farther south than that seen in the clusterings of

freshwater index and halocline depth (Fig 5). Though winds in all clusters are highly episodic, all wind clusters show a marked

decrease in wind energy during the summer months (Fig. 6) - this change in mean signal magnitude and variability is most

pronounced in the NSoG (cluster 4/red), which consistently shows ∼2 times higher wind energies in the winter months than230

in the summer months. In contrast, the CSoG (cluster 3/sky blue) shows lowest variability between summer and winter energy

magnitudes. Summer wind energies are actually higher in the CSoG than in the NSoG, likely due to the long wind fetch

length in the CSoG, as summer winds in the Salish Sea are predominantly northerly (Thomson (1981); Moore-Maley and

Allen (2022)). Average vertical eddy diffusivity is lowest in the CSoG (Fig. 7), owing likely both to high stratification and to

comparatively low tidal currents (Thomson (1981)), consistent with the historical idea of the Salish Sea as a system of relatively235

quiet basins interconnected by dynamic sills (Ebbesmeyer and Barnes (1980)).

3.2 Northern Strait of Georgia

As expected, the influence of the Fraser river is lower in the NSoG as the region is farther away from the rivermouth (Fig.

3). The resulting lower stratification is reflected in deeper and more variable haloclines in all seasons (on average, ∼ 10m in

summer to ∼20m in winter) (Fig. 4). A striking feature in the clustering of the freshwater index signal and halocline signals240

in the NSoG and the CSoG is the dissimilarity of year 2016 to other years, reflected in a lower cluster persistence metric

in this year (Fig. C2). Maximum Fraser River discharge (freshet) during 2016 was remarkably low, in the lowest quartile of

discharge on record, reaching only ∼8,000 m3s−1, or roughly 2/3 of the magnitude of the 2013-2014 freshets, which were

both in the highest quartile (Fig. C3). Interestingly, the mean freshwater index signal for each cluster in 2016 remains similar

to the means for other years, as does the spatial extent of the most river-influenced cluster (cluster 1/gold), but the medium245

freshwater-influenced clusters (cluster 2/grey, cluster 3/sky blue) extend less far from the river mouth. As a result, the NSoG

clusters with JdF in this year.

3.3 Juan de Fuca Strait

Dynamics in Juan de Fuca Strait are broadly characterized by limited local freshwater influence, though a small increase in

freshwater index is visible in the summer months (Fig. 3, 6), in part because of the surface advection of freshet-driven water250

from the CSoG due to the estuarine circulation (Thomson et al. (2007)). The limited freshwater stratification, accompanied by
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Figure 3. Clustering of the freshwater index signal (Section 2.2). As expected, areas near the mouth of the Fraser river have the highest

freshwater index, with the freshwater plume turning north due to the Coriolis force, and the index decreases in bands from this maximum.

Elevated freshwater index can also be seen in the vicinity of the Skagit river in Puget Sound and at the head of Toba Inlet, Bute Inlet,

and Howe Sound, which contain glacial rivers. The magnitude of the freshwater index in the different clusters does not vary significantly

interannually, but the spatial extent is diminished in year 2016, which had lowest freshet magnitude of the four years. In all clusters, the

freshwater index peaks at the same time as the Fraser freshet does for a given year.

a large tidal range, results in deep and variable haloclines (Fig. 4). The larger tidal velocities here are also reflected in slightly

higher watercolumn-averaged VED (Fig. 7). Interestingly, in 2015, the VED in much of JdF clusters with the SoG, possibly due

to the inhibition of water column mixing by higher thermal stratification of the system due to the significant marine heatwave
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Figure 4. Clustering of the halocline signal, defined as the depth of the maximum salinity gradient. The largest region (cluster 3, light blue)

is the freshwater influenced CSoG, with shallow (<10 m) haloclines and limited variability between seasons. Similar halocline dynamics are

seen in Puget Sound and at the head of Toba Inlet, Bute Inlet, and Howe Sound, which contain glacial rivers. Significantly deeper and more

variable haloclines are found in the NSoG (cluster 4, red), commonly deeper than 40 m in winter. The deepest and most spatially variable

haloclines occur in the center of the JdF (clusters 1, 2, and 5), with nearshore regions of the JdF clustering with the NSoG in most years

(cluster 4).

in the North Pacific in the years 2013-2015 (Gentemann et al. (2017)), whose effects were most pronounced in the Salish Sea255

in 2015 (Chandler et al. (2016)). The dissimilarity of year 2015 to other years is reflected in the cluster persistence metric (Fig.

C2).
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Figure 5. Clustering of the daily-average wind energy signal. Though spatial cluster boundaries are consistent, wind energy in all clusters is

highly episodic, and all wind clusters show a marked decrease in wind energy during the summer months. Nearshore ares have lowest wind

energy, owing to low fetch. Summer wind energies are higher in the CSoG than in the NSoG.

3.4 Tidal Mixing Hostpots

Watercolumn-averaged vertical eddy diffusivity in the Salish Sea is dominated by tidal mixing activity (Crean (1978)), allowing

clustering VED to uncover dominant tidal hotspots. VED varies by three orders of magnitude in the model domain (Fig. 7).260

As expected, this metric reaches its maximum in the Haro Strait region, as well as in parts of Puget Sound, for example in

Admiralty Inlet, near known tidal mixing hotspots (Ebbesmeyer and Barnes (1980); LeBlond (1983); Moore et al. (2008);
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Figure 6. Seasonal means of the physical signals. Seasons are defined as follows: Winter is Dec-Feb, Spring is Mar-May, Summer is Jun-Aug,

Fall is Sep-Nov. The temporal standard deviation of the seasonal mean signal for each cluster is shown.

Deppe et al. (2018)). Two stations in northern Johnstone Strait and the Discovery Passage region also exhibit heightened VED

in all four years, consistent with the high observed tidal velocities near Seymour Narrows in this region (Thomson (1981)).

Fourier analysis of the annual vertical eddy diffusivity signals also shows local maxima in energy at weekly and fortnightly265

frequency (not shown) in all four years in all five clusters, consistent with the role of tides as the dominant source of mixing

energy in the system (Crean (1978)).

The by-cluster seasonally-averaged means and standard deviations of average VED are consistent interannually (Fig. 6,

7). The same three stations in the San Juan islands (cluster 4/red) report highest VED in all four analyzed years, exhibiting
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Figure 7. Clustering of the daily depth-averaged vertical eddy diffusivity signal. The domain is split into two major regions: the Strait

of Georgia, which has universally low vertical eddy diffusivity, and Juan de Fuca Strait, with comparatively slighly higher VED due to

stronger tidal currents. VED hotspots of various magnitudes are consistently found at tidal mixing hotspots, including Discovery Passage

near Seymour Narrows and Haro Strait near the San Juan islands.

maxima that are almost a factor of two larger than the next largest signal (cluster 2/grey). In the highly-variable Haro Strait and270

Johnstone Strait regions, the spatial frequency of our sampling likely plays a role in our derived map of tidal mixing hotspots -

as we sample only approximately every 100th horizontal model coordinate, we likely miss other high-VED model points in this

subregion, especially channels that have width-scales comparable to our model resolution (0.5km), for example the intricate

channel passages of the San Juan and Discovery Island groups in the Haro and Johnstone Strait regions, which are known
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tidal mixing hotspots (Fig. 1). Analysis of tidal mixing hotspots is not the focus of this work, but a full characterization of this275

tidally-mixed zone using a more refined clustering approach may be an interesting focus of future work.

3.5 Biomass of primary producers

A similar biological clustering arises in all four years (Fig. 8, Fig. C2). The boundaries of this clustering coincide broadly

with the three major oceanographic subregions discussed above. The largest cluster (the CSoG - cluster 3/sky blue) is char-

acterized by diatoms blooming first, followed by a transition to flagellate abundance in the summer months. In all four years,280

a functionally distinct NSoG region (cluster 4/red) arises, with sharp, epsisodic spikes in summer diatom biomass and dimin-

ished flagellate biomass. JdF (cluster 5/dark blue) reaches maximum biomass later in the year and, like the NSoG, shows a

persistence of summer diatoms and diminished summer flagellate biomass. In contrast to the NSoG, where diatom biomass

diminishes between episodic spikes, diatom biomass in JdF typically remains above 20 mmol N m−2 throughout the spring

and summer seasons, with occasional spikes to higher biomass.285

These three main regions have roughly similar mean seasonal biomass, with interannual variability larger than variability

between clusters; the main differences between them are in the relative abundances of different functional groups and in the

temporal characteristics of the phytoplankton biomass. Nearshore areas cluster together (cluster 2/grey) and have low depth-

integrated biomass because they are limited by shallow depth. The largest depth-integrated biomass in the model in both the

diatom and flagellate groups is found in the tidal mixing region of Haro Strait (cluster 1/gold).290

4 Discussion

We now consider the regional phytoplankton structure in the context of previous observational and modelling studies and

discuss some mechanisms underlying the observed patterns. We focus on the three main regions found by the biological

clustering (the CSoG, the NSoG, and JdF).

4.1 The North vs. the Central Strait of Georgia295

In the model, the NSoG shows only slightly higher depth-averaged phytoplankton biomass in all seasons than the CSoG

(Fig. 9). This biomass is consistent with the in-situ study of Masson and Peña conducted between 2001-2007 in this region,

which shows lower surface chlorophyll but a deeper phytoplankton growing zone in the NSoG leading to slightly higher depth-

integrated chlorophyll concentrations in the northern region in all four seasons of sampling (Masson and Peña 2009, henceforth

MP09, Table 2). Remote sensing observations also show significantly lower surface chlorophyll in the NSoG throughout the300

year, as well as finding anomalously high surface chlorophyll concentrations in 2015 that are not reproduced by the model

(Suchy et al. (2019)). The majority of the modelled biomass difference between the NSoG and CSoG occurs in the subsurface

maximum around 6-8 meters in depth (Fig. C4), where it cannot be detected by remote sensing. Previous modelling (of

years 2007-2009) found somewhat higher depth-integrated phytoplankton biomass in the CSoG throughout the year, but with

significant spatiotemporal variability (Peña et al. (2016)). However, a recent year-round in-situ campaign in several parts the305
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Figure 8. Clustering of vertically integrated phytoplankton biomass separated by model-defined functional group (diatoms, followed by

flagellates, then ciliates). The domain is split into the CSoG, NSoG, and JdF, each of which exhibit distinct phytoplankton dynamics (see

Section 3.5 and Discussion).

Strait of Georgia found no meaningful difference in depth-integrated chlorophyll between the NSoG and CSoG (Pawlowicz

et al. (2020)).
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Figure 9. Depth-integrated phytoplankton biomass for the three main biological clusters (CSoG, NSoG, and JdF), differentiated by functional

group. The annual, spring, and summer means of the derived clusters are shown for all four modelled years. All three clustered regions have

similar total biomass, which stays relatively consistent interannually, but functional group composition varies by cluster, with higher summer

diatom abundance in the NSoG and JdF than in the CSoG. Spring is defined as March-May, and Summer is June-August.

Together, these studies suggest that the difference between the two regions with respect to total depth-integrated biomass

is subtle. However, we find a substantial difference in the modelled phytoplankton functional group composition and the

temporal scale of variability of the phytoplankton signal between regions. In both regions of the Strait, the opportunist-class310

diatoms, which have the highest growth rate and highest nutrient requirements, peak first (typically in late March, though with
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considerable variability (Allen and Wolfe (2013))) and form the majority of the phytoplankton biomass in the spring (fig. 8,

9). In the CSoG, the model then transitions to higher biomass of gleaner-type flagellates around day 150, near the beginning

of June, and flagellates continue to exhibit high summer biomass in this region (Fig. 8, 9). In contrast, the NSoG continues

to exhibit episodic short-lived peaks of high opportunist-type phytoplankton biomass, represented by diatoms, throughout the315

summer so that in all years except 2016, diatoms make up the majority (∼55-60%) of summer phytoplankton biomass in this

region.

In the Strait of Georgia, significant evidence of high summer biomass near strong mixing zones or in response to mixing

driven nutrient delivery exists. For example, early surveys of the system find high chlorophyll associated with dynamic frontal

regions in the northern and southern ends of the SoG (Parsons et al. (1981)), and consequently warn against drawing firm320

conclusions about the nature of phytoplankton abundance and variability from episodic sampling in shifting frontal zones.

Nutrient delivery via episodic tidal mixing events near Discovery Passage has been linked to increased biomass (e.g. Parsons

et al. (1981); Haigh and Taylor (1991)) and modelled primary productivity (Olson et al. (2020)). Though this phenomenon has

been recorded in the CSoG as well (Yin et al. (1997); St. John et al. (1993)), higher stratification may dampen the magnitude of

the nutrient pulses. Sudden introduction of abundant nutrients is expected to favour the opportunist functional group represented325

by diatoms over the slower-growing gleaner functional group represented by flagellates, as is seen in our clustering (Cloern

and Dufford (2005); Dutkiewicz et al. (2009)). A recent four-year timeseries of phytoplankton composition data at a station

near Quadra Island in the NSoG supports this idea by showing episodic blooms of summer diatoms after wind events (Del

Bel Belluz et al. (2021)). Indirect evidence of episodic high biomass, sometimes following wind events, has been observed

elsewhere in the NSoG (Evans et al. (2019); Mahara et al. (2021)).330

We suggest that our results reflect a controlling influence of stratification on phytoplankton biomass and community struc-

ture. Strong stratification concentrates phytoplankton biomass in a thin well-lit surface layer while limiting supply of nutrients

after the initial biological drawdown. In the model, these conditions favour high abundance of the gleaner-flagellate group. In

the NSoG, nutrient drawdown also occurs, but episodic wind events lead to stronger upwelling and mixing due to the compara-

tively weaker stratification and inject sharp pulses of nutrients into the near-surface, leading to sharp, short-lived diatom blooms335

(Moore-Maley and Allen (2022)). In contrast, in the CSoG, despite stronger summer winds, strong stratification continues to

favour gleaner-type organisms. Faster-growing opportunist-diatoms tend to outcompete gleaner-flagellates when sufficient nu-

trients and light are available, but inherent variability in the physical environment promotes coexistence (Anderies and Beisner

(2000)). The result is only a modest, if any, change in biomass but a significant change in functional group composition and

temporal variability between the NSoG and CSoG.340

Peña et al. find higher biomass in the CSoG due to the deeper nutricline in the NSoG (Peña et al. (2016)). We find instead

that the increased mixing in the NSoG provides increased nutrients and that biomass in both regions is about the same. These

two views are not directly reconcilable and which view is more representative of actual conditions depends on accurately

capturing the balance of between the action of mixing as a source of nutrients and mixing as a source of light reduction and

phytoplankton dilution.345
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4.2 Comparison with in-situ phytoplankton functional group observations

The extent of phytoplankton diversity in the Salish Sea cannot be strictly condensed into the three functional groups represented

in this model. The divide of the phytoplankton functional groups in the model does not precisely correspond to a split between

diatoms and all types of flagellates. For instance, silicoflagellates (class Dictyochophyceae) might align with the diatom class

based on silicon utilization. For this reason, we discuss these classes in terms of competition between opportunist-type primary350

producers with high nutrient needs and high light needs and gleaner-type primary producers with capacity to persist at lower

nutrient and light levels. For this study, the requirement is capturing the overall regional biomass patterns and function. Here

we provide a brief comparison between our results and available in-situ phytoplankton functional group observations.

In-situ measurements of the relative abundance of phytoplankton functional groups remain rare in the Salish Sea, and tend to

be sparse in both space and/or time. In situ observations represent a snapshot at a single station and depth, while model output355

instead presents the average of a much larger volume (the discrete model cell). A recent well-temporally-resolved four-year

(2015–2018) time series of phytoplankton biomass and composition, derived from high-performance liquid chromatography

(HPLC) analysis of phytoplankton pigments, taken at a single station in the NSoG (Del Bel Belluz et al. (2021)), provides a

starting point for such a comparison. The in-situ data, taken from a depth of 5 meters, show diatom-dominated blooms with

varying start dates in the spring season, followed by a transition to a regime where flagellate-type groups (chiefly prasinophytes360

and cryptophytes) make up the majority of phytoplankton biomass, but diatoms remain present (Del Bel Belluz et al. (2021),

Fig. 4, Fig. 5). Episodic later-summer diatom blooms occur in three of the four observational years, corroborating the modelled

later-summer NSoG diatom blooms seen in this study.

Local phytoplankton composition data derived from shipboard observations from spring, summer and autumn cruises span-

ning the Juan de Fuca Strait and both the CSoG and the NSoG are also available as a technical report by Nemcek et al. (2020).365

Unlike the Del Bel Belluz study, these data are relatively well-resolved in space but less resolved temporally; in a given year,

typically only one day of observations is available for each station. The relative abundance of phytoplankton functional groups

in the three regions is thus interannually variable (Nemcek et al. (2020), Fig. 39-2), and in contrast to the Del Bel Belluz

study, the data show only limited summer presence of diatoms in the NSoG in either of the years overlapping with our study

(2015 and 2016). These observations contradict trends seen in our model. Simultaneously, these data show summer diatom370

dominance in the well-mixed Haro Strait region, corresponding to our tidal mixing region, which echoes trends we see in this

study. Taken together, these two in-situ phytoplankton composition studies each provide some corroboration of patterns we see

in the model, but differ from each other on summertime diatom representation in the NSoG. Combined with the modelling,

these three perspectives on phytoplankton composition and biogeography each represent different spatial and temporal scales.

The questions raised by their contrasting findings highlight the need for both modelling and observational work to provide a375

holistic view of the local biophysical dynamics.

Our modelling study is necessarily subject to limitations. For example, very high biomass shown in the tidal mixing region

(Fig. 8, cluster 1 -gold) could be an artifact of slower phytoplankton mortality rates, at least at times, than occur in nature, with

phytoplankton mixed deep into the water column and persisting too long. Such a rate imbalance would affect the response to
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mixing described above. Available observations support model phytoplankton levels in this region but are limited to the upper380

water column. Because model-data agreement in biomass and nitrate is strong in these regions, we believe the mechanism of

nutrient delivery by wind events in the less stratified north leading to dominance of faster-growing phytoplankton is robust.

4.3 Juan de Fuca Strait

Our results suggest that the mean annual average depth-integrated biomass is about the same in all three physical regions,

including the well-mixed, weakly-stratified JdF. In contrast, previous studies suggested a lower biomass in JdF (Masson and385

Peña (2009); Peña et al. (2016)) due to a deeper nutricline. However, recent in-situ chlorophyll and nutrient data (2013-2016)

support our result. In fact, the evaluation suggests that, at dates and locations where observations are available, the model

slightly underestimates observed biomass in Juan de Fuca Strait (Fig. A2, Table A2).

One factor contributing to the difference between these conclusions may be the vertical structure in the biomass observed by

both MP09 and the model. In MP09, the spring phytoplankton biomass is much more prominent in the CSoG and NSoG than390

in JdF. The spring biomass exhibits a strong subsurface maximum (∼10 meters in the chlorophyll observations) and persists

relatively deep into the watercolumn (up to 40 meters). However, though overall concentrations reported in MP09 are lower

in all seasons in JdF, observed chlorophyll concentrations >= 1 mg m−3 persist at deeper depths in most seasons in Juan de

Fuca than in both regions of the Strait of Georgia (up to 50 meters in the spring, summer, and fall), and in summer and fall, the

NSoG exhibits slightly deeper phytoplankton persistence compared to the CSoG. We replicate these trends in general vertical395

structure (Fig. C4), with a prominent subsurface maximum at ∼6-8 meters and phytoplankton biomass mixed deeper in Juan

de Fuca Strait than in either region of the Strait of Georgia.

This vertical structure likely leads to a dilution effect - even when phytoplankton concentration at a given depth may be lower

in Juan de Fuca Strait than in the Strait of Georgia, overall depth-integrated biomass may be simultaneously higher. This deep

biomass is less likely to be captured by sampling campaigns, potentially leading to an underestimation of the phytoplankton400

biomass of the region as a whole. Furthermore, because of the interannual variability in spring bloom timing and differences in

spring bloom timing between the Strait of Georgia and Juan de Fuca Strait (discussed further below), the spring in-situ survey

that captures high biomass in Strait of Georgia may be too early to observe the full extent of the spring bloom in Juan de Fuca

Strait.

In the NSoG and CSoG, the derived biological signals suggest a regime where stable growing conditions in the spring tran-405

sition to varying degrees of summer nutrient limitation which are interrupted by episodic nutrient delivery, more frequently in

the NSoG. In contrast, the diatom growth curve in JdF suggests a light-limited environment year round, consistent with the

established understanding (Mackas and Harrison (1997)). Nutrients are rarely limiting in JdF, owing to the plentiful supply of

oceanic nitrate (Sutton et al. (2013)) and stronger watercolumn mixing in this region demonstrated in the VED clustering (Fig.

7). One factor that may potentially enhance growing conditions in the summer season here is the advection of a freshwater lens410

from the Strait of Georgia via the surface estuarine circulation (Pawlowicz et al. (2007); MacCready et al. (2021)). This advec-

tion is visible as a slight increase in the summer freshwater index in JdF (Fig. 6) and may contribute to increased watercolumn

stability, and hence light availability and favourable growing conditions, in this period.
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Figure 10. A spatial view of the onset of the spring bloom in the domain. Here the spring bloom is defined as the first peak in depth-integrated

diatom biomass that is at least 30% of the maximum annual diatom biomass at that station. In all years, the spring bloom occurred earliest in

the CSog and subsequently in the NSoG before reaching JdF with a variable delay.

4.3.1 Spring Bloom Timing

The timing of the first substantial increase in phytoplankton biomass (the spring bloom), in the Salish Sea varies consider-415

ably inter-annually and is driven by different factors, primarily wind speed and cloud cover, and secondarily temperature and

freshwater discharge (Allen and Wolfe (2013)). While we do not evaluate spring bloom timing here, considering the spa-

tial variability of the onset of the spring bloom throughout the domain may deliver insights regarding the functioning of the

different regions. For the purposes of this informal exploration, at each station we define the spring bloom as the first peak

in depth-integrated diatom biomass that is at least 30% of the maximum annual diatom biomass at that station. Earlier spring420

bloom initiation in the CSoG with respect to the NSoG was seen in multiple years of satellite observations (Suchy et al. (2019)).

In our results this progression within the SoG is almost indistinguishable and is followed by later blooming in the JdF. The late

bloom timing in JdF was likely driven by stronger mixing limiting light availability later into the year in JdF region (Fig. 10),

consistent with the functional differences between JdF and the NSoG and CSoG discussed above.

This preliminary examination of modelled bloom timing shows the large interannual variability in the onset of the spring425

bloom, consistent with one-dimensional models of the region (Collins et al. (2009); Allen and Wolfe (2013)) and in the in-situ

and satellite based observations (Suchy et al. (2019); Gower et al. (2013); Boldt et al. (2019)). The significant spatial variability
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seen here underscores the dynamical differences in environmental growing conditions in different regions of the Salish Sea,

and provides an interesting direction for future research.

4.4 Utility of Clustering Methods in the Context of High-Resolution Models430

Our clustering approach identifies unambiguous regions of a complex coastal sea that exhibit distinct biological responses

to disparate physical environments. These responses are not immediately obvious in time-averaged snapshots of the studied

system. The simple machine learning technique used here enhances our way of looking at the problem - in this application,

we are not using machine learning to predict unknown quantities, as is becoming common (e.g. Keppler et al. (2020)), but

instead we are asking it to show us what is already there. Using this simple technique, we are able to draw objective boundaries435

between regions based on emergent structures in our data and significantly advance our intuition about the system. Cluster-

based model evaluation may also be a very useful application of clustering techniques, as it has potential to diagnose how well

a given model performs across different biophysical regimes.

The simplicity of the approach may have utility in numerous contexts. For instance, many characterizations of environmen-

tal regions rely on sparse data with large spatial biases. Objective clusters determined from regional models, with mechanistic440

under-pinnings, may be used to group sparse data. This approach allows clear characterization of complex systems. Further-

more, it may provide the necessary first step for machine learning studies that rely on well-organized training datasets to

accurately predict target variables (e.g. Landschützer et al. (2013)). Resource and environmental management situations and

optimal monitoring strategies may also benefit from a data-driven approach to regional definitions.

5 Conclusion445

Our work applies a hierarchical clustering algorithm to four years of SalishSeaCast model output. We extract four factors

relating to stratification and one relating to depth-integrated phytoplankton biomass, differentiated by functional group. We

identify distinct regions of the model domain that exhibit contrasting wind and freshwater input dynamics, as well as regions

of varying watercolumn-averaged vertical eddy diffusivity and halocline depth regimes. Similar spatial regionalizations in

physical variables persist in all four analyzed years.450

Similarly, we find distinct, interannually persisting, biological regions with phytoplankton biomass patterns that may be

explained by patterns in the physical factors. In the NSoG, a deeper winter halocline and episodic summer mixing coincide

with higher summer opportunist-type phytoplankton abundance, represented in the model by diatoms, and episodic fluctua-

tions in phytoplankton biomass. In contrast, in the Fraser River stratified CSoG, shallower haloclines and stronger summer

stratification coincide with more consistent biomass and high summer abundance of gleaner-type phytoplankton with slower455

growth rates, represented in the model as the flagellate functional group. While the biomass signals in the CSoG and NSoG

suggest varying degrees of nutrient limitation, the JdF biomass signal suggests a light-limited physical regime. Furthermore,

the cluster-based model evaluation suggests that JdF supports more biomass here than previously thought, due likely to a

deeper growing layer. Our approach shows that stratification controls nutrient delivery and causes subtle structure in regional
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biological patterns, and demonstrates the utility of simple machine learning tools in extracting insight from large datasets in460

the context of oceanographic models.
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Appendix A: Model Evaluation

We evaluate the version of the SalishSeaCast biophysical model used in this clustering analysis regionally against available data480

from the Department of Fisheries and Oceans Canada (Ocean Sciences Division. Department of Fisheries and Oceans Canada

(2020)), specifically; nitrate, dissolved silica, log-transformed chlorophyll, absolute salinity, and conservative temperature,

along with the spread of locations and times of collection (Figures A1, A2; Tables A1, A2).
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Figure A1. Model comparison with DFO CTD temperature and salinity data. The plots show modeled vs observed values for salinity and

temperature for the entire model domain, as well as points matched only to the three major biological clusters - the Northern Strait of Georgia,

the Central Strait of Georgia, and the Juan de Fuca Strait (cluster boundaries are specific to the year of observation). (Note that in some years,

Bute Inlet clusters with the Juan de Fuca Strait). Because of the large amount of data available for comparison, a histogram view is presented.

The timeline and rightmost panel display observation times and locations. Summary statistics corresponding to these plots are shown in Table

A1.
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Figure A2. Model comparison with DFO nitrate, dissolved silica and log-transformed chlorophyll data. The plots show modeled vs observed

values for nitrate, dissolved silica and log-transformed chlorophyll for the entire model domain, as well as points matched only to the three

major biological clusters - the Northern Strait of Georgia, the Central Strait of Georgia, and the Juan de Fuca Strait (cluster boundaries

are specific to the year of observation). The timeline and rightmost panel display observation times and locations. Stations with nutrients

but no chlorophyll data are shown in red, while stations with observations of all three parameters are shown in purple. Summary statistics

corresponding to these plots are shown in Table A2. 27



metric All data Cluster 3 (CSoG) Cluster 4 (NSoG) Cluster 5 (JdF)

Temperature (°C) N 502228 308314 56479 37858

Model Mean 9.5 9.5 9.6 8.7

Bias 0.01 0.044 -0.075 -0.068

RMSE 0.47 0.44 0.45 0.51

WSS 0.967 0.966 0.961 0.966

Salinity g/kg N 502228 308314 56479 37858

Model Mean 31 30 30 32

Bias 0.046 0.067 0.15 -0.066

RMSE 0.47 0.48 0.32 0.42

WSS 0.967 0.960 0.970 0.971
Table A1. Summary statistics corresponding to the model-data comparison of temperature and salinity shown in Figure A1. Model bias is

low compared to model means, and model bias and skill score do not vary significantly between biological clusters.

metric All data Cluster 3 (CSoG) Cluster 4 (NSoG) Cluster 5 (JdF)

Nitrate N 4732 2212 682 933

Model Mean 21 22 22 23

Bias -2.0 -2.1 -0.94 -2.4

RMSE 3.9 3.7 3.7 4.3

WSS 0.94 0.97 0.95 0.90

Dissolved silica N 4732 2212 682 933

Model Mean 39 41 42 37

Bias -6.2 -7.0 -5.9 -4.2

RMSE 9.7 9.7 9.1 8.57

WSS 0.865 0.866 0.913 0.786

Chlorophyll (l10) N 950 475 133 222

Model Mean -0.58 -0.69 -0.71 -0.55

Bias -0.23 -0.19 -0.17 -0.28

RMSE 0.48 0.42 0.43 0.53

WSS 0.712 0.786 0.757 0.599
Table A2. Summary statistics corresponding to the model-data comparison of biological variables shown in figure A2. Chlorophyll data

are log-10 transformed. Model bias is low compared to model means and RMSE, and model bias and skill score do not vary significantly

between biological clusters.
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Appendix B: Changes to Biophysical Model Since First Publication

Several adjustments to the biological model have been made from the simulation described in Olson et al. (2020) to the485

present run. The most significant concerns the silicon cycle. The rate of silica dissolution was adjusted from 3.089× 10−6s−1

to 1.221× 10−6 s−1, and a bottom flux of silicon of 6.66× 10−5 mmol m−2s−1 was added across the land-ocean interface

below 250 m. The sinking rate of biogenic silicon was increased from 1.44× 10−4 m s−1 to 3.108× 10−4 m s−1. The bottom

reflection coefficient for biogenic silicon was increased from 0.8 to 0.92 and the reflection coefficient for diatoms was changed

from 0.8 to 0. Additionally, the ratio of diatom silicon to nitrogen content was increased from 1.5 to 1.8 µmol Si:umol N.490

Diatom growth parameters were adjusted slightly, with an increase of the optimal light level from 42 W m−2 to 45 W m−2,

an increase in dissolved silica half saturation constant from 1.2 to 2.2 µM Si, and a 1% decrease in maximum growth rate. The

flagellate half saturation constant for ammonium increased from 0.1 to 0.2 µM N.

Several small adjustments were made to grazing rates, prey preferences, and predation threshold, primarily to decrease the

minimum standing stock of phytoplankton and increase grazing by microzooplankton relative to mesozooplankton. Addition-495

ally, the seasonally varying mesozooplankton maximum grazing level was adjusted slightly, decreasing winter and mid-summer

grazing rates and bringing the cycle forward by approximately 5 days. The western boundary and riverine nutrient concentra-

tions have been updated. The namelists specifying these small adjustments are available from the paper’s associated GitHub

repository.
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Appendix C: Supplementary figures500

Figure C1. One example clustering output by Ward’s method, for the annual halocline depth signal, year 2015 (see Sections 2.2-2.3).
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Figure C2. The interannual cluster commonality metric, measuring interannual cluster persistence for each factor. For any two clusters,

cluster commonality varies from 0 (clusters of any size with no stations in common) to 1 (two clusters of equal size with all stations in

common) and may be used to compare clusters of unequal sizes.
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Figure C3. Fraser river flow at Hope, British Columbia for the four modelled years, as implemented in Soontiens and Allen (2017). Data

from Environment and Climate Change Canada (https://wateroffice.ec.gc.ca/report/real_time_e.html?stn=08MF005, accessed June 2021).
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Figure C4. Mean depth profiles of phytoplankton biomass for the three main biological clusters (CSoG, NSoG, and JdF), for all four modeled

years. Spring is defined as March-May, Summer is June-August, Autumn is September-November, and Winter is December-February.
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