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Abstract. Vestfjorden in Northern Norway, a major spawning ground for the Northeast Arctic cod, is sheltered from the

continental shelf and open ocean by the Lofoten-Vesterålen archipelago. The archipelago, however, is well known for hosting

strong and vigorous tidal currents in its many straits, currents that can produce significant time-mean tracer transport from

Vestfjorden to the shelf outside. We use a purely tidally-driven unstructured-grid ocean model to look into nonlinear tidal

dynamics and the associated tracer transport through the archipelago. Of particular interest are two processes: tidal pumping5

through the straits and tidal rectification around islands. The most prominent tracer transport is caused by tidal pumping

through the short and strongly nonlinear straits Nordlandsflaget and Moskstraumen near the southern tip of the archipelago.

Here,
:

tracers from Vestfjorden are transported tens of kilometers westward out on the outer shelf. Further north, weaker yet

notable tidal pumping also takes place through the longer straits Nappstraumen and Gimsøystraumen. The other main transport

route out of Vestfjorden is south of the island of Røst. Here,
:
the transport is primarily due to tracer advection by rectified10

anticyclonic currents around the island. There is also an anticyclonic circulation cell around the islands of Mosken-Værøy, and

both cells have have flow speeds up to 0.2 m/s, magnitudes similar to the observed background currents in the region. These

high-resolution simulations thus emphasize the importance of nonlinear tidal dynamics for transport of
::::::
floating

::::::::
particles,

::::
like

cod eggs and larvae,
:
in the region.

1 Introduction15

Increased industrial activity along the Norwegian coast rises
:::::
raises concern about potential impacts on the marine ecosystem.

To properly assess risks involved, we need to understand oceanic dynamics in near-shore regions and its associated trans-

port of nutrients and pollutants. Together with wind and freshwater run-off, tides often
:::::
strong

::::
tidal

:::::::
currents

:::::
may dominate

the flow dynamics in coastal regions
::
on

::::
short

:::::
time

:::::
scales. While strong tidal currents are known to cause efficient vertical

mixing of the ocean, important for bringing up nutrients to the surface and ventilating the coastal seas
::
in

:::
the

:::::
water

:::::::
column20

:::::::::::::::::::::::::::::::::::::::
(e.g. Blauw et al., 2012; Richardson et al., 2000), their contribution to net horizontal transport is often underestimated due to

their oscillating nature. However, when strong tidal currents interact with complex topography in shallow waters, nonlinear

flow dynamics can produce significant time-mean lateral transport (Huthnance, 1973; Parker, 1991).
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In this study,
:
we will investigate nonlinear tidal dynamics around Lofoten-Vesterålen in Northern Norway (Figure

::::
Fig. 1), a

major spawning ground for the Northeast Arctic cod (Hjermann et al., 2007). Spawning of this species takes place all along the25

middle and northern Norwegian coast, but as much as 40 percent of the cod spawns in Vestfjorden southeast of the Lofoten-

Vesterålen archipelago (Ellertsen et al., 1981; Sundby and Bratland, 1987). The cod eggs and larvae spend the first five months

drifting with the ocean currents from Vestfjorden to nursing grounds in the Barents Sea (Ådlandsvik and Sundby, 1994), and

the survival rate during this initial pelagic drift is crucial for the recruitment of the fish stock (Hjort, 1914; Houde, 2008).

Therefore a good understanding of
:::::
ocean

::::::::
dynamics

:::::::::
controlling

:::
the drift and spreading patterns of the

::::::::::::
biogeochemical

::::::::
material,30

:::
and

:
cod eggs and larvae

::
in

:::::::::
particular, is important for identifying particularly vulnerable regions and factors controlling the

recruitment of the Northeast Arctic cod.

The majority of studies on transport of Northeast Arctic cod eggs and larvae
::
in

:::
the

:::::::
Lofoten

:::
and

:::::::::
Vesterålen

::::::
region have fo-

cused on flow dynamics on the Norwegian shelf where the Norwegian Coastal Current (NCC) and Norwegian Atlantic current

(NwAC) quickly transport the cod larvae northeastward and into the Barents Sea (e.g. Ådlandsvik and Sundby, 1994; Vikebø et al., 2007; Opdal et al., 2008)35

. The transport
:::
the

:::::::::
large-scale

:::::
ocean

:::::::::
dynamics

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Ådlandsvik and Sundby, 1994; Vikebø et al., 2007; Opdal et al., 2008)

:
.

:::
For

::::::::
example,

:::
the

::::::::
transport

::
of

::::
cod

::::
eggs

::::
and

:::::
larvae

:
out of Vestfjorden itself has been reported to mainly take place around

the southern tip of the Lofoten-Vesterålen archipelago (Vikebø et al., 2007; Opdal et al., 2008), following the larger-scale

background currents, notably the NCC
:::::::::
Norwegian

::::::
coastal

:::::::
current, and currents that respond to sporadic wind events. But by

including stokes drift by wind-generated surface gravity waves, Röhrs (2014) and Röhrs et al. (2014) found that particles were40

transported closer to the coast and that the many straits which cut through the archipelago might be of larger importance

than previously assumed
::::
Even

:::::::
through

::::
tides

:::
are

:::::
strong

::
in
:::

the
::::::
region

:::::::::::::::::::::::::::::::
(Moe et al., 2002; Gjevik et al., 1997),

:::
the

:::::::::::
contribution

::
of

:::::::::::
tidally-driven

:::::::
transport

:::::
have

:::::
gained

:::::
little

:::::::
attention

::
in

:::::::
Lofoten

:::
and

:::::::::
Vesterålen.

The straits are well known for hosting strong and vigorous tidal currents. This includes a set of narrow and relatively long

straits along the northern half of the archipelago, but even more so 2–3 wider but short straits over the shallow ridge southwest45

of Lofotodden (Moe et al., 2002). Here, near the southern tip of Lofoten, Moskstraumen is situated, also called the Lofoten

maelstrom and famous for its vigorous and deadly currents. For the interested reader, tales, stories and observations of the

Lofoten maelstrom can be traced all the way back to the medieval ages (see Gjevik et al., 1997). It seems clear that the vigorous

tidal transport and dispersion around Moskstraumen in particular, but also in other straits of Lofoten, can impact the net

exchanges between Vestfjorden and the shelf outside. Existing studies have focused on quantifying tidal dispersion rates (Lynge50

et al., 2010) and on establishing a link between tidal dispersion and transport by time-mean currents (Ommundsen, 2002). There

has, however, been less attention put on identifying and quantifying the underlying non-linear dynamics responsible for tidal

dispersion and transport. Two such nonlinear processes that are likely to be important in our region, and will therefore be the

focus of the present study, are tidal pumping and tidal rectification.

Tidal pumping in a strait is a Reynolds flux of properties caused by a temporal asymmetry in circulation patterns between55

the flood and ebb phases of the tide (Geyer et al., 2001). The process can be explained using the simple model by Stommel

and Farmer (1952), who were the first to investigate this phenomenon. When tidal currents enter a strait, say from the open

ocean side, we expect them to behave roughly as potential flow and be steered by the coastline into the opening. So waters
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Figure 1. The general ocean surface circulation in the Lofoten-Vesterålen region. Black arrows show the Norwegian Coastal Current (NCC)

and the red arrow shows the Norwegian Atlantic Current (NwAC). The blue two-headed arrow show the location of Moskstraumen, situated

between Lofotodden to its north and the small island Mosken to its south.

::::
water

:
from a wide region around the opening, the ’sink region’, is pulled into the strait. In contrast, when the flow exits the

strait during the subsequent phase of the tide, the joint effect of friction and an adverse nonlinear pressure gradient as the strait60

opens up might cause the flow to separate from the coastline (Kundu et al., 2016). If there is such flow separation, the exiting

water will continue straight ahead as a tidal jet. The areas covered by the sink region and the tidal jet are equally large, but

they clearly take on different shapes. Some regions are overlapping while others are not. The existence of non-overlapping

regions will cause some difference in what
:::::
which

:
waters flow into and out of the strait .

::
(a

::::::
simple

:::::
sketch

::
is

::::::::
provided

::
in

:::
Fig.

::
9

::
of

::::::
Section

::::
3.1).

:
More recent studies have found that the presence of a tidal jet on outflow from a strait is intimately related to the65

formation of self-propagating dipoles at the strait exit (Wells and van Heijst, 2003; Afanasyev, 2006; Nøst and Børve, 2021).

The dipoles emerge from vortices that form at the points where the flow separates from the coastline, one at each side of the

strait exit. The vortices become a self-propagating dipole when the strait is narrow enough for the two to interact, so that the
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velocity field of one vortex begins to advect the vorticity of the other. This self-propagating dipole is then trailed by the tidal

jet. As it turns out, most of the water that exits the strait is injected into the dipole and its trailing jet (Nøst and Børve, 2021).70

Therefore, if the dipole avoids being drawn back into the strait during the subsequent potential flow phase of the tide, the result

will be a net property exchange through the strait (Kashiwai, 1984; Wells and van Heijst, 2003; Nøst and Børve, 2021).

The second process, rectification of oscillating currents around isolated islands and banks, has been observed in several

regions where cross-slope tidal currents are prominent. The phenomenon can be explained as a response to a nonlinear mo-

mentum transport convergence by the oscillating currents (Huthnance, 1973; Loder, 1980) or, alternatively, a net cross-slope75

vorticity flux by the same oscillations (Zimmerman, 1978; Robinson, 1981). The generation of a net vorticity flux can be under-

stood by imagining following a water column that moves periodically up and down the topographic slope of a bank, driven by

a large-scale tidal potential (Zimmerman, 1978, 1981). In the northern hemisphere, the column attains negative vorticity on its

way up the slope and positive vorticity on its way down due to vortex squeezing and stretching, respectively. Bottom friction

then removes some negative vorticity from the column over shallow regions and some positive vorticity over deep regions.80

A sustained oscillation, driven by the large-scale tidal potential, will hence be associated with a positive vorticity flux from

shallow to deep regions .
::
(a

:::::
sketch

::
is
::::::::
provided

::
in

:::
Fig.

:::
14

::
of

::::
Sec.

::::
3.2). In a quasi-steady state, the vorticity flux from many such

columns may be balanced by bottom friction acting on a time-mean anti-cyclonic circulation around the bank. Additionally,

a net vorticity flux across a sloping bottom can be generated by differential bottom friction acting on water columns that are

made to oscillate along the sloping bottom (Zimmerman, 1978; Loder, 1980; Pingree and Maddock, 1985; Maas et al., 1987).85

In this case the direction of the vorticity flux will depend on the orientation of the tidal ellipses relative to topography, but the

end result will also be time-mean currents around island
::::::
islands and banks.

Indication of large dipole vortices associated with tidal currents have been observed in satellite images from Moskstraumen

(see e.g. Figure
:::
Fig. 2), indicating that at least tidal pumping may be of importance in the Lofoten-Vesterålen region. The recti-

fication of tidal currents has not, to our knowledge, been observed or studied before in this region. But strong tidal oscillations90

around the islands of Mosken, Værøy and Røst off the southern tip of the archipelago suggest that this is a process worth

investigating. In the presence of interactions with smaller-scale non-conservative flow dynamics, such time-mean circulation

cells may very well act as ’gears’ that transport cod eggs and larvae, as well as nutrients and pollutants, between Vestfjorden

and the outer shelf.

In this paper we will isolate these two potential transport mechanisms by conducting and analysing a purely tidally-forced95

numerical simulation of the region. Modeling non-linear tidal dynamics in such a complex region is challenging. Lynge et al.

(2010) found that modelled tidally-driven transport through Moskstraumen is highly dependent on the model grid resolution

and that a horizontal resolution down to 50–100 m is required to resolve key non-linear dynamics and thus obtain realistic

transport estimates. This resolution in much higher than what is typically used in e.g. operational transport models of the

region. Our approach to this practical problem is to use an unstructured grid model which allows very high resolution in straits100

where nonlinear tidal dynamics is thought to be important. At the same time the flexible mesh allows us to reduce resolution

away from complex geometry, thus enabling us to run simulations over a large enough domain to provide a good representation

of the northward propagating tidal waves. The model setup and a validation against available observations are summarized in
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Figure 2. Satellite images from Copernicus Sentinel-II missionsshowing the ,
:::::
tracing

:::
out

:
surface currents in Moskstraumen and Nordlands-

flaget. The
:::
left

::::
panel

:::::
shows

:::
the

::::::
current

:::::::
structure

:::::
during

:::::::
westward

::::
flow

::::::
(during

::::
flood

::::
tide);

::::
west

::
of
:::::::::

Lofotodden
::

a
::::::
velocity

::::
front

::
is

::::::
evident

::::
which

::
is
:::::
likely

:::::
related

::
to

:::::
dipole

::::::::
formation.

:::
The

::::
right

::::
panel

:::::
shows

:::
the

::::::
current

::::::
structure

:::::
during

:::::::
eastward

::::
flow;

::::
here,

::
a
:::::
dipole

:::
east

::
of

:::
the

::::
strait

:::
with

:
a
::::::
trailing

::
jet

::
is

::::::
evident.

:::
The

:
Sentinel-II missions satellites carry a multi-spectral instruments

::::::::
instrument with 13 spectral channels in the

short wave infrared and visible/near infrared spectral range, whereas this image is collected from band B4 (664.6 nm). The satellite imagery

was assessed and processes using data from the Norwegian National Ground Segment for Sentinel data (Halsne et al., 2019, pers. comm.

Trygve Halsne).

section
::::
Sect.

:
2. The two dynamical processes are then discussed separately in section

::::
Sect.

:
3. Finally, a brief summary of

results in section
::::
Sect. 4 wraps up the study.105

2 Model description

We use the Finite Volume Community Ocean Model (FVCOM Chen et al., 2003) , for modelling tidal flows in the Lofoten-

Vesterålen region. FVCOM is a prognostic, free-surface, three-dimensional primitive equation ocean model which solves the

integral form of the equations on an unstructured triangular horizontal grid and a terrain-following vertical grid. For this study

of lateral transport dynamics we used a two-dimensional version of FVCOM, leaving out buoyancy effects. The model calcu-110

lates momentum advection using a second-order accuracy flux scheme (Chen et al., 2013; Kobayashi et al., 1999), horizontal

diffusion of momentum by the Smagorinsky closure scheme (Smagorinsky, 1963) and quadratic bottom friction using a depth-

dependent drag coefficient. The governing equations are integrated in time using a modified explicit forth-order Runga-Kutta

time stepping scheme (Chen et al., 2013).

The model domain, with coastline and bottom depths, is shown in Figure
:::
Fig.

:
3. The unstructured triangular grid enables115

us both to resolve small-scale nonlinear flow dynamics near land as well as the large-scale behavior of the tidal waves. Along

the coast the grid resolution is as high as 30–50 meters, which provides us with a minimum of five grid cells across the

narrowest cross-sections inside straits and inlets. Most straits are, however, resolved with more that five grid cells, as illustrated

by Nappstraumen in the right panel of Figure
::::
Fig. 3. Such high resolution near land allows us to model flow separation and the
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Figure 3. The model domain for the unstructured-grid modeling. The left panel a) shows the bathymetry inside the model domain. The dotted

thick black line shows the outer open boundary of the model. The thin black line bordering Vestfjorden outlines the boundary of the region

where we release a tracer. The right panel b) shows an example of the varying triangular grid resolution near Nappstraumen, highlighted by

the red rectangle in the left panel.

development of eddies, which are important processes for generating nonlinear tidal transports. The grid resolution decreases120

monotonically away from land and steep topography, down to around 5 km along the open boundary away from the coastline.

Along the open boundary, we force the model with prescribed sea surface height (SSH) anomalies due to northward-

propagating tidal waves. We obtain the SSH forcing fields from the TPXO 7.2 assimilated tidal model (Egbert and Erofeeva,

2002) from which we include all major constituents. The surface elevation is specified at the boundary nodes. Velocities in FV-

COM are calculated in the center of each triangular cell, and not directly at the boundary. The velocities in the open boundary125

cells are calculated based on the assumption of mass conservation (Chen et al., 2003, 2011).

We spin the dynamics of FVCOM up for six months before analyzing the model fields. In order to investigate tidal transport

dynamics, we couple FVCOM with a passive tracer module, the Framework for Aquatic Biogeochemical Models (FABM

Bruggeman and Bolding, 2014). After the six-month spin-up period, we release a passive tracer of concentration 1 m−3 inside

Vestfjorden (bounded by the thin black lines shown in the left panel of Figure
:::
Fig. 3). The tracer concentration is set to zero130

outside. After this initial tracer release, we run the coupled model for another two more months to ensure that we capture

effects of the the spring-neap cycle.
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2.1 Model validation

The large-scale behavior of the M2 and K1 tidal waves and associated currents are shown in Figure
:::
Fig.

:
4. The semi-diurnal

M2 wave (left panels) is the dominating constituent in the region. The wave is scattered and deflected around the Lofoten135

archipelago. The fraction of the wave that enters Vestfjorden slows down and the SSH amplitude increases towards the head

of the fjord due to the geometry of the fjord. In contrast, the fraction of the wave that passes west of the archipelago speeds

up along the narrowing shelf. The result is a small phase shift and a large difference in SSH amplitude between Vestfjorden

and the outer side of the archipelago. This generates strong tidal currents in the straits (lower left panel). Particularly strong

currents are found over the narrow and shallow ridge south of Lofotodden.140

The K1 wave is the dominating diurnal constituent (right panels), but its amplitude in SSH is only about one tenth of the M2

amplitude. The K1 wave behaves similarly to the M2 wave inside Vestfjorden, and a gradient in SSH across the archipelago

produces strong diurnal tidal currents as well through the straits (lower right panel). Interestingly, along the narrow outer shelf

vest of the archipelago we observe that the K1 tidal current amplitude increases northward, particularly west of Vesterålen.

For comparison, the M2 tidal current amplitude decreases in the same area. This prominent amplification of the diurnal tidal145

component, K1, has been attributed to the generation of diurnal continental shelf waves by Ommundsen and Gjevik (2000) and

Moe et al. (2002).

The large-scale behavior of both M2 and K1 waves in our model corresponds well with results reported earlier by Gjevik

et al. (1997) and Moe et al. (2002). Furthermore, the sea surface height and phase from the model fit reasonably well with

observations from five stations provided by the Norwegian Mapping Authority, Hydrographic Service (2021), as shown in150

Figure
:::
Fig. 5. One notable exception is the phase of the K1 tidewhich is too small in the model compared to observations from

Andenes, Kabelvåg and Harstad
::
S2

::::
tide,

:::
but

::
the

:::::::::
amplitude

::
of

:::
this

::
is

::::
very

:::::
small

::::::::
compared

::
to

:::
the

::::
other

::::::::::
constituents. The modeled

tidal current amplitudes also agree well with observations (also shown in Figure
:::
Fig. 5c). Here

:
, we also observe that the K1 tidal

current dominates in station 8, Sortlandssundet, which corresponds to the enhanced current velocities for the diurnal K1 tide

in Vesterålen seen in the lower right panel of Figure 4.
:::
Fig.

:::
4.

::::::::::::
Corresponding

::::::
values

::
for

::::
M2

:::
and

:::
K1

:::
are

:::::
given

::
in

::::::
Tables

:
1
::::
and155

::
2. In general, we find that the overall performance of our FVCOM tidal simulation is acceptable, providing a good foundation

for investigating tidal transport dynamics in the region.

3 Tidally-driven tracer transport in Lofoten

Figure 6 shows a three-day average of the tracer concentration near the end of the simulation period. We observe a pronounced

net tracer exchange between Vestfjorden and the shelf outside, particularly south of Lofotodden. Water with tracer concen-160

tration exceeding 0.3 m−3 is transported tens of kilometers westward on the outer shelf from this southernmost region. We

also observe notable tracer transports through the longer straits Nappstraumen (4) and Gimsøystraumen (5) somewhat further

north. In contrast, only a very small amount of tracer appears to be transported through the long and narrow Raftsundet (6) and

Tjeldsundet (7) even further to the northeast.
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Figure 4. The M2 (left panels) and K1 (right panels) tide in the model. The upper panels show the amplitude (color) and phase (contours)

of SSH for the two constituents. The lower panels show the magnitude of the major axis of tidal currents (colors) and bottom topography

(contours).
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Figure 5. Comparison between modelled and observed tidal properties in Lofoten. Comparisons for the SSH tidal amplitude Aη and phase

shift gη are displayed in panel a) and in panel b), respectively, for five stations in Lofoten: Andenes (A), Harstad (H), Kabelvåg (K), Narvik

(N) and Bodø (B), shown as orange markers in the right panel d). The different tidal constituents considered are M2 (black diamonds), K1

(green circles), N2 (purple squares) and S2 (gray triangles). The observations of SSH are collected from the Norwegian Mapping Authority,

Hydrographic Service (2021). Panel c) shows the comparison between tidal current amplitude in the model and from observations collected

from table 3 of Moe et al. (2002). In total we compare 11 stations in the Lofoten-Vesterålen region, shown as dark gray markers in the

right panel d). We display
::::::
compare

:
the M2 tidal current amplitude from all stations

::::
(dark

:::
gray

::::::
circles), and in addition the K1 tidal current

amplitude from station 8 (
:::
light

::::
gray diamond) in Sortlandssundet, since this latter station is in a region where the diurnal tidal current (K1)

is known to dominate.

A visual comparison with Figure
:::
Fig.

:
4 suggest that the transport scales roughly with the intensity of tidal currents, but165

here we will have a closer look at the actual dynamics at play. As outlined above, the focus will be on two processes. The

first is essentially a Reynolds ’pumping’ of a passive tracer through straits, stemming from a correlation between fluctuations

in the tidal velocity and fluctuations in tracer concentration. The the second is the generation of rectified currents around

islands. We set out to clarify and summarize key theoretical aspects of each process as well as check their applicability in

Lofoten-Vesterålen.170

3.1 Tidal pumping

Tidal pumping through a strait is a property exchange associated with zero net mass transport (i.e. a Reynolds flux) caused by

a temporal asymmetric flow field between the ebb and the flood tide (Stommel and Farmer, 1952). The flow asymmetry arises

where inflow to a strait takes the form of a broad potential flow whereas outflow is concentrated in a jet generated after flow

separation. When the tidal current exits a strait, the flow decelerates as the cross-sectional area increases. If the deceleration is175

rapid enough for nonlinear dynamics to dominate, there will be a dynamic low pressure in the strait and high pressure outside

the opening. In that case both the pressure gradient and bottom friction acts against the flow direction, and currents near the

coast where friction is strongest might be brought to halt and even reverse, resulting in flow separation (Kundu et al., 2016;

Signell and Geyer, 1991). Flow separation and corresponding flow asymmetry are typically present in straits that have strong

9



Figure 6. 72-hour average tracer concentration, two months after initial tracer release. The yellow line shows the boundary of the initial

tracer release area. Inside the yellow boundary the initial tracer concentration was one, while everywhere else the tracer concentration was

zero. The contours show the bottom topography.The main straits through the archipelago which will be investigated in this study are: (1)

Røsthavet, (2) Nordlandsflaget, (3) Moskstraumen, (4) Nappstraumen, (5) Gimsøystraumen, (6) Raftsundet and (7) Tjeldsundet. Note that

the numbering do
:::
does

:
not correspond to the numbering of the stations given in Figure

:::
Fig. 5.
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Table 1.
::::::::
Amplitude

:::
and

:::::
phase

:
of
:::::::
modeled

:::
and

:::::::
observed

:::
sea

:::::
surface

:::::
height

:::
for

:::
M2

:::
and

::
K1

::::
tidal

:::::::::
constituents.

:::
The

::::::::
difference

::
is

::::
given

::
as

:::::
model

::::
minus

::::::::::
observation.

:::::
Model

::::::::
Observed

::::::::
Difference

::::::
Station

:::
Aη :::

(m)
::::
(95%

::
ci)

: ::
gη:::::

(deg.)
::::
(95%

::
ci)

: :::
Aη ::::

(95%
::
ci)

: ::
gη ::::

(95%
::
ci)

: :::
Aη :::

(m)
::::::
gη(deg.)

:

:::
M2

::::
Bodø

:::
(B)

::::
0.854

:::::
(0.006)

:::
332

::::
(0.4)

::::
0.878

:::::
(0.008)

:::
331

::::
(0.5)

:::::
-0.024

:
1

:::::::
Kabelvåg

:::
(K)

::::
0.903

:::::
(0.006)

:::
335

::::
(0.4)

::::
0.937

:::::
(0.007)

:::
336

::::
(0.4)

:::::
-0.034

::
-1

::::::
Harstad

:::
(H)

::::
0.677

:::::
(0.005)

:::
348

::::
(0.5)

::::
0.708

:::::
(0.005)

:::
343

::::
(0.4)

:::::
-0.031

:
5

:::::
Narvik

:::
(N)

: ::::
0.973

:::::
(0.006)

:::
335

::::
(0.3)

:::
1.01

:::::
(0.008)

:::
335

:::::
(0.462)

: :::::
-0.037

:
0

::::::
Andenes

:::
(A)

: ::::
0.631

:::::
(0.004)

:::
347

::::
(0.4)

::::
0.668

:::::
(0.005)

:::
342

::::
(0.5)

:::::
-0.037

:
5

::
K1

::::
Bodø

:::
(B)

:::::
0.0988

:::::
(0.002)

:::
209

::::
(1.1)

::::
0.110

:::::
(0.003)

:::
204

::::
(1.9)

:::::
-0.011

:
5

:::::::
Kabelvåg

:::
(K)

::::
0.100

:::::
(0.002)

:::
212

::::
(1.1))

: ::::
0.111

:::::
(0.004)

:::
207

::::
(2.2)

:::::
-0.011

:
5

::::::
Harstad

:::
(H)

:::::
0.0595

:::::
(0.002)

:::
198

::::
(1.5)

::::
0.062

:::::
(0.003)

:::
209

::::
(3.0)

:::::
-0.003

:::
-11

:::::
Narvik

:::
(N)

: ::::
0.102

:::::
(0.002)

:::
211

::::
(1.1)

::::
0.116

:::::
(0.003)

:::
207

::::
(1.8)

:::::
-0.014

:
4

::::::
Andenes

:::
(A)

: ::::
0.068

:::::
(0.002)

:::
175

::::
(1.6)

:::::
0.0706

:::::
(0.002)

:::
200

::::
(2.0)

:::::
-0.003

::
25

tidal currents and abrupt openings. As also pointed out in the introduction, the generation of a tidal jet on outflow through an180

abrupt strait opening is intimately tied to the presence of a self-propagating dipole.

Before making quantitative estimates we take a look at the flow field in two of the straits. Figure 7 shows the flow and tracer

field in Nappstraumen (4) through one tidal cycle. The various panels give time slices at 3 and 4.5 hours into the flood
::::
show

:::
the

:::::::
situation

::
at

::::::
various

:::::
times

:
after slack tide and

::::
after

:::
ebb

::::
tide.

:::
So,

:::
the

::::
first

::::
three

::::::
panels

::::
(1.5,

:
3 and 4.5 hoursinto the ebb after the

next slack tide (which corresponds to
:
)
::::
show

:::::::::
conditions

::::::
during

:::
the

::::
flood

::::
tide

:::::
while

:::
the

:::
last

::::
three

::::
(7.5,

:
9 and 10.5 hoursafter the185

first slack tide) . At 3 hours )
:::::
show

:::::::::
conditions

:::::::
through

:::
the

::::::::
following

::::
ebb.

:::::::
Already

::
at

:::
1.5

:::::
hours

::::
after

:::::
slack

:::
tide

:
we see that the

northward-flowing tidal current has separated from the coast near the abrupt opening in the north. The separation has created

two oppositely-signed vortices that are trailed by a jet, in line with previous studies (Afanasyev, 2006; Nøst and Børve, 2021).

The vortices form a self-propagating dipole pair and grow in time, as can be seen at
:
3
:::::
hours

:::
and

:
4.5 hours. The vortices clearly

capture and transport waters with high tracer concentration northward as they propagate away from the strait during flood tide,190

as expected from theory.

The ebb tide (
:::
7.5, 9 and 10.5 hours in the figure

::::
Fig.

:
7) returns water to the northern opening as potential flow, following

the shape of the coastline. The flow paths are thus distinctly different compared to those during flood tide, and waters with

low tracer concentration are drawn back in, particularly along the western flanks of the strait. In this particular strait the self-

propagating dipole, formed during flood, is strong enough to escape the return flow. The bulk of the tracer captured by the195

two vortices therefore remains at the northern side, contributing significantly to the net tracer transport through Nappstraumen
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Figure 7. Tracer distribution in Nappstraumen (4) during the first full tidal cycle in the simulation. The time is given in hours after slack

tide after ebb.
:::
The

:::
two

:::::
upper

:::::
panels

:::
and

:::
the

::
left

::::::
middle

::::
panel

:::
are

:::::
during

::::::::
northward

::::
flow

::::
(flood

::::
tide),

::::
and

::
the

::::
right

::::::
middle

::::
panel

:::
and

:::
the

:::
two

::::
lower

:::::
panels

:::
are

:::::
during

::::::::
southward

:::
flow

::::
(ebb

::::
tide).
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Table 2.
::::::::
Amplitude

::
of

:::::::
modeled

:::
and

:::::::
observed

::::
tidal

:::::::
velocity

::
for

::::
M2

:::
and

:::
K1

::::
tidal

:::::::::
constituents.

::::
The

::::::::
difference

::
is

::::
given

::
as
::::::

model
:::::
minus

::::::::
observation

::::::
(M-O).

:::::
Model

::::::::
Observed

::::::::
Difference

::::::
Station

:::
Au ::::

(m/s)
:::
Au ::::

(m/s)
::
Au:::::

(m/s)

:::
M2

::
S1

: ::::
0.078

::::
0.096

::::
-0.018

::
S2

: ::::
0.201

::::
0.212

::::
-0.012

::
S3

: ::::
0.149

::::
0.116

::::
0.033

::
S4

: ::::
0.085

::::
0.073

::::
0.012

::
S5

: ::::
0.126

::::
0.098

::::
0.023

::
S6

: ::::
0.019

::::
0.269

:::::
-0.250

::
S7

: ::::
0.022

::::
0.017

::::
0.005

::
S8

: ::::
0.201

::::
0.130

::::
0.071

::
S9

: ::::
0.056

::::
0.035

::::
0.021

:::
S10

::::
0.113

::::
0.833

::::
-0.720

:::
S11

::::
1.758

::::
1.139

::::
0.619

::
K1

::
S8

: ::::
0.562

::::
0.485

::::
0.077

over the course of the full tidal cycle. At the more gradual southern opening of the strait, there is much less indication of

flow separation. There is suggestion of a small and weak vortex pair forming along the south-western flank, but the net tracer

transport appears to be limited.

The situation is somewhat different in Moskstraumen (3) between Lofotodden and the island of Mosken, as show in Figure200

:::
Fig.

:
8. Here,

:
there is flow separation, dipole and jet formation at both exits during flood and ebb tide, respectively. A closer

inspection shows that the dipoles form later in the tidal cycle compared to the generation at the northern exit in Nappstraumen

::
(3

:::::
hours

::::::::
compared

::
to
::::

1.5
:::::
hours), and their propagation distance is somewhat shorter when the flow reverses. Even so, their

propagation speed is strong enough that the bulk of the dipoles avoid being transported back into the strait by the return flow.

The inflow to Moskstraumen, in contrast, also primarily takes the form of potential flow, drawing fluid into the strait from all205

directions. The result is a large net tracer transport which is clearly seen in Figure
::::
Fig. 6. A dipole with a trailing jet is also

observed to form during ebb tide (10.5 hours) in Nordlandsflaget (2) a few kilometers to the south-west between the islands

of Mosken and Værøy. This flow feature brings low-concentration waters into Vestfjorden, but the net effect appears to be

somewhat dwarfed by the pumping that takes place in Moskstraumen.
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Figure 8. Same as Figure 7, but for Moskstraumen (3) and Nordlandsflaget (2).

3.1.1 Parameters controlling tidal pumping210

According to Nøst and Børve (2021), the net transport of a tracer through a tidal strait depends primarily on two non-

dimensional length scales. The first parameter is a purely kinematic one, namely the ratio of the tidal excursion Lt (the expected

travel distance of a particle transported by the tidal current) and the length Lxs of the strait:

L∗ =
Lt

Lxs
. (1)

If the tidal excursion is shorter than the strait (L∗ < 1), a net transport of properties is not possible. The second non-dimensional215

length scale reflects the dynamics at play, namely the travel distance of the self-propagating dipole relative to the extent of the

sink region:

Ls =
Ld

Rs
, (2)

where Ld is the dipole travel distance during one half tidal period and Rs is the sink radius (a measure of the region covered

by potential flow on inflow to the strait
:
,
::::
Fig.

::
9b). Ls corresponds roughly to the nondimensional Strouhal number used by220
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Kashiwai (1984) and Wells and van Heijst (2003). If Ls < 1, the dipole is inside the sink region and will be affected by the

potential flow back into the strait. Depending on the self-propagation velocity of the dipole relative to the sink velocity at its

positions, a smaller or larger fraction of the dipole will be pulled back into the strait.

While the first non-dimensional parameter, L∗, is relatively easy to estimate in our study, the second parameter, Ls, is more

complicated to work with in a realistic setting. Ls depends on the dipole properties and the shape of the sink regions, both of225

which are affected non-trivially by the kind of complex bathymetry and coastlines present in Lofoten. Therefore, instead of

tracking dipole travel distances and estimating sink radii, we here chose to assess the flow asymmetry at the strait openings. In

other words, we set out to investigate the extent to which the inflow through a strait opening behaves as potential flow whereas

the outflow takes the form of a jet. As such, this relationship is more in line with the original model of Stommel and Farmer

(1952) and follows the procedure recommended by Signell and Butman (1992).230

To reiterate, the formation of a tidal jet during outflow from a strait requires flow separation which is driven, in part, by the

build-up of an adverse pressure gradient. The build-up of an adverse pressure gradient, in turn, requires nonlinear advection

of momentum (Signell and Geyer, 1991). So it makes sense to investigate the relationship between non-linearity and flow

asymmetry in the various straits in Lofoten. In a coordinate system where the x-axis points along the strait, a truncated form of

the along-strait momentum equation is235

∂u

∂t
+u

∂u

∂x
=−g ∂η

∂x
, (3)

where u is the along-strait velocity, η is the sea surface height and g is the gravitational acceleration. We have ignored cross-

strait advection and friction for the arguments to follow (skin friction in our simulations is demonstrably small compared to

the time acceleration at tidal frequencies). An assessment of the importance of non-linearity in a strait opening can be done

by comparing the advection term to the time rate of change of momentum. The advection term itself can be estimated from240

volume conservation as

u
∂u

∂x
∼ ui

ui
∆x

(
Ai

Ae
˘1

)
, (4)

where ui is the velocity at the inner, narrow, part of the strait, and Ai and Ae are the cross-sectional areas covered by the

current at the inner part of the strait and the strait exit, respectively .
::::
(Fig.

:::
9). Finally, ∆x measures the distance over which the

change in cross-sectional area takes place. If the tidal current is large and the change in cross-sectional area is large and abrupt245

(meaning Ae�Ai and ∆x is small), then the nonlinear advection will be strong.

The non-linearity of the flow is then found by dividing (4) by ui/T , where T is half a tidal period. So we get the non-linearity

parameter

Snl =
uiT

∆x

(
Ai

Ae
− 1

)
. (5)

As shown by the sketch in Figure
:::
Fig.

:
9, the area covered by the jet at the strait exit, Ae, can be quite different between inflow250

and outflow. On inflow the appropriate scale for Ae is the actual width of the strait exit, while on outflow the scale may be that

of the jet—if a jet forms. So the maximum strength of non-linearity is best measured on inflow, i.e. using values of Ai and Ae

gathered from the strait geometry.
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Figure 9. A sketch illustrating flow asymmetry. The left panel a) shows the tidal current entering the strait from all directions during ebb

tide. The right panel b) show a tidal current exiting the same strait during flood tide. However, now the flow separates from the coastline and

a dipole with a trailing jet has formed and propagated away from the strait. U is the tidal current speed and A is the cross-sectional area. The

notations i and e corresponds to the inner and outer side of the strait opening, respectively. ∆x is the length of the strait opening where we

evaluate the flow asymmetry and the nonlinearity of the flow dynamics.

To assess flow asymmetry, we will use the model’s pressure or sea surface height field. To understand how flow asymmetry

will manifest itself in the pressure field, we again return to the sketch in Figure
:::
Fig. 9. If the inflow takes the form of potential255

flow while the outflow is in the form of a jet (as indicated in the figure), the non-linear pressure gradient across the strait

opening (i.e. over distance ∆x) will be larger during inflow than during outflow. This observation suggests that the magnitude

of the difference in pressure gradient between inflow and outflow will be a measure of the asymmetry.

We start by forming normalized pressure gradients across each strait openings:

∆̃η =
∆ ηo/∆xo
∆ηs/∆xs

, (6)260

where ∆ηo/∆xo is the pressure gradient across the opening and ∆ηs/∆xs is the corresponding gradient across the entire

strait. The latter should primarily reflect the large-scale pressure gradient, so normalizing by this will help isolate the nonlinear

contribution to the pressure gradients around the strait exits. The flow asymmetry around a given strait exit is then measured

by the magnitude of the difference between ∆̃η at flood and ebb tide:

Axo = |∆̃ηflood− ∆̃ηebb| (7)265

A small value of Axo should indicate negligible flow asymmetry while a large value should indicate large flow asymmetry and

thereby the potential for prominent tidal pumping.

We calculated ∆̃η at ebb and flood tide for each M2-tidal cycle at both openings of all the straits shown in Figure
::::
Fig. 6.

Individual estimates for each strait opening and each phase of the tides
:::
tide

::::
(ebb

::::
and

::::::
flood) were then averaged over the
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whole simulation period. Finally, a mean asymmetry parameter Axo was calculated for each opening. Since we deal with270

realistic geometries, the definition of the openings is somewhat subjective. But we tried to apply similar criteria to all strait

openings, choosing the most obvious outer strait entrance/exit and the corresponding closest narrow cross section inside. The

outer opening would typically be where flow separation and dipole formation could potentially occur and contribute to tidal

pumping. An example is the northern exit of Nappstraumen, which is defined to start at the narrow cross-section where the

flow separates and dipole forms (see Figure
:::
Fig.

:
7). Corresponding nonlinearity parameters Snl were also estimated over the275

same openings for each M2 tidal cycle and averaged over these.

The estimates ofAxo and Snl for the seven straits are shown in Figure
:::
Fig.

:
10. The calculation reveals considerable scatter but

indicates a near-linear relation between the two parameters. This suggests that most straits that have nonlinear flow dynamics

also have a flow asymmetry that may be linked to formation of tidal jets. We made estimates for both openings of each strait

since the geometries on the two sides may be widely different. Nappstraumen (4) is the most notable example. At its northern280

opening, the flood exit, abrupt changes in the coastal geometry causes the flow dynamics to be highly nonlinear and asymmetric

between flood and ebb. And we saw from Figure
:::
Fig. 7 that the asymmetry here is closely tied to prominent dipole formation

during flood tide. In contrast, at the more gradual opening in the south, non-linearity, dipole formation and asymmetry are

much weaker.

The largest nonlinearities and asymmetries are found in the northern opening of Nappstraumen (4), in both openings of285

Moskstraumen (3) and in the southern (ebb) opening of Nordlandsflaget (2). It is interesting to note that the non-linearity in

Røsthavet (1) is comparable to that in the northern (flood) opening of Nordlandsflaget, but that the asymmetry is lower. As it

turns out, Røsthavet is the widest strait in the whole region. So although tidal currents are just as large as in Nordlandsflaget and

there is actually flow separation here during both phases of the tide (not shown), the vortices formed are too far apart to form a

self-propagating dipole and a trailing tidal jet. The longer straits in the north (5–7) all have moderate to low nonlinearities and290

asymmetries. The reason for this is probably that the overall flow dynamics becomes more linear as the strait length increases

(Nøst and Børve, 2021). This brings down the current speeds, and hence the nonlinearity, in these long straits.

Measuring tidal pumping strength

To finally evaluate the strength of the tidal pumping, we calculate a tracer transport efficiency for each strait. The transport

efficiency T ∗p is defined as the actual tracer transport through the strait divided by a ’transport potential’ made up of the time-295

averaged magnitude of the along-strait velocity |u|, the time-averaged mean tracer concentration difference between the two

strait openings ∆c and the strait cross-sectional area A. So

T ∗p =

∫∫
u′c′ dA

∆c |u|A
. (8)

where overbars indicate the time mean and primes indicate perturbations from that mean, so that u′c′ is the Reynolds flux of

c. The transport efficiency for a given strait is estimated in the same manner as the non-linearity and flow asymmetry, i.e. by300

calculating a value for each M2 tidal cycle and then averaging over the whole simulation period.
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Figure 10. Estimates of the flow asymmetry Axo at the openings of each strait plotted against the non-linearity parameter Snl. Green dots

are values at the flood exit (directed out of Vestfjorden) while light gray dots are values at the ebb exits (directed into Vestfjorden). Both

parameters are plotted on log scales.

Figure 11 shows T ∗p for all straits plotted against asymmetry parameter Axo and the nondimensional tidal excursion L∗. The

asymmetry parameter for a given strait is the average from the two strait openings. As already discussed, and as seen in panel

(a), three straits stand out in terms of flow asymmetry: Nordlandsflaget (2), Moskstraumen (3) and Nappstraumen (4) (where

the high value comes from the northern opening). We now see that these are also the three straits with the highest transport305

efficiency. But even though Nappstraumen has the largest flow asymmetry of all straits, the transport efficiency is notably

lower than in Nordlandsflaget and Moskstraumen. The likely reason is tied to the fact that Nappstraumen is a relatively long

strait, as can be seen in panel (b). The tidal excursion in Nappstraumen (4) is only twice the strait length, while the excursion in

Nordlandsflaget (2) and Moskstraumen (3) is almost ten times longer than the strait length. Hence, just by considering the strait

length, we expect the net effect of flow asymmetries in Moskstraumen and Nordlandsflaget to be larger than in Nappstraumen.310

Røsthavet (1) is also a short strait, where the tidal excursion is much larger than the strait length. However, in this strait the

flow asymmetry is weak and we thus expect little tidal pumping. We have at present no underlying theory for tidal pumping

efficiency as a function of both Axo and L∗. But since the transport efficiency must depend on both flow asymmetry and short

strait length compared to the tidal excursion, we plot T ∗p against the product of the two parameters in panel (c). The scatter is

now reduced and the data from the various straits roughly follow a linear relationship.315

In forming the various estimates above some subjective decisions will impact the results. In particular, the exact value of the

asymmetry parameter Axo depends on the location chosen for the inner and outer opening of a strait (to calculate a pressure

drop). Complex strait geometries typically make clear-cut choices difficult. Gimsøystraumen (5) is the strait which has the most
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Figure 11. The tracer transport efficiency T ∗p plotted against non-dimensional parameters Axo (a)
::::
Axo, L∗

:::::::::
representing

:::
flow

:::::::::
asymmetry,

:
(b)

:::
L∗,

:::::::::
representing

::::
strait

:::::
length

:
and AxoL∗ (c)

:::::
AxoL

∗,
:::::::::

combining
::
the

:::
two

:::::::::::::
non-dimensional

::::::::
parameters. Two estimates of Axo are shown for

Gimsøystraumen (5).

complex geometry, having two regions where the strait widens in the north (not shown). In Figure
:::
Fig.

:
11 we have therefore

shown two estimates ofAxo for this strait, based on pressure differences taken across these two distinct northern openings. The320

exercises suggest that Axo for this strait ranges from 0.8 to 5.5, where the latter value begins to approach the asymmetry of

Nappstraumen. We take the span of values in Gimsøystraumen as an upper bound for the general uncertainty inAxo. Raftsundet

also has a complex opening in the north, however, the length of this strait is the main limiting factor for net transports by tidal

pumping, and the result will not change notably due to the nonlinearity parameter. The uncertainty for the other straits, with

simpler geometries, is lower. Given this level of uncertainty, we therefore take the above calculations as clear indication that the325

transport efficiency through the various straits in Lofoten-Vesterålen are closely linked to the level of flow asymmetry caused

by flow separation, dipole and jet formation, and to the length of the straits relative to the tidal excursion.

3.2 Rectified tidal currents

The second nonlinear process to be assessed is the rectification of oscillating tidal currents around the islands off the southern

tip of Lofoten. Residual tidal currents encircling banks and islands have been observed in various places around the world,330

like the Norfolk islands and Georges bank (Huthnance, 1973; Loder, 1980). The key process, as outlined in the introduction,

appears to be net vorticity fluxes generated by vortex stretching and squeezing by oscillating tidal flow over sloping bottom

topography—in the presence of some irreversibility, like bottom friction.

In Lofoten, the distortion of the northward-propagating tidal waves produces particularly strong tidal currents across the

shallow ridge south of Lofotodden (Figure
:::
Fig. 4). Tidal rectification around the islands located here, Mosken, Værøy and335

Røst, seems likely. And indeed, a zoom in on on this region in Figure
:::
Fig.

:
12 reveals time-mean anticyclonic (clockwise)

circulation cells around the islands. There are two distinct circulation cells, one around Røst and another around Værøy-
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Mosken. The circulation cells reach speeds of about 0.2–0.25 m/s, which is similar in magnitude to observed background

currents in the region (Mork, 1981). In Moskstraumen, the model’s mean current speeds exceed 0.5 m/s, but the strongest flow

here is associated with a rectified anticyclone on the inside of that strait—an anticyclone we will return to later. Figure
:::
Fig.340

12 also shows the time-mean tracer field, revealing that the circulation cells advect low-concentration waters into Vestfjorden

northeast of the island groups and high-concentration waters out of the fjord on the southwest sides. Much
::
So

::::
even

::::::
though

:::::
much

of the net tracer transport is clearly associated with
:::::
south

::
of

:::::::::
Lofotodden

::
is

:::
due

:
the tidal pumping mechanism investigated above,

but transport of tracer out of Vestfjorden south of Røst is clearly mainly tied to the anticyclonic flow around this island.
::::
there

:
is
::::
also

::
a
::::::::::
contribution

::::::
driven

::
by

:::::::::::
anticyclonic

:::::
mean

:::::
flows

::::::
around

:::
the

::::::
islands

:::::
here.

::::
This

:::::::::
mechanism

:::::::
appears

::
to
:::
be

::::::::::
particularly345

::::::::
important

:::::
south

::
of

::::
Røst

::::::
where,

:
it
::::::
should

:::
be

:::::
noted,

:::::
there

:::
can

::
be

:::
no

::::::::
formation

::
of

::::::::::::::
self-propagating

:::::::
dipoles.

(a) (b)

Røst

Værøy
Mosken

Figure 12. Time-mean tracer concentration (a) and time-mean currents (b) around the southern tip of Lofoten near the end of the simulation.

Thin contours show the bottom topography.

3.2.1 Vorticity flux and residual currents

Before doing a quantitative analysis of these currents, we will review some of the relevant theory. One useful starting point

(following e.g. Zimmerman, 1978, 1981) is the vorticity balance derived from the shallow-water equations:

∂ξ

∂t
+∇ ·u(f + ξ) =−∇×

(τ b

H

)
, (9)350

where ξ =∇×u is relative vorticity, f is the Coriolis parameter, τ b is a bottom stress and H is the water depth. We have

neglected forcing by a surface wind stress and also, for simplicity, lateral viscosity. In the simplified treatment below we will

also only consider linear bottom friction, so that τ b =Ru. Finally, we will ignore the sea surface height contribution to the

water column thickness, i.e. apply the rigid lid approximation. Integration of (9) over the area bounded by a closed depth
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contour s, followed by the use of Stokes’ theorem, gives355

d

dt

∮
u · t̂ds+

∮
u(f + ξ) · n̂ds=− 1

H

∮
Ru · t̂ds, (10)

where t̂ and n̂ are unit vectors tangential (positive clockwise) and normal (positive outwards) to the contour. We now apply the

Reynolds decomposition to velocity and vorticity, splitting into means over a tidal cycle and perturbations from such means. If

considering the Coriolis parameter to be constant (a very good assumption for the scales considered here), then a time average

over a tidal cycle gives the approximate balance360

d

dt

∮
ū · t̂ds+

∮
u′ξ′ · n̂ds=− 1

H

∮
Rū · t̂ ds, (11)

where, as before, overbars indicate the time mean and primes perturbations from that mean. We have ignored a term involving

transport of mean vorticity by mean currents since this can be assumed to be small for oscillatory tidal forcing. Note that after

the time averaging, the time evolution left in (11) is over scales longer than the fast tidal oscillations. So the expression states

that a net Reynolds flux of vorticity out of a closed depth contour will cause an acceleration of anticyclonic flow around the365

contour (at time scales shorter than T ∼H/R) and, eventually, a time-mean anticyclonic flow which balances the vorticity flux

with bottom friction.

The total response to arbitrary forcing can be found by Fourier-transforming the above integral equation in time. The ex-

pression for each individual Fourier-component becomes∮
iωū · t̂ds+

∮
u′ξ′ · n̂ds=−

∮
Ru

H

Rū

H
:::

· t̂ds, (12)370

where, now, velocity and vorticity are functions of frequency rather than time. Depth H is constant along a closed s contour,

and if we assume that R is constant as well,
:
we get an expression for dynamic response of the mean circulation around the

contour:∮
ū · t̂ds=−

∮
u′ξ′ · n̂ds
R/H + iω

. (13)

So the prediction is a circulation whose magnitude is equal to the integrated vorticity flux scaled by |R/H + iω| and whose375

phase lag is φ= tan−1(ωH/R). The full response to forcing over a range of frequencies can then be found by solving (13)

for each frequency, followed by an inverse Fourier transform. The time-dependent problem is essentially an f-plane equivalent

to that of wind-driven closed-f/H variability studied by Isachsen et al. (2003), but with wind stress forcing replaced by lateral

vorticity fluxes.

The primary slow time scale variation in forcing for our problem is the spring-neap cycle. So ωsn = 2π/14.75 rad days−1.380

Using a typical value for bottom friction, R= 10−3 m s−1, and a depth
::
To

::::
test

:::
the

::::::
theory

::::
with

::::::
respect

::
to
::::

this
::::::::
variation

:::
we

::::::::::
additionally

::::
need

::
to

::::::
specify

:
a
:::::
depth

::::
level

:::
H

:::
and

:
a
:::::
linear

:::::::
friction

::::::::
coefficient

:::
R.

:::
Our

::::::::
FVCOM

:::::
model

::::
uses

::::::::
quadratic

::::::
bottom

:::::
drag,

:::
but

::
an

:::::::::
equivalent

:::::
linear

::::
drag

:::::::::
coefficient

:::
can

:::
be

:::::
found

::::
from

::::::::::
R= Cd|u|,:::::

where
:::::::::::
Cd = 0.0025

::::
(the

:::::
value

::::
used

::
in

:::
the

::::::
model)

::::
and

::
|u|

::
is
::
a

::::::
typical

::::::
current

:::::::
strength.

::::
We

::::::::
diagnosed

::::::
values

::
of

::::
0.29

::::
and

::::
0.23

:::::
m s−1

:::
for

:::
the

::::::
current

:::::::
strength

::::::
around

::::::::::::::
Mosken–Værøy
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Figure 13. Reynolds vorticity flux
:
is
::::::::
calculated

::::::
around

:::::
closed

:::::::::::
depth-contours

::::::::
encricling

::::
Røst

:
(
::::
black

::::::
curves)

:::
and

::::::
around

::::::::::::
Mosken-Værøy

:::::
(orange

::::::
curves)

:::::
shown

::
in
:::

the
:::
left

:::::
panel.

:::
The

::::
right

:::::
panel

:::::
shows

::
the

::::
time

:::::
series

:::
the

::::
mean

:::::::
Reynolds

:::::::
vorticity

:::
flux

:
(u′ξ′, dashed lines) out of

closed depth contours that wrap around Mosken-Værøy (orange) and around Røst (black), and azimuthal velocity (ūθ = ū · t̂, solid lines),

both averaged around the same closed contours. All quantities
:::::
shown

::
by

::::
thick

::::
lines

:
have been smoothed over four M2 cycles and also

averaged over a set of closed contours between 30 and 70 meters.
::
The

::::
thin

:::::
curves

::::
with

::::::
brighter

:::::
colors

::
in
:::

the
:::::::::
background

:::
are

::::::::
velocities

::::::
averaged

::::
over

:::
one

:::
M2

::::
tidal

::::
cycle.

:
Sea surface height fluctuations (gray thick line) over southern Lofoten are also shown.

:::
and

:::::
Røst,

::::::::::
respectively,

::::
and

::::
used

:::::
these

::
to

::::::::
calculate

:::::::::
equivalent

:::::
linear

:::::::
friction

::::::::::
coefficients.

:::::
Then

:::::
taking

::
a
::::::
typical

:::::
depth

::::::
where385

::
the

:::::
slope

::
is
:::::
steep,

:
H = 50m, we expect a

:::::::
calculate

:::::::::
theoretical

:
spin-up time of approximately

::::
times

:::
of

::::::::::::
approximately

::
21

::::
and

14 hours which corresponds to a phase lag φ of about
::::
0.39

:::
and

:
0.24 radiansor 14 degrees.

:
,
:::
for

:::::::::::::
Mosken–Værøy

::::
and

:::::
Røst,

::::::::::
respectively.

We now test these predictions on the time-mean flow cells observed around the islands near the tip of Lofoten. Figure

13 shows the Reynolds vorticity flux out of closed depth contours that wrap around Mosken–Værøy and around Røst. For390

each contour, a contour-averaged Reynolds flux has been calculated for each sequential M2 tidal cycle. The resulting time

series has then been low-pass filtered using a Hanning filter of width equal to four M2 cycles. Finally, for each island group

(Mosken–Værøy and Røst) an average has been made over several such closed contours. The calculation clearly reveals a

positive vorticity flux out of the contours (towards greater depths) at all times, and this flux is roughly in phase with the spring-

neap variations in sea surface height over the region (also shown). Finally, the figure shows the low-passed azimuthal velocity395

(tangent to a contour) averaged around the same sets of contours. The circulation is anticyclonic and thereby in agreement with

the sign of the vorticity flux.

However, the figure also reveals that the two circulation cells respond differently to the spring-neap cycle. The cell around

Røst is nearly in phase with the Reynolds flux forcing, with a phase delay of only about half a day—close to the theoretical

prediction. But the flow variability around Mosken-Værøy is more erratic and, on average, lagging the forcing by 9-10 days.400

The amplitude of the spring-neap flow variations around Mosken-Værøy is also smaller than that around Røst even though the

amplitude of the Reynolds flux forcing is larger. Taken together, these results indicate that the theory works well at describing

the slowly-evolving anticyclonic circulation around Røst but that additional dynamics must be considered to understand the

cell around Mosken-Værøy. We will return to this issue below but will first examine the underlying process that sets up the

vorticity flux through these closed depth contours.405
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3.2.2 The source of the vorticity flux

The direction of the vorticity flux may be understood by following a water column that moves periodically up and down a

topographic slope, driven by a large-scale tidal potential (Zimmerman, 1978, 1981). Substituting the shallow-water continuity

equation into (9) gives

D(f + ξ)

Dt
=

(
f + ξ

H

)
DH

Dt
−∇×

(
Ru

H

)
, (14)410

where D/Dt= ∂/∂t+u ·∇ is the total (Lagrangian) time rate of change experienced by the moving water column. Applying

the rigid-lid and f-plane approximations, assuming τ b =Ru and splitting up the friction term, gives

Dξ

Dt
=

(
f + ξ

H

)
u · ∇H +

R

H2
u×∇H − R

H
ξ, (15)

from which we can see that relative vorticity of the column has two source terms and one sink term. The first term on the

RHS is vorticity production due to stretching or squeezing of the water column by flow over uneven bottom topography. If415

f + ξ > 0 motion towards deeper (shallower) water induces positive (negative) relative vorticity perturbations. The second

term is production of vorticity due to flow along a sloping bottom and often referred to as a bottom friction torque. The last

term on the RHS is a loss of vorticity to bottom friction.

If we assume |ξ|. f (see e.g. Table 1 of Zimmerman, 1978), then the sizes of the two production terms are

(f + ξ)

H
u · ∇H ∼ fUh′

DL
,420

R

H2
u×∇H ∼ RUh′

D2L
,

where U is tidal current amplitude, D is mean water depth and h′ and L are the height and length scales of the topographic

feature. Comparing the magnitude
::
So

:::
the

:::::::
relative

::::
size of the two terms , using

:::::
scales

::
as

:::::::
fD/R.

::::::
Using typical values for

Mosken/Værøy
::::::::::::
Mosken-Værøy

:
and Røst (D ∼ 50m, R∼ 10−3 m s−1

::
as

:::::
above

::::::::::
(D ∼ 50m,

:::::::::::::::::::::::::::
R= 6 · 10−4 and 9 · 10−4 m s−1,

and f ∼ 10−4 s−1), gives fD/R∼ 5.
::::::::::::::
fD/R∼ 6 and 12

:::
for

::::::::::::::
Mosken-Værøy

:::
and

:::::
Røst,

:::::::::::
respectively.

:::::
Here,

:::
we

:::::
have

::::::
picked425

:
a
:::::
depth

:::::
value

::::::
which

::::::::::
corresponds

::
to

:::
the

:::::::
steeper

::::
parts

:::
of

:::
the

:::::
slope

::::::
(where

::::::::
vorticity

:::::::::
generation

:::
by

:::::
either

::::::::::
mechanism

:::
can

:::
be

:::::::
assumed

::
to

::
be

:::::
most

:::::::
relevant)

::::
and

:::::::
assumed

:::
that

:::
the

::::::::::
along-slope

::::
and

:::::::::
cross-slope

:::::::
velocity

::::::::::
components

:::
are

::
of

::::::
similar

::::::::::
magnitude.

:::
One

::::::
might

::::::::
intuitively

::::::
expect

:::
the

::::::::::
along-slope

:::::::::
component

:::
to

::
be

:::::
larger

::::
than

:::
the

:::::::::::
across-slope

::::::::::
component,

:::
but

:::::::
perhaps

::::::::
primarily

::
for

::::::::::::::
longer-timescale

::::::::::
(subinertial)

::::::::
motions.

::::::::::
Diagnosing

:::
the

:::::
model

:::::
fields

::::::
around

:::::::::::::
Mosken-Værøy

:::
and

:::::
Røst

::::::
showed

::::
that

:::
the

::::
ratio

:::::::
between

:::
the

:::
two

::
is
:::::

only
:::::
about

:::::::
1.2–1.4

:::
for

:::
the

::::
tidal

:::::::
motions

:::::::::
considered

::::
here

::::::::::
(calculated

:::
for

:::
the

:::::
depth

::::::::
contours

::
in

::::
Fig.

::::
13).430

This suggests that vorticity production by flow up and down topography is quite a bit larger than production by bottom friction

torque. If |ξ|> f
:::::
|ξ|> f

:
the production term by squeezing and stretching of the water column becomes increasingly larger

compared to production of bottom friction torque for the same depth. For simplicity we will therefore neglect
::::
Even

:::::::
though, the

latter term
:
is
:::
not

::::::::::
necessarily

:::::::::
negligible,

:::
we

:::
will

:::::
leave

:
it
::::
out

::
for

:
in the following , leaving

::
for

::::::::
simplicity

::::
and

::::::::::::
understanding

:::
the
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::::
main

::::::::
vorticity

:::::::::
production

:::::::
process,

::::::
which

::::
gives

:
the approximate expression435

Dξ

Dt
=

(
ξ+ f

H

)
u · ∇H − R

H
ξ (16)

=

(
ξ+ f

H

)
DH

Dt
− R

H
ξ, (17)

or, cast in terms of potential vorticity (PV),

D

Dt

(
f + ξ

H

)
=−R

H
ξ. (18)

In the absence of bottom friction, PV is conserved, and the relative vorticity of a water column will only be a function of440

depth (on the f-plane). So as the water column oscillates up and down a sloping bottom, it will gain just as much negative

(anticyclonic) vorticity on its way up the slope as it gains positive (cyclonic) vorticity on its way down the slope. The net

vorticity transport by the column across a given depth contour will therefore be zero. Crucially, friction changes this since the

column will then lose some negative vorticity over shallow waters and lose some positive vorticity over deep waters. Thus, on

passing any given depth contour the column will carry an excess of positive vorticity on its way towards deep waters and an445

excess of negative vorticity on its way towards shallow water. The end result is a transport of positive vorticity towards deep

waters. A simple sketch of the rectification process is shown in Figure
:::
Fig. 14 and a simplified mathematical model is offered

in the Appendix.

Figure 14. A sketch of mean-flow generation around a bank from oscillating flow across the bank topography. A water column oscillates up

and down topography, attaining negative vorticity on its way up the slope and positive vorticity on its way down due to vortex squeezing and

stretching, respectively. Bottom friction removes some negative vorticity from the column over shallow regions and some positive vorticity

over deep regions. A sustained oscillation, by a large-scale tidal potential, will hence be associated with a positive vorticity flux from shallow

to deep regions. The vorticity flux from many such columns is balanced by a mean anti-cyclonic circulation around the bank.

The net effect after integrating over the movement of many such water columns is a positive relative vorticity flux towards

deep regions. Hence, (11) predicts anticyclonic currents around a bank or island, and this is indeed what we observe in Figures450
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:::
Fig.

:
12 and

:::
Fig.

:
13. It is worth noting that the vorticity flux is down the large-scale background PV gradient qs = f/H. So

when we ignore Reynolds transport of layer thickness (in line with the rigid lid approximation), the process is qualitatively

consistent with the idea of potential enstrophy dissipation via a down-gradient PV flux (Bretherton and Haidvogel, 1976; Ou,

1999).

The magnitude of the rectified current depends on the steepness of the topographic slope and the strength of the cross-slope455

tidal oscillations (Zimmerman, 1978; Loder, 1980; Wright and Loder, 1985). From the scaling argument above we found that

the main driver of rectification is the generation of relative vorticity by advecting water columns up and down the bottom

topography. Thus, by identifying the regions of max potential for generation of relative vorticity by cross-slope tidal currents,

we can identify the areas where tidal rectification is to be expected. To look at this we ignore the effect of bottom friction,

leaving460

Dξ

Dt
=
f + ξ

H

DH

Dt
. (19)

Hence, the relative vorticity change ξ′ experienced by a water column forced across variable topography scales as

ξ′ =
f + ξ0
H0

h′, (20)

where ξ0 and H0 are initial vorticity and depth, respectively, and h′ is the topographic variation. If we assume a constant

bottom slope α
:::::::
∆H = α, then h′ = αL where L is the lateral excursion of the water column. A topographic length scale465

::::::::::::
LB =H0/∆H:

can then be defined as that which gives a depth excursion equal to the initial depth, or H0 = αLB . By (20),

such an excursion would produce the maximum relative vorticity deviation and hence the maximum potential for rectified

currents. The actual lateral excursion experienced by parcels is given by the tidal excursion LT =
∫
u · n̂dt where, again, n̂

points down the topographic gradient and where the integral is taken over half a tidal cycle. Thus, h′ = αLT . If LT � LB then

vorticity chances
::::::
change will be small since the full potential for stretching/compression is not utilized. And if LT � LB then470

the net vorticity changes
::::::
change integrated over half a tidal cycle will likely also be small due to sign reversals as the column is

advected up and down topographic ’bumps’. Intuitively then, and as verified numerically by Zimmerman (1978), one expects

that the largest potential for the generation of rectified currents where LT ∼ LB (see also Loder, 1980; Polton, 2015).

The ratio between time-mean LT and LB off the tip of Lofoten is shown in Figure
:::
Fig.

:
15. The topographic scale LB

has been calculated from bathymetric data and the tidal excursion LT has been estimated using the mean M2 tidal current475

amplitudes across topography. The figure also shows the time-mean flow, and there is clear indication that the rectified currents

around Mosken-Værøy and around Røst are most pronounced where LB/LT & 1. We take this as supportive evidence that the

rectified currents around these islands are driven by oscillating flows over topography subject to weak bottom friction. Figure

16 shows the strength of the rectified currents around the above-studied closed H-contours as a function of LT /LB , where LT

is now allowed to vary as a function of time (i.e. with the spring-neap cycle). Around Røst residual currents attain a maximum480

for LT /LB ∼ 1.75, with declining strengths for both smaller and larger values of the ratio. This is in agreement with theory. In

contrast, the plot does not show any optimal value of LT /LB for the flow around Mosken-Værøy. The residual current strength

here instead decreases monotonically with larger values of the ratio. As we will see next, the reason for the anomalous behavior

around these islands turns out to be finite-amplitude non-linear effects.
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Figure 15. The ratio LT /LB around southern Lofoten. Arrows show the time-mean rectified flow while black contours show bottom topog-

raphy.

3.2.3 Non-linear dynamics around Mosken-Værøy485

The sign of the residual currents around Mosken-Værøy is in agreement with the sign of the Reynolds vorticity flux across

the closed depth contours there. But, as seen above, the time variability does not correlate trivially with the spring-neap

variations in the vorticity flux. So additional dynamically
::::::::
dynamical

:
processes must be at play here and, as indicated by Figure

:::
Fig.

:
12, a semi-persistent anticyclone southeast of Moskstraumen is likely the culprit. During each ebb tide, when the flow

entering Vestfjorden through Moskstraumen separates from the coastline, a dipole is formed, as seen in Figure
:::
Fig. 8. After490

flow reversal, the cyclonic half of the dipole is typically drawn back into Moskstraumen whereas the anti-cyclonic vortex

remains on the southeastern side of the strait. The position of the anticyclone varies somewhat over time, but it is consistently

strengthened by new vortex formation during each ebb phase.

Figure 17 shows streamlines of the time-mean flow in the vicinity of Mosken-Værøy. The streamlines that wrap around these

two islands generally follow depth contours. But the anticyclone east of Mosken is strong enough to break topographic steering495

in the northeast. Streamlines that encircle the island group detach from topography just north of Mosken to wrap around the
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Figure 16. The strength of the rectified tidal currents around Røst (black dots) and around Mosken and Værøy (organge dots) are plotted

against the ratio LT /LB averaged around closed depth contours. Each dot correspond to a time mean velocity averaged over one tidal

cycle. The bright thicker lines show the mean values of the residual tidal current corresponding to a given value of LT /LB +/- 0.1. Shading

indicates one standard deviation around the mean.
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Figure 17. Close-up of the flow field around around Mosken-Værøy. The left panel shows time-mean streamlines (gray contours with arrow

heads) as well as a set of depth contours that wrap around the island group (orange contours). The right panel shows the Reynolds vorticity

flux (dashed black line) through one closed streamline which wraps around the island group and the anticylone east of Mosken (thick black

contour in left panel). Also shown is the circulation around the same contour (solid black line) as well as the circulation along an incomplete

depth contour south and west of the island group (orange solid line). The sea surface height variation is shown with thick light gray line.

anticyclone. The closed depth contours around Mosken-Værøy thus pass through the southwest flank of the anticyclone, so

that currents from the vortex are here in the opposite direction compared to the rectified currents along the rest of the contours.

In essence, the strong anticyclone has deformed the geostrophic contours guiding the time-mean flow, and the integral

analysis of (13) needs to follow this modified path. Figure 17 shows the vorticity flux and circulation around a streamline that500

wraps around the island group and the anticyclone. Following this modified integration path shows that the circulation cell is

indeed in near-phase with the Reynolds flux forcing. The figure also shows the average azimuthal velocity integrated along

an incomplete stretch of the original depth contours, south and west of the island group. The flow here is also in near phase

with the spring-neap variations. So the circulation cell around the island group is forced by Reynolds vorticity fluxes, by the
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mechanism outlined above. But the strong nonlinearity in Moskstraumen makes the dynamics more complex than around the505

island of Røst to the south.

4 Summary and conclusions

While the tides in Lofoten-Vesterålen are well known to be strong and vigorous, dominating the short-term ocean dynamics,

particularly in straits and around topographic features (Gjevik et al., 1997; Moe et al., 2002), their contribution to long-term

transport has gained relatively little attention. The one notable exception is Moskstraumen which is recognized as one of the510

main transport routes out of Vestfjorden (Ommundsen, 2002; Vikebø et al., 2007; Opdal et al., 2008; Lynge et al., 2010). Our

unstructured-grid tidal simulations of the entire Lofoten-Vesterålen region confirms
::::::
confirm

:
that Moskstraumen and, more

generally, the region off the southern tip of the Lofoten archipelago is indeed the primary location for tidal dispersion in this

key spawning region for the Northeast arctic
:::::
Arctic

:
cod. The main focus of this study, however, has not been quantification of

transport but rather the identification of the underlying nonlinear dynamics responsible for dispersion and transport.515

The flexible model grid, and the ability it offers to increase resolution in key regions, allowed us to confirm that tidal

pumping, caused by flow separation and vortex dipole formation at the openings of the many straits in Lofoten-Vesterålen,

is a near-ubiquitous process here. But not all straits are created equal
:::::::
geometry

::::
and

::::
flow

:::::::::
conditions

::::::
around

:::::
each

:::::
strait

:::
are

:::::::
different,

::::
and

:::
the

:::::
tracer

:::::::
transport

::::
due

::
to

::::
tidal

::::::::
pumping

:::::
varies

::::::
greatly. Strong non-linearity due to high flow speeds and abrupt

strait openings, as well as short strait lengths, appears to be the explanation for why Moskstraumen and Nordlandsflaget have520

the highest tidal transport efficiencies in the region. The longer straits further north all have lower pumping efficiencies. But

notable pumping also takes place in Nappstraumen and Gimsøystraumen.

::::
Tidal

:::::::::
pumping,

::::::::::
particularly

::
in

:::::::
relation

::
to
:::::

tidal
:::::::
flushing

:::
of

:::::::
estuaries

::::
and

:::::::::
near-shore

::::::::
regions,

::::
have

:::::
been

::::::
widely

:::::::
studied

::::::::
elsewhere.

:::::::::
Certainly,

:::
the

:::::::::
formation

::
of

::::::
dipole

:::::::
vortices

::
is

::::::::
observed

:::::
many

::::::
places

:::::
where

:::::::::
prominent

:::::
tidal

:::::::
currents

:::
exit

:::::::
narrow

:::::
straits,

:::
for

:::::::
example

::
in

:::::::
Aransas

::::
Pass

::::::
(USA),

:::::::
Messina

:::::
Strait

:::::
(Italy)

:::
and

:::
the

:::::
Great

::::::
Barrier

::::
Reef

:::::::::
(Australia)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Whilden et al., 2014; Cucco et al., 2016; Delandmeter et al., 2017)525

:
.
::::::::::::::::
Cucco et al. (2016)

::::
show

::::
that

:::
the

::::::
strong

::::
tidal

::::::::
currents

:::
and

::::::::::
subsequent

::::::::
pumping

::
is

::::::::
important

:::
for

::::::
water

::::::::
exchange

::::
and

:::
for

::::::::
modifying

:::
the

:::::::::::
thermohaline

:::::::::
properties

::
in

:::
two

:::::
large

:::::::::
sub-basins

::
of

:::
the

:::::::
Western

::::::::::::
Mediterranean

::::
Sea.

:::
We

::::
thus

:::::::
consider

::
it

:::::::
possible

:::
that

::::
tidal

::::::::
pumping

::
in

:::::::
Lofoten

::::
and

:::::::::
Vesterålen

:::
not

::::
only

::::::::::
contributes

::
to

::::::::
transport

::
of

:::::::::::
dynamically

::::::
passive

::::::::
particles

::::
such

::
as

::::
cod

::::
eggs

:::
but

::
is

::::
also

:::::::::
important

:::
for

:::
the

::::::::
transport

::
of

:::::::::
freshwater

::::
out

::
of

:::
the

:::::
large

::::::::::
Vestfjorden

:::::::::::
embayment,

::::::
thereby

::::::::::
modifying

:::
the

:::::::::::
thermohaline

::::::::
properties

::::
here.

:
530

Our simulation also revealed non-linear rectification of tidal oscillations, leading to the generation of time-mean anticyclonic

circulation cells around the island groups of Mosken-Værøy and Røst off the southern tip of the archipelago. From our knowl-

edge, tidal rectification in southern Lofoten has neither been investigated nor recognized before. But the observed rectification

in our model
:::::
results seems to be in agreement with well-established theory of vorticity fluxes driven by cross-topographic tidal

oscillations in the presence of bottom friction. The model predicted rectified current speeds up to 0.3–0.4 m/s, values that are535

comparable with observed background currents in this region. The circulation cell around Røst appears to be a particularly

important and hitherto unknown mechanism for tracer transport around the southern tip of the archipelago.
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:::
We

:::
find

::::
that

:::
the

:::::::
potential

:::
for

::::
tidal

::::::::::
rectification

:::
can

::
be

::::::::
evaluated

:::::::
through

:::
the

:::::::
relation

:::::::
LT /LB ,

:::::
where

::::::
values

::::
near

:::
one

:::::::
indicate

::::::::
prominent

::::::::::
rectification

::::::::::::
(Loder, 1980)

:
.
:::
The

:::::::
residual

::::::::
currents

::::::
around

:::
the

:::::
island

::::::
groups

:::
in

:::::::
southern

:::::::
Lofoten

::::
thus

::::::
appear

::
to

:::
be

:::::::
governed

:::
by

::::::::
dynamics

::::::
similar

::
to

::::
what

::
is

:::::::
observed

::::::
around

:::::::
Georges

::::
bank

::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Loder, 1980; Limeburner and Beardsley, 1996; Chen et al., 2001)540

:
.
:::::
There,

:::
the

:::::::
residual

:::::::
currents

:::::::::
encircling

:::
the

::::
bank

:::
in

:
a
:::::::::
clockwise

::::::
fashion

:::
are

::
of

:::::::
similar

:::::::
strength

::
as

:::
the

::::
flow

:::
we

::::::
model

::::::
around

::::
Røst

:::
and

:::::::::::::
Mosken/Værøy

:::::::
(0.2–0.3

:::::
m/s).

:::::
Using

:::
the

:::::
values

::::::::
provided

::
in

:::::
Table

:
1
::
in

:::::::::::
Loder (1980)

:
,
::
we

::::
find

:::
that

:::
on

:::
the

:::::::::::
northwestern

:::
and

:::::::
northern

::::
side

::
of

:::::::
Georges

:::::
Bank

:::::::::::
LT /LB ∼ 1,

::::::::
equivalent

::
to
:::::
what

:::
we

:::
find

:::
for

:::
the

::::::
islands

::
of

::::::::
southern

:::::::
Lofoten.

:

The nonlinear tidal dynamics studied here, particularly flow separation and dipole formation, occurs on small spatial scales.

In studying idealized model simulations of tidal pumping, Nøst and Børve (2021) found that a grid resolution of 50 m along the545

coast was necessary to realistically capture flow separation in the viscous boundary layer, but maybe not sufficient to properly

resolve the vortices that form at the separation point. More specifically, the study showed that the vortices consistently formed

near the smallest scale that could be resolved by that model. Lynge et al. (2010) also found that particle dispersion in realistic

model simulations of Moskstraumen was highly sensitive to grid resolution and that a resolution of 50–100 m was needed for

obtaining what they reported to be realistic dispersion rates.
:::
This

::
is

::
in

::::
line

::::
with

:::::
results

::::::::
reported

::
by

::::::::::::::::::::::
Delandmeter et al. (2017)550

:::
who

:::::::::
simulated

:::::
dipole

::::::::
formation

:::::::
through

:::::
straits

::::::
cutting

:::::::
through

:
a
:::
line

::
of

::::::
islands

::::::::
separated

:::
by

:::
1–2

::::
km,

::
i.e.

::::::
straits

::::
with

:::::::::
geometries

:::::::::
comparable

:::
to

::::::::::::
Moskstraumen

::::
and

::::::::::::::
Nordlandsflaget.

:::
The

:::::::
authors

:::::::
modeled

:::
the

:::::
flow

:::::
using

::::
grid

:::::::::
resolutions

:::
up

::
to

::
50

:::
m,

::::::
which

::::::
largely

:::::::
captured

:::
the

::::
eddy

::::::::
formation

::::
and

::::
flow

::::::
pattern.

:
In our unstructured-grid model most of the straits had a grid resolution of

30–50 m near the coastline, so the underlying mechanisms of flow separation and vortex formation were fairly well resolved.

However, due to computational constraints we had to decrease the resolution considerably away from the straits and coastlines.555

So since the properties and behavior of the dipoles might be influenced by grid resolution along their travel path, we expect our

simulations as well to be hampered by resolution issues. Thus, we refrained from making quantitative estimates of transport

parameters like relative dispersion and lateral diffusivities, which are known to be sensitive to model resolution (Geyer and

Signell, 1992; LaCasce, 2008; Lynge et al., 2010).

Our simulations were also limited by their 2D nature. A 2D configuration was chosen to help isolate nonlinear lateral tidal560

dynamics, but the model was thus unable to account for baroclinic effects, e. g. the possible
:
.
::::
Such

::::::
effects

::::::
include

:::
the generation

of hydraulic jumps and vertical mixing around strait openings (Lynge et al., 2010)or ,
:

the establishment of density fronts

around the rectification cells (Ou, 2000) . In
:::
and

::::
also

::::::
bottom

::::::::::::
intensification

::
of

::::
such

:::::::
rectified

::::::
flows,

::::
with

::::::::::
concomitant

:::::::
vertical

:::::::::
circulation

::::
cells

::::::
around

::::::
banks

:::
and

::::::
islands

::::::::::::::::::::::::::::::::::::::::::::::
(Maas and Zimmerman, 1989; White et al., 2005, 2007).

::::
So,

::
in

:
reality, baroclinic

flow dynamics will
:::
also

:
impact tracer transport, both vertically and laterally. But

::::
some

:
key features of the model’s lateral flow565

dynamics appears
:::
still

::::::
appear

:
to be robust. Flow separation and dipole formation in Moskstraumen, for example, is largely

in agreement with observational evidence, seen e.g. in satellite data (Figure
:::
Fig. 2). The suggestion that there are anticyclonic

time-mean currents around the island groups of Mosken-Værøy and Røst, generated by tidal rectification, is however worthy

of a new and dedicated observational study.

Notwithstanding model limitations, the present study supports previous claims that tides are an important contributor to the570

transports of
::::::
drifting

::::::::
material,

:::
and

::
in
:::::::::

particular Northeast Arctic cod eggs and larvae,
:
out of Vestfjorden. Even if the main

transport routes due to tides coincide with transport routes following the mean flow, i.e. through Moskstraumen and south
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of Røst, the net transport could potentially be significantly enhanced when nonlinear tidal dynamics are present. In truth,

the connectivity between the inner and outer shelf likely relies on the interaction between tidal dispersion and transport by

the time-mean currents (Ommundsen, 2002). Additionally, our study suggests that tidal pumping through straits further north575

along the archipelago, in particular Nappstraumen and Gimsøystraumen, could provide alternative transport routes to the shelf.

In an on-going study, we analyze 3D unstructured-grid simulations driven by realistic atmospheric, river and lateral boundary

forcing. The aim there is to investigate the relative importance of tidally-induced transport of cod eggs and larvae compared

to, or in combination with, other transport processes in this region. The more realistic 3D study will hopefully also add to the

general understanding of the role of nonlinear tidal dynamics in similar coastal regions, with the ultimate aim of providing580

more accurate transport estimates of fish eggs and larvae, as well as pollutants, nutrients and other properties that affect the

coastal ecosystem.

Data availability. Data is available on request

Appendix A: A one-dimensional model of tidal rectification

We consider the Lagrangian time evolution of a water column subject to linear bottom friction:585

D

Dt

(
f + ξ

H

)
=− 1

H
∇× Ru

H
. (A1)

For simplicity we will assume that the RHS is dominated by velocity gradients, giving

D

Dt

(
f + ξ

H

)
=− R

H2
ξ. (A2)

As formally laid out by e.g. (Zimmerman, 1978), we now consider the situation where the column is forced to move up and

down topography by tidal currents that are dictated by remote dynamics. Thus, H =H(t) is specified. The relative vorticity590

ξ however is assumed to be a local response to the vortex compression/stretching by this movement across topography and to

the effects of friction.

Equation (A2) can be written out to give a first-order ordinary differential equation:

Dξ

Dt
−
(

1

H

DH

Dt
− R

H

)
ξ =

f

H

DH

Dt
. (A3)

This takes the form of a forced equation for ξ with damping, where the damping coefficient is non-constant. We now define595

p(t) =
1

H

DH

Dt
− R

H
, (A4)

and multiply (A3) by exp
(
−
∫
p(t)dt

)
= exp

(∫
R/H dt

)
/H before integrating in time. The expression becomes (after ap-

plying integration by parts to both sides):

t∫
0

D

Dt

(
ξ

H
e
∫
R/Hdt

)
dt=−

t∫
0

D

Dt

(
f

H
e
∫
R/Hdt

)
+

t∫
0

fR

H2
e
∫
R/Hdt dt, (A5)

30



and the solution is600

ξ(t) = (ξ0 + f)
H

H0
e−

∫ t
0
R/Hdt︸ ︷︷ ︸

T-I

−f

1−RHe−
∫ t
0
R/Hdt

t∫
0

1

H2
e
∫ t
0
R/Hdt dt


︸ ︷︷ ︸

T-II

, (A6)

where ξ0 and H0 are the relative vorticity and bottom depth at t= 0. Here
:
,
:
terms T-I describe an exponentially-decaying

adjustment from the initial state, whereas terms T-II describe a part of the solution which achieves statistical equilibrium with

the forcing. After a few tidal cycles exp
(
−
∫ t

0
R/H dt

)
→ exp(−rt) , where r is an inverse time scale for the adjustment

from initial to steady state. As seen, this spin-up time scale depends on the friction coefficient and the bottom depth variations605

experienced by the column.

We now evaluate (A6) numerically for a very simplified configuration consisting of forced flow over a linear topography,

i.e. for H =H0−αr(t), where α is the bottom slope and r(t) is the cross-slope excursion from r(t= 0) where H =H0.

For added simplicity we assume a sinusoidal cross-slope tidal current, vr(t) =Acos(ωt) for tidal amplitude A and frequency

ω, so that H(t) also becomes sinusoidal. A solution, for parameter choices ξ0 = 0, H0 = 500m, α= 0.1, A= 0.5ms−1,610

ω = 1.4× 10−4 rads−1 (M2) and R= 0.003ms−1, is shown in Figure
::::
Fig. A1. The relative vorticity of the water column

reaches a statistically-steady state after about 10 tidal periods (about 5 days for M2 tidal forcing), this corresponding to 2–3

e-folding scales. The column then has positive and negative relative vorticity over deep and shallow parts, respectively. The

amplitude is largest over deep parts due to the inverse dependence of depth in the friction term (see eqn. A2). Interpolating

this vorticity field to mid-depth (H =H0) and taking the product of the velocity gives the Eulerian vorticity flux. The result is615

shown in Figure
:::
Fig. A2 for two choices of bottom friction R and five choices of initial vorticity ξ0. The initial vorticity flux

can be up or down the slope, depending on ξ0. But after the initial adjustment period (which depends inversely on R), the end

result is always a positive vorticity flux towards deep water. The magnitude of the flux is linearly proportional to R, as can be

deduced from (A6).
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Figure A1. Vorticity evolution of a water column forced to oscillate over a linear bottom slope, for ξ0 = 0, H0 = 500m, α= 0.1, A=

0.5ms−1, ω = 1.4×10−4 rads−1 (for M2) and R= 0.003ms−1. The red line is the transient solution (terms T-I in eqn. A6), the blue line

is the statistically-steady solution (terms T-II) and the black line is the full solution.
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Figure A2. Vorticity flux averaged over an integral number of tidal period as a function of time, for the solution of (A6). Positive values

indicate a vorticity flux towards deep waters. The left and right panels show results for R= 0.003m/s and R= 0.0015m/s, respectively,

starting from five different initial vortices ξ0. The other parameters are as in Figure A1.
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