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Abstract. Swell dominates the global sea state and therefore significantly contributes to processes at the air and seabed inter-

faces. Nonetheless, smaller enclosed seas are detached from the global swell climate. We present swell statistics for the Baltic

Sea using 20 years of swell partitioned model data. The swell significant wave height was mostly under 2 m, and in the winter

(DJF) the mean significant swell height was typically less than 0.4 m; higher swell was found at limited nearshore areas. Swell

waves were typically short (under 5 s), with mean periods over 8 s being rare. In open-sea areas the average ratio of swell5

energy (to total energy) was below 0.4 – significantly less than in World Ocean. Certain coastal areas were swell dominated

over half the times, mostly because of weak winds (U < 5 ms−1) rather than high swell heights. Swell dominated events with

a swell height over 1 m typically lasted under 10 h. A cross-correlation analysis indicates that swell in the open sea is mostly

generated from local wind-sea when wind decays (dominant time lag roughly 15 h). Near the coast, however, the results sug-

gests that the swell is partially detached from the local wind-waves, although not necessarily from the weather system that10

generates them.

1 Introduction

Sea surface waves are generated by the wind blowing over the water. They then travel to distant areas while continuing to

interact with their environment even after the wind has ceased, thus becoming swell. Once reaching the shore the swell releases

its energy through breaking and other wave–seabed interactions. Swell waves therefore serve as a spatial transfer mechanism –15

and a time-buffer – of the kinetic energy and momentum contained in the atmosphere, thus offering an additional opportunity

to harvest this renewable energy. In air–sea interaction studies, again, this de-correlation with the local wind regime is an

unwanted property, since swell waves taint the measurements with information of past wind and wave conditions from outside

the study area, and can even cause an upwards momentum flux from the swell to the atmosphere (Semedo et al., 2009; Kahma

et al., 2016). Swell can also affect oil transport within the mixed layer by – depending on swell–wind angle – either enhancing20

or suppressing the vertical eddy diffusivity (Chen et al., 2016).

Swell waves are common (Ardhuin et al., 2009), and the longest swell waves generated in the World Ocean can travel

across entire ocean basins before reaching the shoreline (Alves, 2006). The global swell climate has been studied using model

simulations (Semedo et al., 2011; Fan et al., 2014; Amores and Marcos, 2020), but our knowledge about the propagation of

swell is still limited by the scarcity of measurements (Babanin et al., 2019). An especially heavy swell climate is found on25

the Pacific Ocean coastlines (Yang et al., 2019), but swell is persistent also at the coasts of the Atlantic Ocean (Vettor et al.,
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2013; Semedo et al., 2015). However, there are also coastal areas of the World Ocean that are well sheltered from the dominant

ocean swell, with the swell climate being more characterized by locally generated swell waves (Hanley et al., 2010; Qian et al.,

2020).

In enclosed or semi-enclosed seas the swell climate is completely detached from the global swell conditions (Berkun, 2007;30

Van Vledder and Akpınar, 2016; Divinsky and Kosyan, 2018). One such semi-enclosed sea is the Baltic Sea, which is only

connected to the ocean through the narrow and shallow Danish straits, through which no significant amount of swell can

propagate. While the small size of the Baltic Sea naturally limits the severeness of its swell climate compared to the oceans,

locally generated swell has still been found to be an issue in air–sea interaction studies (Smedman et al., 1999; Carlsson et al.,

2009). A refined understanding of the Baltic Sea swell climate is also of interest because of the heavy marine traffic and the35

consequent risk of oil pollution (HELCOM, 2018).

Up until now, the swell climate of the Baltic Sea has not been studied by any dedicated model simulations, although it has

been quantified as a byproduct of a 10 km hindcast covering a larger domain (Semedo et al., 2014). Our study quantifies swell

in the Baltic Sea using 20 years of data from a Baltic Sea specific 1 nmi wave product. The paper is structured as follows:

Section 2 presents the data and definitions, Section 3 presents statistics of the swell height, period, and direction, quantifies the40

prevalence of swell, and investigates the cross-correlation structure between wind-sea and swell waves. Section 4 is dedicated

to discussing our results, and Section 5 ends the paper by summarising our conclusions.

2 Materials and Methods

2.1 Model data

The wave model data originate from the CMEMS BAL MFC hindcast product BALTICSEA_REANALYSIS_WAV_003_015.45

This simulation was made by the BAL MFC FMI Production Unit for the CMEMS service (Lindgren et al., 2020) and was

compiled using the wave model WAM (WAMDIG, 1988; Komen et al., 1994), with some modifications and additions to

account for specific features of the Baltic Sea (Tuomi et al., 2011, 2014). The WAM (Cycle 4.6.2) model domain covers

53◦ N–66◦ N, 9◦ E–30◦ E with a 1 nmi (1.85 km) resolution, and the wave spectra has 35 logarithmically spaced frequencies

(0.0418–1.067 Hz) and 24 directions with 15 degrees intervals.50

The atmospheric forcing for the model is a ERA5 reanalysis for wind, and has a 0.28 degree (approximately 31 km) reso-

lution. Boundary spectra at the open boundary of Skagerrak originated from the ERA5 wave reanalysis, mainly affecting the

wave conditions near Skagerrak and Kattegat, which are outside our focus area. The northern parts of the Baltic Sea freeze

annually, and the seasonal ice cover was therefore accounted for by an ice mask that excluded wave model grid points from the

calculations if the ice concentration exceeded 30 %. The ice concentrations were taken from the gridded ice charts produced55

by SMHI (Swedish Meteorological and Hydrological Institute) and FMI (Finnish Meteorological Institute), and the digitized

product had a resolution of 3 nmi for 1993–2015, 2.4 nmi for 2015–2017, and 0.25 nmi for 2017–2018.

The CMEMS wave product covers the period 1993–2018 and consists of hourly outputted wave parameters, including

partitioned primary and secondary swell parameters. For this study we used total swell parameters for the 20 year period
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1999–2018. These total swell parameters are not available in the CMEMS database, but still originate from the same model60

simulation.

The validation of the CMEMS product compared the simulated significant wave height and peak wave period to observations

from nine wave buoys, while the mean wave period (Tm02 ) was compared to data from four of these buoys (Lindgren et al.,

2020). The validation reveals that the overall accuracy of the produce is good, with the mean significant wave height being

slightly too low in the open sea and slightly too high near the coast. Overall, the significant wave height had a bias and65

root-mean-square error (RMSE) of -0.04 m and 0.24 m. The peak periods for higher significant wave heights are fairly well

reproduced in the product, but periods during low significant wave heights show an expected larger scatter. The overall bias

and RMSE for the peak period are -0.45 s and 1.09 s. The mean wave period is slightly overestimated in the product, with the

bias and RMSE over the whole domain being 0.26 s and 0.69 s.

2.2 Swell partitioning70

The total significant wave height is defined as

Hs =Hm0 =

π∫

−π

∞∫

0

S(ω,θ) dωdθ, (1)

where S(ω,θ) is the wave spectrum, ω is the angular frequency, and θ is the wave direction.

Further, the spectral swell partitioning used in WAM classifies energy as swell if the following criteria is fulfilled (Bidlot,

2001):75

1.2
(

28u∗
c

)
cos(θ−Φ)≤ 1, (2)

where u∗ is the friction velocity, c is the phase speed of the wave component and Φ is the wind direction. The swell spectrum,

Sswell(ω,θ), is therefore made up of the spectral bins S(ω,θ) that fulfills the above criteria, being 0 elsewhere.

The swell significant wave height is defined by integrating the swell spectrum

Hswell
s =

π∫

−π

∞∫

0

Sswell(ω,θ) dωdθ, (3)80

and the swell mean period is defined using the inverse moment

T swellm = 2π

π∫

−π

∞∫

0

ω−1Sswell(ω,θ) dωdθ

π∫

−π

∞∫

0

Sswell(ω,θ) dωdθ

. (4)
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Following Semedo et al. (2011) we define the swell energy weight as

WS =
(
Hswell
s

Hs

)2

. (5)

This dimensionless variable takes values between 0 (no swell present) to 1 (all energy is classified as swell). We classify the85

sea state as swell dominate if WS >0.5, i.e. over half of the energy is considered swell.

The wind-sea significant wave height fulfills

Hsea
s =

√
H2
s − (Hswell

s )2. (6)

2.3 Statistics

The seasonal ice cover of the Baltic Sea complicates the definition of wave statistics (Tuomi et al., 2011). When ice is present,90

two of the possible type of statistics are: ice-free statistics (Type F) and ice included statistics (Type I). In Type F the statistic

(e.g. mean value) is calculated using only the times when the grid point is ice-free. In Type I the ice time is included in the

calculations by assuming that the ice cover blocks the waves, i.e. by setting Hs = 0. We use Type I statistics for the significant

swell height, Hswell
s . The swell energy weight, WS , is only defined for Hs > 0, which is why we use Type F statistics for this

parameter.95

3 Results

3.1 Swell height and direction

In the Baltic Proper the mean swell significant wave height (Hswell
s ) was mostly below 0.4 m during the winter (DJF) (Fig. 1a).

Small areas close to the coasts near Klaipeda, Kaliningrad, and Gotland showed larger values – up to ca 0.8 m. These coastal

areas in the Baltic Proper also had the largest mean swell height (0.3–0.4 m) during the summer (JJA) (Fig. 1b).100

In the smaller sub-basins the mean swell heights were heavily influenced by the seasonal ice cover. The Baltic Sea starts

freezing from the Bay of Bothnia and the eastern Gulf of Finland, where the ice cover can last even until May (SMHI and

FIMR, 1982). As a result, the mean swell height in the Gulf of Finland and Bay of Bothnia was actually lower for the winter

season compared to the summer. In the Gulf of Riga and the Bothnian Sea the mean swell heights were similar for both the

summer and the winter season.105

Björkqvist et al. (2018) found that most over 7 m wave events takes place between November and January. These high

waves turned into swell after the wind decayed, leading to the 99th percentiles of the significant swell height being around 2

m (winter) and below 1.4 m (summer) in larger parts of the Baltic Proper (Fig. 1c–d). The highest swell height in the northern

Baltic Proper (5.5 m) occurred after the storm Rafael in December 2004, and this event shows a rapid re-classification of

wind-sea energy to swell energy (Fig. 2).110
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Figure 1. Mean values and 99th percentiles of swell significant wave height for winter (DJF) and summer (JJA). Note the different colour

scales. The arrows signify the mean swell direction averaged over the seasons in the 20 year data. Ice-included statistics (Type I, Tuomi

et al., 2011).

The ice cover affected the 99th percentiles significantly less compared to the mean values. The 99th percentile for the winter

months exceeded 1 m in the entire Bothnian Sea, with the lowest values found in the southeastern part of the basin (Fig. 1c).
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Figure 2. Highest swell case at the NBP wave buoy (5.5 m), which took plave during the sotrm Rafael.

The mean heights exceeded 0.8 m also during the summer season (Fig. 1d). In the Bay of Bothnia and the Gulf of Finland the

99th percentiles were roughly similar both for the winter and summer season.

The seasonally averaged mean swell directions did not reveal anything unexpected; the dominant direction in the southern115

Baltic Proper was from southwest, following the geometry of the basin up north. Waves were strongly refracted towards

the coast, especially in the southern Baltic Sea where the waves refract into the bay of Gdansk. The swell direction was

perpendicular to the coast at the exposed areas on the eastern coasts of the Baltic Proper. In the Bothnian Sea the averaged

swell direction were towards the coast with a clear divergence area in the middle of the basin – a pattern already identified by

Semedo et al. (2014). There was no major differences in the directionality of swell between winter and summer.120

3.2 Swell prevalence

We quantified the prevalence of swell using the swell energy weight, WS , which is the fraction of swell energy with respect to

the total energy (Eq. 5). This parameter is undefined for the ice-time (see Sect. 2.3), and the statistics were therefore calculated

for the ice-free time only (Type F).

The mean swell weight was 0.3–0.4 in the larger parts of the Baltic Proper, being 0.2–0.3 in most of the sub-basins (Fig.125

3a). These are low numbers compared to the World Ocean, where the mean swell weight exceeds 0.5 (Semedo et al., 2011).

Nevertheless, coastal sections with a mean swell weight over 0.5 were found in every sub-basin of the Baltic Sea, with the

exception of Gulf of Riga. In the Baltic Proper the highest swell weights were along the eastern coastlines, which is expected

because of the prevailing southwesterly winds (Karagali et al., 2014). Nonetheless, also a short coastal section in southeastern

Gotland had mean swell weights exceeding 0.6.130

In addition to the average swell weight, we also calculated the probability that the sea-state in any given location was

swell dominated (defined as WS >0.5). The sea state in the larger parts of the Baltic sea had a 20–40 % probability of being

dominated by swell (Fig. 3b), which is low compared to 75–100 % in the World Ocean (Semedo et al., 2011). The regions that

were most often swell dominated (over 70 % of the times) were very closely the same nearshore areas that had the highest

mean swell weight. Longer coastal sections that were swell dominated more often than not could be found in all sub-basins135

except the Gulf of Riga.
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Figure 3. Swell energy weight, WS : a) mean values, and b) probability of the sea state being swell dominated. Red dots show the locations

of Table 1. Ice-free statistics (Type F, Tuomi et al., 2011).

We next focus on six locations from the largest sub-basins of the Baltic Sea. They are: Klaipeda, an area with high swell

concentration in the southern Baltic Proper; Gotland, at the permanent wave buoy outside the land-based air–sea interaction

tower at Östergarnsholm; NBP, GoF, and Bothnian Sea at the locations of FMI’s operational wave buoys; and Kalajoki, outside

a recreational sandy beach in the Bay of Bothnia. The locations are shown on the map in Fig. 3a.140

The nearshore locations (Klaipeda and Kalajoki) were swell dominated around 70 % of the times, with the respective number

being only 30–40 % for the open-sea locations (Table 1). The swell dominated cases were often characterized by a low wind

speed (under 5 ms−1). For example: when the wind exceeded 5 ms−1, the sea state outside of Östergarnsholm, Gotland was

swell dominated only 14 % of the times, and practically swell free (WS ≤ 0.1) 73 % of the times.

In an absolute sense, the swell height was almost always below 2 m at all locations, with heights over 1 m being rare outside145

the Baltic Proper (Table 1). High (over 1 m) dominant (WS > 0.5) swell typically didn’t persist for long (not shown). The

median duration of such events was between 2–8 h at the six locations. High dominant swell was most prevalent at Klaipeda,

where the longest case lasted 86 h.

3.3 Swell periods

A majority of the swell waves at the six locations had a mean period below 5 s (Fig. 4). In the Baltic Proper (Klaipeda, Gotland,150

and NBP) 67–80 % of the swell cases had a mean period under 5 s. In the GoF, Bothnian Sea, and Kalajoki almost all swell
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Table 1. Exceedance probabilities of swell energy weight (WS) and swell significant wave height (Hswell
s ) at six locations (see Fig. 3a).

Statistics are ice-free and ice-included respectively (Type F & I, Tuomi et al., 2011).

Klaipeda Gotland NBP GoF Bothnian Sea Kalajoki

WS (-) Exceedance probability (%)

0.10 81 60 50 47 39 86

0.20 79 57 46 42 36 83

0.30 77 53 42 38 34 81

0.40 74 49 38 33 31 78

0.50 69 43 34 28 28 73

0.60 62 36 29 24 24 66

0.70 53 29 24 20 20 55

0.80 42 21 18 15 16 41

0.90 28 14 12 10 10 26

WS (-) Exceedance probability when wind speed over 5 ms−1 (%)

0.10 30 27 25 17 14 21

0.20 29 25 21 14 12 20

0.30 28 22 18 11 10 19

0.40 26 18 14 7 8 18

0.50 23 14 11 4 6 15

0.60 19 9 8 2 4 12

0.70 13 5 5 1 2 7

0.80 7 2 2 0 1 2

0.90 2 0 1 0 0 0

Hswell
s (m) Exceedance probability (%)

0.25 59 46 42 24 24 30

0.50 38 22 22 8 9 12

0.75 25 9 12 2 3 4

1.00 16 4 6 0 1 2

1.25 10 1 3 0 0 0

1.50 6 1 2 0 0 0

1.75 3 0 1 0 0 0

2.00 2 0 0 0 0 0
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Figure 4. Joint occurrence of swell mean period and swell significant wave height. Ice-free statistics (Type F, Tuomi et al., 2011). Cases

with a swell energy weight below Ws = 0.05 are excluded.

cases (82–91 %) had a mean swell period under 5 s. For all locations the swell significant wave height had a maximum value

of 1.0–1.2 m when the period was under 5 s.

Long swell – with a mean period above 8 s – was almost non-existent in GoF, Bothnian Sea, and Kalajoki. Such long swell

waves were rare also in the Baltic Proper, constituting only 1–2 % of all swell cases at Klaipeda, Gotland, and NBP.155

3.4 Correlation of wind-sea and swell

The correlation of the wind-sea and swell significant wave heights were negative in the open sea, but positive for coastal areas

(Fig. 5). The negative correlation of the open sea areas were indicative of decaying winds turning existing wind-sea into swell
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Figure 5. Correlation of wind-sea and swell significant wave heights. Ice-free statistics (Type F, Tuomi et al., 2011).

in a zero-sum fashion. An example is the highest swell case at NBP during the storm Rafael (Fig. 2), where high waves were

rapidly classified as swell when the wind turned as the cyclone passed. To study the correlation in more detail we determined160

the cross-correlation between swell and wind-sea heights (Fig. 6). The cross-correlation structure for open-sea locations (b–e)

had maximum correlations of 0.2–0.3, which took place for 13–15 h time lags. These time lags correspond to the life cycle of

waves generated by a larger scale weather pattern.

The positive correlation in the coastal areas suggests that the origin of the swell energy is different than in the open sea.

Indeed, the cross-correlation functions at the two coastal locations were different compared to those from the open-sea. The165

maximum peaks in the cross-correlation functions were stronger (R=0.5–0.6), but took place for a shorter time lag (7–11

h). This indicates that the wind-sea in the coastal locations grows simultaneously as longer waves arrive from the open sea.

These longer waves are generated by the same weather system, but because the wind speed decays towards the coast, they are

classified as swell near the shoreline. The time lag is created by the different arrival times of a weather system (generating a
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Figure 6. Cross-correlation functions of swell and wind-sea significant wave height calculated at six locations (see Fig. 3a). Klaipeda (a) and

Kalajoki (b) are nearshore locations. A positive time lag means that swell comes after the wind sea.

local wind-sea) and open-sea waves generated by that system. Nonetheless, coastal locations also inherit a similar correlation170

structure to that of the open sea waves during decaying winds, and the final connection between swell and wind-sea surely

depends on several factors.
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These different correlation structures offers one tool for classifying open sea and coastal locations, especially for air–sea

interaction studies. The coastal locations are more heavily and constantly tainted by swell, while in the open-sea areas swell

conditions are typical during the decay stage of events, leaving the growth stage free for undisturbed interaction studies.175

4 Discussion

The energy that the wave model partitions as swell in the open sea seems to, for the most parts, be better classified as old wind-

sea. Namely, locally generated wind waves turn in to swell when the wind speed decays. As a result, the median duration of

swell events (with a height over 1 m) were under 10 h. Near the shore, however, one event at Klaipeda lasted for 86 h (between

07 December and 10 December 2017). Such long events are not residuals of high wind waves combined with a decaying wind,180

since the longest fetch is below 600 km. Rather, a correlation analysis (Fig. 6) revealed that the origin of the partitioned swell

energy is different near the shore. Our interpretation is that the open sea waves – generated by the same atmospheric system –

arrive to the coast already during the growth stage of the local wind sea, but are classified as swell because of the lower wind

speed near the coast.

Post and Kõuts (2014) analyzed 30 cyclones over the Baltic Sea, and their average speed of 40 km h−1 was 2–3 times faster185

than the deep water group speed of 5–8 s waves. For 5 s waves and a 200 km fetch the difference in arrival time would be

roughly 9 h. In storms the wave period exceeds 10 s in the Baltic Sea (Soomere et al., 2008; Björkqvist et al., 2017; Björkqvist

et al., 2020), thus having a deep water group speed above 28 km h−1. Nonetheless, the more severe cyclones that were analyzed

by Post and Kõuts (2014) had average speeds of 53–59 km h−1. The difference in arrival time (500 km fetch) between 10

s waves and a 55 km h−1 cyclone would then also be around 9 h. These simple calculations are in the same order as the190

dominant 7 h and 11 h time lags found for the two coastal locations (Fig. 6), but further in-depth studies are required to further

investigate this matter quantitatively.

Our tentative classification of open-sea and coastal areas through the correlation of wind-sea and swell is well motivated

from the point of view of air–sea interaction studies. In such studies a detachment of the wind sea and the swell (negative

correlation) is preferred, since it allows for more opportunities to study air–sea interaction processes without the results being195

tainted by simultaneous swell. This detachment of wind-sea and swell was identified in a study into air–sea momentum transfer

during a long, well defined, swell case at the Östergarnsholm weather station outside of Gotland (Smedman et al., 1999). The

Östergarnsholm tower is an established part of the Baltic Sea research infrastructure, and our results show that the location

where the Gotland wave buoy is moored is in the open sea when using this correlation-based criterion.

The sea state in larger parts of the Baltic Sea was swell dominated for about a third of the hindcast period (Fig. 3b).200

The average swell weight was below 0.4 (Fig. 3a), which is slightly higher than the winter average for the Black Sea (0.3,

Van Vledder and Akpınar, 2016), but lower than in the World Ocean (over 0.5, Semedo et al., 2011). The Baltic Sea swell

climate also differs from the World Ocean by typically being very short (under 5 s, Fig 4). In other words, our quantitative

results show that high and long swell is not persistent in the Baltic Sea (Table 1 and Fig. 3b), which confirms the existing

qualitative understanding of the Baltic Sea wave community. Our results differ slightly from those of Semedo et al. (2014) that205
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were based on the 10 km resolution NORA10 product (Reistad et al., 2011). The largest differences can be seen for the swell

weights near the coast, simply because NORA10 can’t capture the nearshore areas. In the southeastern part of the Baltic Proper

(near Kaliningrad) the results of Semedo et al. (2014) also showed clearly higher mean swell weights compared to other part of

the basin. In our results the higher values are concentrated to the coastline, and we surmise that the area of higher swell weights

in NORA10 might be caused by a local underestimation of the wind speed. In the open sea areas the winter swell weights of210

Semedo et al. (2014) are between 0.3 and 0.4, which are similar to our results derived from the entire data set.

In coastal areas swell typically drives wave-induced sediment erosion, since long swell waves reach deeper than shorter

wind waves. In our results swell was dominant roughly 70 % of time in long nearshore areas, indicating that swell plays

an important role in the coastal sediment erosion also in the Baltic Sea. Still, the mean swell periods were typically short,

being comparable to those of the mean wind wave periods. Also, the wind wave heights can exceed the swell wave heights215

near the shore. The positive correlation between wind-sea and swell waves in coastal areas poses a challenge for quantifying

wave–seabed interaction, especially if waves are estimated using simple relationships of wind speed and fetch (e.g. Isæus,

2004). These considerations – together with the challenges posed by coastal archipelagos (Björkqvist et al., 2019) – means that

further studies into wave–bottom interactions in the Baltic Sea are needed.

In remote sensing applications the sea state affects Synthetic Aperture Radar (SAR) back-scatter and the signal of microwave220

sensors (e.g., Quilfen et al., 2004; Hwang and Plant, 2010; Stopa et al., 2017). Stopa et al. (2017) linked the accuracy of the

wind speed retrieved from SAR-data to both the total significant wave height and the swell height. Although the authors

found that the swell height was not the main explaining factor in the accuracy of winds retrieved form scatterometers, Wang

et al. (2014) showed that altimetry-based wind estimates were significantly more accurate when swell was absent. New high-

resolution altimeters, such as Sentinel-3, have also brought a concern that swell can affect existing algorithms used to estimate225

wave heights, especially since the altimeter waveform is particularly noisy when long waves are present (Moreau et al., 2018).

Furthermore, the presence of well-developed swell has been used to explain high-frequency signals in sea-level anomaly

products derived using SAR-altimetry (Rieu et al., 2021). While the sea state seems to explain a significant part of the variability

in several remote sensing applications, waves are unfortunately not considered in all available products, e.g. in the CMEMS

scatterometers wind stress product (Driesenaar et al., 2020). The absence of dominant persistent swell might make sea-state230

corrections more straightforward in the Baltic Sea, especially in the open sea areas where swell is negatively correlated to the

wind sea. At the same time, globally developed algorithms might therefore need to be recalibrated for the Baltic Sea.

Classifying swell is not straightforward. We used the simplest ECMWF partitioning that only separates the wave field into

wind-sea and swell based on the wave age of each wave component. More elaborate schemes that are capable of identifying

several swell systems have been developed (e.g. Portilla et al., 2009), and such methods have been tested in the Black Sea235

by (Van Vledder and Akpınar, 2016). We found that in the Baltic Sea even ECMWF’s simple partitioning flagged a minimal

amount of energy as swell during the growth phase of the the wave field, resulting in spurious non-zero swell weights (e.g.

Fig. 2). The experimental results by Kahma et al. (2016) indicated that setting the criterion for swell as c/U = 1 instead of

1.2 might be more appropriate. However, these results were derived using omnidirectional spectra – thus including slower

components because of the directional spread – and are therefore not directly applicable for partitioning directional spectra.240
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Indeed, reducing the constant from 1.2 to 1 in Eq. 2 would lead to even more energy being flagged as swell during the growth

stage. The coastal geometry in the Baltic Sea is challenging for spectral partitioning, and we surmise that the small artefacts

of the partitioning was caused by a slight misalignment between the wave and wind direction, perhaps made worse by the 15

degree directional resolution of the spectrum. Nonetheless, this issue seems to be a harmless artefact, and the relative simple

structure of the swell in the Baltic Sea open-sea areas doesn’t warrant in-depth studies into more elaborate swell partitioning245

schemes.

One approach to classify the entire sea state (as opposed to a single wave component) as swell is to use a lower threshold

value for the inverse wave age, cp/U (e.g. 1.2, Semedo et al., 2011). Nonetheless, the peak period near complex Baltic Sea

shorelines might not be well defined or carry the meaning we normally attach to it (Björkqvist et al., 2019). We therefore

defined the sea state to be swell dominated if over half of the energy was classified as swell (WS>0.5); this metric is well250

defined even in complex coastal conditions, although the 1 nmi wave product used in this paper was too coarse to reliably

study waves in these types of areas. Our probabilities for swell dominated sea states (Fig. 3b) are visually in between the

winter and summer values of Semedo et al. (2014) (calculated using the cp/U definition), meaning that these two definitions

have a general agreement at least in the mean sense. The inverse wave age (in its most simplest form) doesn’t account for

directionality, but the effect of swell–wind angles is not expected to be a dominant process in e.g. upper layer mixing in the255

Baltic Sea because of the absence of a persistent independent swell component. Rather, these applications might be more

heavily influenced by the persistent misalignment of wind and waves caused by slanting fetch (Pettersson et al., 2010).

The seasonal ice-cover means that that there is no single way to calculate wave statistics in the Baltic Sea (Tuomi et al.,

2011). However, since the swell weight, WS , is not defined if Hs = 0, only ice-free statistics (Type F) could be compiled for

this parameter. We also note that the inverse wave age, cp/U , and even the peak period are ill-defined for the ice-time. We260

chose to present the swell height results using ice-included statistics, which are better suitable for e.g. wave energy studies

or ocean engineering fatigue calculations. The results show that swell in the Baltic Sea is intermittent, which means that it

cannot provide a continuous source of energy even in areas where the sea is typically not ice-covered. Type F statistics would

have been more relevant for air–sea interaction studies, but the difference between these two statistics are almost non-existent

below roughly 60◦ latitude (Björkqvist et al., 2018). Our results for the Baltic Proper are therefore not affected by the seasonal265

ice-cover to any meaningful extent.

5 Conclusions

We studied swell in the semi-enclosed Baltic Sea using 20 years of wave model data. Our data originated from the same

wave simulation that was used to compile the CMEMS wave product BALTICSEA_REANALYSIS_WAV_003_015, but also

included partitioned total swell parameters. We determined the swell energy weight (the fraction of wave energy the model270

considered swell) following Semedo et al. (2011), and classified the sea state as swell dominated if over half the energy was

swell.
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Swell in the Baltic Sea was typically low (under 2 m) and short (under 5 s), with the mean swell significant wave height

in the open sea areas being below 0.4 m both in the winter and summer seasons. The probability of the sea state being swell

dominated was below 40 % in the open sea, and the average swell weight was under 0.4. Both swell height and swell prevalence275

for the open sea areas in the Baltic Sea was therefore significantly lower than for the World Ocean.

Areas with high swell prevalence was found near the coast in every sub-basin except the Gulf of Riga. Swell was highest

and most prevalent in the southeastern part of the Baltic Proper, at the Lithuanian coast outside of Klaipeda and the coast off

Kaliningrad. The swell dominated cases were still mostly caused by a low wind speed (U > 5 m s−1) rather than especially

high swell heights.280

The Baltic Sea can be classified into open-sea and coastal areas if the overall correlation (positive–negative) is used as a proxy

for the two different cross-correlation structures between wind-sea and swell wave heights. In the open sea the correlation was

negative, because swell was mostly created simply by a decaying wind, turning the existing wind-sea waves to swell in the

partitioning. Swell and wind sea heights had the strongest positive correlation for a 15 h time lag, which roughly corresponds

to the growth-and-decay cycle of waves generated by a weather system. For the coastal locations the correlation was positive,285

meaning that swell energy was not simply created from old wind sea. The cross-correlation was strongest for a ca 10 h time

lag, which we interpret as the difference in arrival time between a weather system that generates local waves and the arrival

of longer waves generated by that system in the open-sea; these longer waves are classified as swell near to coast because the

wind weakens towards the coast.

Air–sea interaction studies should be made in areas where the correlation is negative. The positive correlation near the290

coastlines is a sign of more complex dependence between swell and wind-sea waves; this problem will be relevant when

studying wave–seabed interactions.
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