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Abstract.

The Arctic Ocean plays an important role in the global climate system, where sea ice regulates the exchange of heat,

moisture and momentum between the atmosphere and the ocean. A comprehensive analysis and forecast of the Arctic ocean

system requires a detailed numerical ocean and sea ice coupled model supplemented by assimilation of observational data at

appropriate time scales.5

A new operative ocean – ice state forecast system was developed and implemented. It consists of the INMIO4.1 ocean general

circulation model and the CICE5.1 sea ice dynamics and thermodynamics model with common spatial resolution of 0.25◦. For

the exchange of boundary conditions and service actions (data storage, time synchronization, etc.), the coupled model uses

the Compact Modeling Framework (CMF3.0). Data assimilation is implemented in the form of the Data Assimilation Service

(DAS) based on the Ensemble Optimal Interpolation (EnOI) method. This technique allows to simultaneously correct the10

ocean (temperature, salinity, surface level) and ice (concentration) model fields in the DAS service, so they are coordinated

not only through the exchange of boundary conditions, but already at the stage of data assimilation (i.e. strong coupling

data assimilation). Experiments with the INMIO - CICE model show that the developed algorithm provides a significant

improvement in the accuracy of forecasting the state of the ice field in the Arctic Ocean.

1 Introduction15

The Arctic Ocean plays an important role in the global climate system, where sea ice regulates the exchange of heat, moisture

and momentum between the atmosphere and the ocean. The warming of the Arctic region and shifts in its water cycle observed

in the last decades are accompanied by a wide range of processes in the ice-ocean system, see review (Guemas et al., 2016).

Interpretation of such changes is very difficult due to the lack of observational data. Numerical modeling can greatly con-

tribute to understanding these processes, but the lack of knowledge about the physics of ice-ocean interactions limits our20

ability to realistically reproduce them. The straightforward remedy is to correct the dynamic model solution by assimilating

the observations available at the appropriate time scales.

1

https://doi.org/10.5194/os-2021-65
Preprint. Discussion started: 7 July 2021
c© Author(s) 2021. CC BY 4.0 License.



The practice of numerical weather prediction has shown that coupled models usually provide significantly more accurate

forecasts than stand-alone ones. This has led to research on data assimilation (DA) in coupled models, which promises to

further improve forecast quality (Skachko et al., 2019). An overview of current activities in coupled forecasting systems and

coupled DA can be found in (Brassington et al., 2015). The World Meteorological Organization (WMO) Meeting on Coupled

Data Assimilation (Penny and Hamill, 2017) defined the classification of weakly coupled and strongly coupled DA and their5

variations.

The forecasting experience of leading scientific centers has shown that for an accurate mid-term forecast of the state of

water and ice in the Arctic, the models of ocean and ice dynamics and thermodynamics need to be fully coupled. Thus, a

DA technique capable of retaining sea ice in a coupled model in a dynamically consistent manner could help improving the

accuracy of climate studies and weather predictions (Kimmritz et al., 2018). The goal of this work is to develop a coupled10

ocean – sea ice model with coupled assimilation of available observational data and implement it with application for the

Arctic region.

2 Coupled ocean-ice model with data assimilation

2.1 Coupled ocean-ice model setup

In this work, we use the global ocean – sea ice coupled model, which consists of the INMIO ocean general circulation model15

(Ibrayev et al., 2012) and the CICE ice dynamics and thermodynamics model (Hunke et al., 2015) operating on massively

parallel computers under control of the Compact Modeling Framework (CMF) (Kalmykov et al., 2018).

The ocean and sea-ice models use similar three-polar grids (Murray, 1996) with 0.25◦ nominal resolution. The number of

ocean z-grid horizons is 49 with vertical steps increasing from 6 m near the surface to 250 m in the deep part. The bottom

topography data were interpolated from the (ETOPO5) array, excluding inland water bodies and small islands.20

The INMIO-CICE model setup is the same as used in the ocean-ice component of (Fadeev et al., 2019). In particular,

for the ocean model the lateral momentum exchange is modelled by the biharmonic operator with the coefficient equal to

−1.5 · 1011m4/s on the equator and scaled proportionally to the grid cell area in power 3/2. The additional Smagorinsky

biharmonic term in the form of (Griffies and Hallberg, 2000) is added to ensure numerical stability. The lateral heat and salt

mixing is approximated by the Laplacian operator with coefficient 300m2/s on the equator and scaled proportionally to the25

grid cell area in power 1/2. The momentum advection is approximated by the leap-frog scheme, while for the heat and salt

advection the flux-corrected transport scheme (Zalesak, 1979) is used. The atmosphere-ocean surface fluxes of heat, mass and

momentum are calculated by the (Launiainen and Vihma, 1990) atmospheric boundary layer bulk-formulae.

In the ice model configuration, the ice in each grid cell is split into five thickness categories with one additional category for

snow. Thus, the array of ice concentrations (i.e. fractions of the grid cell area) for each category is used as the main variable30

characterizing the state of the ice in the model. The elastic-viscous-plastic approximation is used to model the sea ice rheology,

the ice transport is performed with the upwind scheme. To describe the evolution of temperature, a zero-layer thermodynamic

model is used, in which ice is considered fresh and has zero heat capacity. A similar configuration of the CICE model is used
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Figure 1. Schematic diagram of data transfer between the ocean model (OCN), the sea ice model (ICE), the Data Assimilation Service

(DAS), and the I/O service (IOD) within the coupled model under the CMF framework. The horizontal dotted lines separate the CPU cores

allocated to the models and services for the case of 0.25◦global resolution.

in many key centers for operational forecasting of the ocean state, in particular in the TOPAZ system (Norway) consisting of a

coupled ocean-sea ice model (HYCOM / CICE) with DA by the EnKF method (ensemble Kalman filter) (Sakov et al., 2012).

The time step for both INMIO and CICE components is 10 minutes, while their coupling interval is 20 minutes. The fields

of upper grid layer temperature, salinity, velocity vector, freezing/melting potential, and surface tilt vector are sent from the

ocean to the ice model. The fields (intergral over all categories) of ice concentration, horizontal ice-water stress vector, fluxes5

of fresh water, salt, sensible heat and penetrating short-wave radiation are sent from the ice to the ocean model.

Before the experiments on the assimilation of observational data, the model spin-up was performed for the period of

2009.01.01 – 2019.08.31, during which the atmospheric near-surface fields were defined by the ERA-Interim reanalysis (Dee

et al., 2011) and the model solution was saved every 10 days. Further, these states, starting from the year 2011, were used as

elements of the ensemble for the approximation of covariance matrices during the DA experiment (see Section 3).10

Figures 3 and 4 show the fields of sea surface temperature and ice concentration in the h01 and h02 experiments in compar-

ison with the independent OSTIA (Roberts-Jones et al., 2012) observational data for February 1, May 1, July 1, September 1,

and December 1 2020. It can be seen from the figures that the model fields without assimilation are excessively smooth. No

eddy dynamics is observed, which is typical for models with a coarse resolution. It is also worth noting that an overestimated

amount of sea ice is produced by the coupled model, which is successfully corrected by assimilation. Also due to the assim-15
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Figure 2. National Snow and Ice Data Center (NSIDC) sea ice extent data and INMIO-CICE model simulations results with and without

data assimilation via DAS in 2020 for the Northern Hemisphere. The dotted lines show the minimum and the maximum according to the

NSIDC data for 1979-2019.

Figure 3. Sea surface temperature fields in the h01 (no DAS) and h02 (DAS) experiments in comparison with the OSTIA observational data

for February 1, May 1, July 1, September 1, and December 1 2020. The red dots show tracks of assimilated satellite sea surface level data,

the triangles show locations of the Argo temperature and salinity profiles. The white crosses show the locations of assimilated data on the

concentration of sea ice, which are within the limits of [0.1,0.9], that is, the boundary of the ice cover and the area where there is active

melting.

ilation, the surface temperature field becomes more gradient, and the area of the ice cover decreases significantly, so that the

model solution becomes more consistent with the OSTIA data.
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Figure 4. Sea ice concentration fields in the h01 (no DAS) and h02 (DAS) experiments in comparison with the OSTIA data for February 1,

May 1, July 1, September 1, and December 1 2020.

5

https://doi.org/10.5194/os-2021-65
Preprint. Discussion started: 7 July 2021
c© Author(s) 2021. CC BY 4.0 License.



Figure 5. The RMS error of model temperature (◦C) with respect to the data of Argo floats for experiments h01 (Control), h02 forecast

(Background) and h02 Analysis at depths of 3 m and 105 m.

Figure 6. The RMS error of the sea ice concentration (area fraction) with respect to the OSI SAF data for experiments h01 (Control), h02

forecast (Background) and h02 Analysis.

2.2 EnOI Data Assimilation

The basic equations of the Ensemble Optimal Interpolation (EnOI) method are as follows (Evensen, 2003):

5

xa = xb +K(yobs−Hxb) K = BHT (HBHT +R)−1 (1)

where xb (background) and xa (analysis) are the vectors of size n representing the model solution before and after DA,

respectively;
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n is the number of model grid points weighted by the number of model variables to be corrected (temperature, salinity, sea

level, etc.);10

yobs is the vector of observations of size m;

m is the total number of observation points where various data were obtained;

K(n×m) is the gain matrix;

R(m×m) is the covariance matrix of observation errors;

H(m×n) is the matrix, representing the projection operator of model values into the observational data space;15

B is the the covariance matrix of model errors.

The basic idea of ensemble methods (EnKF and EnOI) is that the matrix B is approximated on the basis of a set (ensemble)

of model solution vectors (Evensen, 2006). Let’s define the ensemble matrix AN
b = [x1

b . . .x
N
b ]− [xb . . .xb] of size (n×N),

where N is the ensemble size, and the matrix columns are equal to the model states minus their average over the ensemble.

Then the covariance matrix of model errors can be approximated on the basis of this ensemble in the following way:20

B≈BN =
1

N − 1
AN

b (AN
b )T (2)

2.3 Program implementation of EnOI

The assimilation procedure is encapsulated in the Data Assimilation Service (DAS) of the CMF framework. The service works

in parallel on its separate CPU cores and can be used simultaneously for several model components (ocean, ice, atmosphere,5

etc.). At the same time, there is no explicit dependence on the model equations, difference schemes, and parameterizations.

Only the model output is used in the form of ensemble vectors, on the basis of which the covariance matrix B is approximated.

The model forecast xb is supplied to the service regularly (e.g., once per model day) from all model components via the cluster

interconnect without accessing the file system.

The schematic diagram of data transfer between the ocean model (OCN), the sea ice model (ICE), the Data Assimilation10

Service (DAS), and the I/O service (Input-Output Data, IOD) within the coupled model under the CMF framework is shown

on Figure 1. The figure also shows estimates of the required number of CPU cores to run the global model with a resolution of

0.25◦. Parallel scaling issues of the INMIO-CMF model were discussed in (Kalmykov et al., 2018).

To approximate the model error covariance matrix B (Kaurkin et al., 2016a), we used the ensemble of the ocean and sea ice

model states. Namely, each element of the ensemble includes the 3D-arrays of temperature T (x,y,z) and salinity S(x,y,z),15

and the 2D-arrays of sea surface level anomaly SSL(x,y) and sea ice concentration AICE(x,y), merged together into a

1D-stripe (see Section 3). Columns of the matrix B consist of these stripes minus their ensemble mean.

The ensemble size was chosen equal to 50 based on the error decreasing rate estimated in the numerical experiments (Kau-

rkin et al., 2016b), (Kaurkin et al., 2016a). The covariance matrix B calculated in this way will take into account the correlation

(relationship) between different model variables: sea level, ice concentration, temperature and salinity at different model hori-20

zons, see Table 1. Thus, assimilation of even one of the variables will correct the entire vector of model solution.
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Table 1. Contents and sizes of the vectors xa,xb,yobs, and the matrix AN
b . T , S profiles data from the Argo project; absolute dynamic

topography (ADT) along-track data from the Jason-3 satellite, AVISO project; sea ice concentration (SIC) data from the EUMETSAT OSI

SAF project.

Element Model state vectors (forecast xb and analysis xa) Observation data vector yobs Ensemble matrix Ab

Size n∼ 108 m∼ 105 n×N ∼ 1010

Contents ocean T (x, y, z) T (Argo) model state vector

ocean S (x, y, z) S (Argo) (T,S,SSL,AICE)

ocean SSL (x, y) ADT (AVISO, Jason-3) saved every 10 days

ice AICE (x, y) SIC (OSI SAF) for 2011-2019

In DAS, the seasonally varying ensemble (Oke et al., 2010) is implemented. For each call of the assimilation service, the

model states for the same calendar month, but for previous years of model run, are used for the production of the ensemble.

Since only anomalies of the ensemble elements are used in the assimilation procedure, this approach allows to eliminate

seasonal covariances, while preserving the mutual influence of synoptic circulation elements.25

The following observational data will be used:

– In situ profiles of temperature and salinity from Argo floats (Argo, 2021)

– Absolute dynamic topography (ADT) data from the AVISO project (Jason-3 satellites) (Bannoura et al., 2013)

– The AMSR-2 sea ice concentration (indicates the fraction of a given ocean grid point covered by ice) product of the

EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI SAF) (Tonboe et al., 2017)30

2.4 Features of data assimilation in the ocean-ice model

The widely used weakly coupled DA for the ocean-ice coupled model, in the form of nudging DA method for the CICE model

and EnOI method for the INMIO model, proved to be inappropriate for our tasks. That is, the integration of the ocean-ice

model with this DA scheme regularly led to inconsistencies of the ocean and ice fields. As a consequence, the coupled model

crashed due to the violation of the dynamic-thermodynamic balance in it, getting physically incorrect model fields and an "ice5

thermo error" or "wrong ice energy error" or "ridging error" in the CICE model.

This indicates that there is a complex dynamic-thermodynamic balance in CICE, when a sharp change in one of the fields

within the ice model or the arrival of inconsistent boundary conditions from the ocean model can lead to errors arising in

the calculation of other fields. Thus, it is necessary to coordinate the thermodynamic and dynamic fields at the stage of their

correction by DA, in particular, to coordinate the temperature and salinity fields in the ocean and the ice concentration and10

thickness fields in the ice model.
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So, the strongly coupled data assimilation approach was implemented in the ocean-ice model, when DA for different com-

ponents is executed in the separate DAS service with coupled analysing fields from the two models. However, for smooth

mutual adjustment, it was nevertheless required to implement an interface for the ice model, in which the correction factor

field for ice concentration (Kaice) is introduced. The correction factor is equal to the model analysis obtained by the EnOI15

algorithm (xa) divided by the background (xb), and is restricted to the range [1/α,α], where α is an empirical parameter. In

our experiments, the optimal value of α is 4. At grid nodes where correction is not required or the model background has no ice

the Kaice coefficient is set to 1. Further, to correct the calculations in the CICE model, ice concentrations of various thickness

categories (five ice categories and one snow category) are multiplied by the Kaice field and the results are renormalized so

that the integral concentration field is less than 1 at all nodes.20

Thus, due to DA, there is a gradual "freezing" or "melting" of ice without direct correction of the ice thickness field.

The advantage over weakly coupled DA is that during the consequent correction of the ice concentration, other model fields

(temperature, salinity, sea level) are also taken into account, thus they are coordinated not only through the mechanism of

exchange of boundary conditions, but already at the stage of DA.

3 Experiments on simulation of water and sea ice circulation in the Arctic in 2020.

The proposed algorithm for data assimilation in a strongly coupled mode was tested in a series of numerical experiments with

the global INMIO - CICE coupled ocean – ice model with 0.25◦resolution. The model was forced with atmospheric data of the5

(GFS) forecasts accumulated for the period of 2020.01.01 – 2020.12.31. Two experiments were carried out:

1. h01 - the control run without assimilation of observation data;

2. h02 - the experiment with strongly coupled assimilation of observed temperature, salinity, ocean surface level and sea

ice concentration.

In this article, we will focus on the reproduction of the characteristics of sea ice only. Details of reproducing other charac-10

teristics of ocean circulation will be considered in separate articles.

3.1 Ice extent in the Arctic in 2020

Figure 2 and Table 2 compare the annaul variations of Northern Hemisphere sea ice extent in 2020 obtained in experiments

h01 (no DAS) and h02 (DAS) with analysis data provided by the National Snow and Ice Data Center (NSIDC). It can be seen

that due to the assimilation of observations, it was possible to significantly improve the accuracy of sea ice cover simulation.15

The average of monthly errors decreased from 26 % to 6%. Figure 2 also shows that in the no-assimilation experiment h01,

the resulting ice extent did not even fit into the "corridor" of interannual variability for 1979-2019. On the other hand, with

assimilation in h02 we can see a clear correspondence of the simulation with the analysis data.
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Table 2. Comparison of the year 2020 Northern Hemisphere sea ice extent data provided by the National Snow and Ice Data Center (NSIDC)

with INMIO-CICE simulations without DA (h01) and with DA (h02).

2020 month h01, m.km2 h01−NSIDC
NSIDC

,% h02, m.km2 h02−NSIDC
NSIDC

,% NSIDC, m.km2

Jan 16.63 22 14.97 10 13.65

Feb 17.45 19 15.17 3 14.68

Mar 17.50 18 15.58 5 14.78

Apr 16.13 17 14.66 7 13.73

May 14.44 17 12.73 3 12.36

Jun 12.49 18 11.02 4 10.58

Jul 9.62 32 8.09 11 7.28

Aug 7.77 53 5.93 17 5.08

Sep 6.42 64 4.56 16 3.92

Oct 7.03 33 5.55 5 5.28

Nov 10.28 14 9.05 1 8.99

Dec 13.32 13 11.86 1 11.77

3.2 Forecast error

Figures 5 and 6 show the root-mean-square (RMS) error plots of the temperature and ice concentration fields north of the20

30◦N latitude for the control experiment with no assimilation h01 and for the experiment h02 before assimilation (background)

and after it (analysis). From these graphs we can conclude that assimilation gives the correct sign of the correction, and the

difference between the RMS errors in the assimilating experiment and the control one is ∼ 0.5◦C. Furthermore, the absolute

magnitude of the RMS error over all observation points for the SST is ∼ 1◦C, and ∼ 0.2 for the ice concentration. This is in

agreement with data from the Copernicus Marine Environment Monitoring Service (CMEMS) (Melsom et al., 2019), in which25

the RMS error of the daily forecast is∼ 0.8◦C for SST , and 0.2 for the sea ice concentration. The methodology for calculating

errors of sea ice concentration simulations is presented in (Desportes et al., 2017), (Melsom et al., 2019).

4 Conclusions

A strongly coupled data assimilation scheme was proposed and tested for the ocean - sea ice model INMIO-CICE with a wide

range of observational data (Argo temperature and salinity, AVISO absolute dynamic topography of the sea level, OSISAF

sea ice concentration). The main goal of the numerical experiments was to check the stable operation of the coupled ice-

ocean prediction system, the correctness of the resulting model fields and the suitability of the entire system for operational5

calculations.
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A retrospective calculation was performed to reproduce the sea ice cover and surface temperature fields for the year 2020.

A comparison was made with independent observational data on the SST and ice concentration fields (OSTIA) and the sea

ice extent provided by the National Snow and Ice Data Center (NSIDC) for the Northern Hemisphere, which showed good

performance of the proposed method.10

Code availability. The code of the INMIO-CICE-CMF (distributed under GPLv2 licence) is available on http://model.ocean.ru

Data availability. The INMIO-CICE-CMF3.0-DAS simulation results for 2020 are available at the link:

http://ivm-nat.nc.mstn.ru:40223/INMIO_CICE_DAS_OS
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