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Abstract. Oceanographic fronts are transitions between thermohaline structures with different characteristics. Such transitions

are ubiquitous, and their locations and properties affect how the ocean operates as part of the global climate system. In the

Southern Ocean, fronts have classically been defined using a small number of continuous, circumpolar features in sea surface

height or dynamic height. Modern observational and theoretical developments are challenging and expanding this traditional

framework to accommodate a more complex view of fronts. Here we present a complementary new approach for calculating5

fronts using an unsupervised classification method called Gaussian mixture modelling (GMM) and a novel inter-class pa-

rameter called the I-metric. The I-metric approach produces a probabilistic view of front location, emphasising the fact that

the boundaries between water masses are not uniformly sharp across the entire Southern Ocean. The I-metric approach uses

thermohaline information from a range of depth levels, making it more general than approaches that only use near-surface

properties. We train the GMM using an observationally-constrained state estimate in order to have more uniform spatial and10

temporal data coverage. The probabilistic boundaries defined by the I-metric roughly coincide with several classically-defined

fronts, offering a novel view of this structure. The I-metric fronts appear to be relatively sharp in the open ocean and somewhat

diffuse near large topographic features, possibly highlighting the importance of topographically-induced mixing. For compar-

ison with a more localised method, we also use an edge detection approach for identifying fronts. We find a strong correlation

between the edge field of the leading principal component and the zonal velocity; the edge detection method highlights the15

presence of jets, which are supported by thermal wind balance. This more localised method highlights the complex, multi-scale

structure of Southern Ocean fronts, complementing and contrasting with the more domain-wide view offered by the I-metric.

The Sobel edge detection method may be useful for defining and tracking smaller-scale fronts and jets in model or reanal-

ysis data. The I-metric approach may prove to be a useful method for inter-model comparison, as it uses the thermohaline

structure of those models instead of tracking somewhat ad-hoc values of sea surface height and/or dynamic height, which can20

vary considerably between models. In addition, the general I-metric approach allows front definitions to shift with changing

temperature and salinity structures, which may be useful for characterising fronts in a changing climate.
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1 Introduction

The Southern Ocean (SO) is at the centre of the global thermohaline circulation, joining the Indian, Pacific, and Atlantic oceans25

into a single planetary-scale heat and carbon transport system (Marshall and Speer, 2012; Talley, 2013). In the SO, upwelling

and downwelling branches of the overturning circulation transport water and tracers (e.g. heat, carbon) between the surface

and subsurface oceans (Sallee et al., 2010, 2012). The steeply tilted isopycnals associated with the overturning circulation

also support the powerful Antarctic Circumpolar Current (ACC), with a mean combined barotropic and baroclinic volume

transport of roughly 173.3± 10.7 Sv, driven by a combination of the westerly winds and air-sea buoyancy forcing (Rintoul30

et al., 2001; Morrison et al., 2015; Donohue et al., 2016). In part because of its unique structure, the SO is a critical regulator

of global climate, having thus far absorbed more than 75% of the excess energy and 50% of the excess carbon added to the

climate system from anthropogenic emissions (Mikaloff-Fletcher et al., 2006; Frolicher et al., 2015). As such, the thermohaline

structure of the Southern Ocean may be considered an important climate system parameter, as it affects how heat and carbon

are partitioned between the atmosphere and ocean.35

Through decades of observational and theoretical effort, the global oceanographic community has curated a detailed theo-

retical understanding of the structure of the Southern Ocean. One of the hallmarks of this view is the presence of fronts, i.e.

transitions in temperature, salinity, and/or biogeochemical properties (Deacon, 1937; Orsi et al., 1995). Although fronts are

not identical to the sharp jets found in the SO, fronts and jets at the mesoscale share a close relationship partly due to thermal

wind balance (Sokolov and Rintoul, 2002, 2009). Traditionally, oceanographers have defined SO fronts using a small number40

of continuous, circumpolar features that follow contours of sea surface height or dynamic height (Kim and Orsi, 2014). How-

ever, satellite altimetry shows that the ACC features a braided and meandering structure that is not necessarily reflected in the

traditional, time-averaged view of fronts as continuous property contours (Chapman, 2017; Mackie, 2018). Using individual

property contours to define fronts, for example, contours of temperature or sea surface height, is somewhat limited by the

fact that such contours do not always line up with the locations of strong gradients (Thompson et al., 2010; Thompson and45

Sallée, 2012; Graham et al., 2012; Chapman, 2017). In response to more detailed SO observations, the global oceanographic

community has been developing a variety of new approaches for defining and tracking fronts in more application-specific ways

(Chapman et al., 2020). For example, coastal applications and open ocean applications may benefit from conceptually different

treatments of ocean fronts, which are characterised by different spatial and temporal scales. For a historical view and summary

of advances in the area of front definition and detection, see the recent review article by Chapman et al. (2020).50

In order to help us broaden our view of Southern Ocean fronts, we look to a branch of machine learning called unsupervised

classification (also known as clustering). Broadly speaking, unsupervised classification attempts to identify sub-populations in

data distributions that have not already been labelled or sorted. Although such methods have existed for decades, the amount of

SO data has only in recent years become large enough for clustering approaches to be suitable; the application of unsupervised

classification to oceanographic data is in its infancy. Several recent studies have used unsupervised classification to identify55

coherent regimes of thermohaline structure and the transitions between them, specifically in the North Atlantic (Maze et al.,

2017), Southern Ocean (Jones et al., 2019), and Indian Sector of the Southern Ocean (Rosso et al., 2020). These methods have
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also been used to define coherent dynamical and biogeochemical regimes from depth-averaged ocean structure (Sonnewald

et al., 2019; Le Bras et al., 2019; Jones and Ito, 2019). Recently, unsupervised classification has been used to define coherent

ecological regimes from physical and biogeochemical data (Sonnewald et al., 2020). Researchers are also exploring potential60

connections between changes in class properties and large-scale climate phenomena. For example, a recent study tied evolution

in the longitudinal extent of an algorithmically-defined class to the onset of El Niño, suggesting that unsupervised classification

methods could complement existing index-based assessments of large-scale climate modes (Houghton and Wilson, 2020).

Unsupervised classification does not use specific property contours to define boundaries between thermohaline structures,

so it avoids one of the fundamental limitations of many traditional front definition approaches. Given the required information,65

unsupervised classification methods can use more detailed thermohaline data from throughout the water column to define

classes and their boundaries. Across a given front, one might expect to find not only a transition in surface values but also

a change in the thermohaline structure, as indicated by a change of profile class with latitude and/or longitude. In this work,

we use an unsupervised classification technique called Gaussian mixture modelling (GMM), which attempts to represent sub-

populations in the data distribution using multi-dimensional Gaussian functions. Because GMM is a probabilistic method, in70

addition to automatically clustering the thermohaline profiles into classes, it returns for each data point a set of weights across

the different classes. That is, it returns a probability distribution that can be exploited to define boundaries between coherent

regimes in a novel way. In this paper, we propose that GMM can be used to represent the boundaries as “fuzzy" regions, which

reflects the fact that not all transitions in the SO are uniformly sharp.

In Sect. 2, we introduce the observationally-constrained state estimate from which we draw our temperature and salinity data75

(Sect. 2.1), discuss principal component analysis (PCA) for dimensionality reduction (Sect. 2.2), and cover our application of

GMM (Sect. 2.3). We then define the inter-class comparison metric (i.e. the I-metric) that we use to quantify water mass

boundaries (Sect. 3.1). Next, we apply the I-metric to the reduced-dimension state estimate data (Sect. 3.2). For comparison,

we contrast this method with a more local front-detection approach (Sect. 3.4). Finally, we discuss some caveats (Sect. 4) and

offer our summary and conclusions (Sect. 5).80

2 State estimate data, PCA, and unsupervised classification

Our front identification method uses a combination of principal component analysis, unsupervised classification, and a new

probabilistic metric to quantify the boundaries between coherent thermohaline structures. First, we describe the dataset that we

used for developing and training our method.

2.1 The Southern Ocean State Estimate85

We developed our method using the Biogeochemical Southern Ocean State Estimate (B-SOSE) (Verdy and Mazloff, 2017).

B-SOSE is an observationally-constrained numerical simulation created using MITgcm [mitgcm.org] (Marshall et al., 1997a,

b) and a suite of Southern Ocean observations, including Argo float data, ship track data, and satellite data. B-SOSE is part

of the ECCO suite of state estimates [ecco-group.org/], which includes a variety of global and regional products covering
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a range of multi-year to multi-decadal time periods. Examples of other state estimates include the physics-only Southern90

Ocean State Estimate (SOSE) and the global ECCOv4 state estimate (Mazloff et al., 2010; Forget et al., 2015). We chose

to develop our method using a state estimate because such products offer (1) uniform coverage in latitude, longitude, and

time and (2) relatively high fidelity with respect to observations. We chose B-SOSE, in particular, because it represents the

Southern Ocean using a spatial resolution of 1/6◦, which is eddy-permitting in the latitude range of the ACC, enabling a

realistic representation of mesoscale eddy structure (Hallberg, 2013a). We expect that training our model on the physics-only95

SOSE would produce similar results, although we did not attempt that here. In principle, our methods can be readily applied

to any gridded temperature and salinity profile dataset. It may be possible to apply these methods to in-situ data as well, if

the user addresses the problem of non-uniform spatial and temporal sampling. In this paper, we focus only on applications to

gridded datasets.

To construct a state estimate, researchers bring a numerical simulation into better consistency with an observational dataset100

using the 4DVAR method. This method uses adjoint sensitivities to calculate the required changes in the “controls" (e.g.

initial conditions, mixing parameters, boundary conditions) needed to improve the agreement between the simulation and the

observational dataset (Stammer et al., 2002; Wunsch and Heimbach, 2007).

The B-SOSE domain extends from the equator to 78◦S, but we only use data south of 30◦S to focus on the Southern Ocean

and to avoid the model boundary. It uses bathymetry and coastline based on Amante and Eakins (2009). B-SOSE solves the105

heat, salt, and momentum equations using a third-order direct space and time advection scheme with a 1-hour timestep. The

time-evolving atmospheric boundary conditions use bulk formulae to solve for fluxes of heat, freshwater, and momentum,

with six-hourly atmospheric state variables as inputs (Large and Yeager, 2009; Dee et al., 2011). The state estimation process

iteratively adjusts the atmospheric state variables and oceanic initial conditions to improve model-data agreement. B-SOSE

uses dynamic sea ice (Losch et al., 2010; Fenty and Heimbach, 2013). For vertical mixing, it uses the GLL90 mixed layer110

parameterization (Gaspar et al., 1990). It also uses horizontal and vertical viscosity and diffusivity. River runoff comes from

the product of Dai and Trenberth (2002) augmented with an estimate of Antarctic freshwater input from iceberg and ice sheet

melting (Hammond and Jones, 2016). It does not include mesoscale eddy parameterization, as this particular configuration

falls into the horizontal resolution range wherein mesoscale parameterization may actually worsen the representation of the

mesoscale (Hallberg, 2013b). Because we are interested in quantifying physical, large-scale fronts, we only used monthly115

mean temperature and salinity data. Also, because we are not interested in the surface seasonal cycle at present, we only used

temperature and salinity data between 300-2000 m, following Rosso et al. (2020). We used the whole period of iteration 106

of this state estimate, which covers January 2008 to December 2012. Some key properties of B-SOSE iteration 106 are listed

in Table 1. For further details, see Verdy and Mazloff (2017).

2.2 Principal component analysis120

Each vertical profile in the full B-SOSE dataset is comprised of temperature and salinity values at multiple depth levels, at every

grid cell and every output month. Values close to each other in the water column are correlated to some degree. Therefore, we do

not necessarily need values of T and S at every depth level to capture most of the variability, and reducing the dimensionality
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Property Value

State estimate iteration number 106

Horizontal resolution 1/6◦

Vertical resolution (variable) 4.2 m to 400 m

Number of vertical levels 52

Output frequency Monthly averaged

Horizontal viscosity 10 m2s−1

Vertical viscosity 10−3 m2s−1

Horizontal diffusivity 10 m2s−1

Vertical diffusivity 10−4 m2s−1

Table 1. Selected properties of B-SOSE iteration 106. Output frequency refers to the output selected for this study.

of the data can improve the convergence of the training process. One specific dimension reduction technique is Principal

component analysis (PCA), which identifies the functions that capture most of the variability with depth in the dataset. The125

result is a representation of the dataset as a linear combination of eigenfunctions (i.e. principal components), sometimes called

a principal component expansion or principal component decomposition. Using this procedure, we can describe each profile

using a small set of eigenvalues (i.e. coefficients of the principal component expansion) instead of a full set of temperature

and salinity values. In addition to improving the speed and efficiency of the GMM algorithm, PCA reveals potential physical

structures that may be useful for understanding the stratification of the SO (Pauthenet et al., 2017). We choose the number130

of principal components such that the percentage of variability explained (in a statistical sense) by the PCA expansion is

sufficiently high for our purposes.

Following Rosso et al. (2020), we only keep values between 300 m - 2000 m to exclude most of the surface seasonal

variability from the dataset. Because the data is spaced on an irregular grid in the vertical direction, we first interpolate the

temperature and salinity profiles onto a regular grid with 10 m cells in the vertical. Following Pauthenet et al. (2017), at each135

grid cell and time we concatenate the temperature and salinity profiles into a single vector. We normalise each depth level

for both temperature and salinity separately; subtracting the mean and dividing by the standard deviation calculated for all

time periods on that particular depth level and variable. That is, we standardise the temperature values at each level using the

distribution of temperatures at that same depth level, and we standardise the salinity values using the distribution of salinities

at that same depth level. This is a slightly different approach from Pauthenet et al. (2017), in which the authors standardise140

across the entire dataset. We found that for the work shown in this paper, the choice of normalisation approach does not

make a large difference in the results (not shown). After normalisation, we carry out PCA expansion. We keep the first three

principal components (PCs), which together statistically explain 98% of the variability across the thermohaline dataset. For

completeness, we show the structure of the principal components in appendix B.

The coefficients associated with the PC1 indicate a broad division between polar, high-latitude Southern Ocean waters and145

the subtropics (Fig. 1(a)). The most negative PC1 coefficients are found in the Weddell Gyre, and we also see the imprints
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Figure 1. Each combined temperature and salinity profile can be approximated using a three-term PC expansion. Above are monthly mean

coefficients of the PC expansion from June 2011. In order to limit the influence of seasonal variability, we use temperature and salinity

profiles between 300m-2000 m. The first three PCs explain (a) 75%, (b) 16%, and (c) 7% of the variance respectively, together explaining a

total of 98% of the variability. The white space represents bathymetry shallower than 2000 m, and its boundary is marked by a grey line.

of the South Pacific Gyre and the ACC (Vernet et al., 2019). The coefficients of PC2 bear the imprint of the ACC and of its

northward flow along the East Pacific basin (Fig. 1(b)). This northward flow is associated with the formation and export of

Subantarctic Mode Water and Antarctic Intermediate Water (Iudicone et al., 2007; Sallee et al., 2010; Jones et al., 2016). PC2

also has the imprint of the Agulhas Current around South Africa. Finally, PC3 has strong negative values in the Weddell Gyre150

and over most of the Pacific, with a band of circumpolar positive values that somewhat mirrors the southward drift of the ACC

when considered from west to east. The spatial structure of PC1 and PC2 are largely consistent with those of Pauthenet et al.

(2017), but the structure of PC3 is somewhat different from theirs, particularly in the subtropics. These differences are possibly

a result of our choice of a different depth range. Given that PC3 explains a small fraction of the variability (7% of the variance

explained), we do not expect these differences to impact our results.155

After we perform dimensionality reduction, each monthly output at each model grid cell in latitude and longitude is repre-

sented using the first three coefficients of the PC expansion. The three PC values contain combined information about both

temperature and salinity, simplifying our analysis. This approach defines an abstract three-dimensional space in which we

can perform unsupervised classification. In typical machine learning terminology, this abstract three-dimensional space can be

called the “feature space", in which each PC axis is a “feature". To be explicit, we can say: each combined temperature-salinity160

profile in latitude, longitude, and time is represented by a three-dimensional vector of PC values. Each three-dimensional

PC vector derived from B-SOSE is an “observation". In the next section, we use unsupervised classification to identify sub-

populations in the three-dimensional distribution of PC values.
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2.3 Gaussian mixture modelling

Unsupervised classification attempts to identify subpopulations within a data distribution, without the assistance of any prede-165

fined labels. In our application, we attempt to identify data sub-populations in the abstract three-dimensional space defined by

the PC coefficients (i.e. the “feature space"). Here we use GMM, an algorithm that attempts to fit a set of multi-dimensional

Gaussian functions to the data by iteratively adjusting the means and covariances of the Gaussians (McLachlan and Basford

(1988), see appendix C for more detail). This method has recently been used to classify Argo temperature profiles in the top

2 km of the North Atlantic Ocean and the Southern Ocean (Maze et al., 2017; Jones et al., 2019). GMM is well-suited to ocean170

applications because it offers a probabilistic measure of classification in the form of posterior probabilities, which is useful

when working with a highly correlated dataset. Because GMM-derived clusters will likely feature some overlap due to the

highly correlated nature of ocean data, such posterior probabilities offer an important complement to the GMM-derived class

labels. In this application, we use the posterior probabilities to define coherent thermohaline regimes and their boundaries.

The GMM method attempts to represent the underlying data distribution using a set of K Gaussian functions in D dimen-175

sions (in our case D = 3):

N (x;µk,Σk) =
exp

[
− 1

2 (x−µk)
T (

Σk
−1
)

(x−µk)
]

√
(2π)D ‖Σk‖

, (1)

where x ∈ RD×1 is a vector in the PC space, µ ∈ RD×1 is the center of the Gaussian distribution expressed in vector form,

Σk ∈ RD×D is the covariance matrix, and |Σk| is its determinant. The covariance matrix determines the orientation of the

Gaussian ellipsoids in PC space. We model the dataset, in the statistical sense of representing the dataset using a probability180

distribution, as a weighted sum of Gaussians:

P(x)≈
K∑
k=1

λk N (x ; µk , Σk) , (2)

where λk is the weight associated with the k-th Gaussian. The process of fitting the GMM uses expectation maximisation

(EM), which consists of iteratively adjusting λk, µk, and Σk to decrease the model-data misfit. For additional details, see

Appendix C.185

Once the weights, means, and covariances are fitted, each data vector x is associated with a posterior probability distribution

across all of the K classes. Although we kept the random seed used in the initial guess fixed for this paper, our results are

robust to the choice of random seed (not shown). This distribution is the set of likelihoods that the data vector belongs to any

particular class, and the probabilities sum to one. GMM assigns each data vector to the class with the maximum posterior

probability. We will now use this distribution to define an inter-class metric, which gives us a novel perspective on fronts as190

transitions in thermohaline structures.
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3 The inter-class comparison metric (the I-metric)

First, we examine the structure of our profile data in PC space and introduce the I-metric for identifying boundaries between

coherent hydrographic regimes (Sect. 3.1). Next, we examine the I-metric in both a monthly averaged and multi-year averaged

view in latitude-longitude space, and we explore the class structure in more detail by examining the associated coherent regions195

and vertical profile types (Sect. 3.2). Following that, we compare our results with a local edge detection method (Sect. 3.4).

3.1 Defining the I-metric

For each combined temperature-salinity profile, GMM returns a probability distribution across all of the K classes. This

distribution is called the posterior probability distribution, and it quantifies the probability that a particular profile is in a

particular class. If the posterior probability is close to 1.0 for class k and very small for the other classes, then within the200

context of the Gaussian statistical model (i.e. GMM), the classification of the profile into class k is unambiguous and clear.

However, if the posterior probability is close in value for the two classes with highest probabilities, then the classification is

ambiguous and less clear. With this in mind, we can use the difference between the highest probability and the second-highest

probability to quantify how clearly the profile has been classified. If the classification is unambiguous, then the profile is less

likely to be associated with a boundary between coherent thermohaline regimes. If the classification is ambiguous, then the205

profile is more likely to be associated with a boundary. With this in mind, we propose a probabilistic inter-class comparison

metric of the form:

I(xn) = 1−
[
P(c= ck)highest−P(c= cl)runner−up

]
, (3)

where xn is the nth profile’s PC values and P(c= ck)highest is the highest posterior probability that GMM has assigned the

nth profile as belonging to class k. The term P(c= cl)runner−up is the second-highest posterior probability belonging to class210

l. If the difference between the highest and runner-up posterior probabilities is close to one, then I is small. This would indicate

that the profile is not likely to be associated with a boundary between thermohaline regimes. If the difference between the

highest and runner-up posterior probabilities is small, then I is close to one, indicating that the profile is likely to be associated

with a boundary between different thermohaline regimes. The I-metric offers an alternative method for defining boundaries as

fuzzy transitions between coherent regimes. In general, some regions will feature sharp transitions across boundaries, whereas215

other regions will feature more gradual transitions. The relative sharpness of a transition is influenced by the processes that

form, mix, and destroy water masses. In contrast with approaches that define fronts as sharp transitions located along property

contours or local gradients, the I-metric approach allows for a wider variety of transition types between regimes.

In our I-metric application, GMM clusters the profiles in feature space (Fig. 2(a)). The structure of the data shown in PC

space is broadly consistent with that found in other studies (e.g. Pauthenet et al. (2017, 2018, 2019)). The data distribution220

is reasonably well represented by a linear combination of multi-dimensional Gaussian functions (Fig. 2). The I-metric values

indicate transition regions between classes, where the class labelling is relatively ambiguous (Fig. 2(b)). We choose K = 5 to

represent the general, large-scale pattern of the data; we explore the sensitivity of our results to K in Sect. 4.4. In the next

section, we examine the I-metric and class structure in physical space.
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Figure 2. (a) The classification analysis takes place in the abstract PC space. Each point represents a 3D vector of principal component

values that describe a single combined temperature and salinity profile. The three axes are the three principal components. Class assignments

are indicated by the colours. (b) The I-metric highlights transitions between classes in the abstract PC space. The Gaussian ellipsoids of the

GMM are shown in red, and the I-metric values associated with each point are shown using six different colour scales. Each colour scale

corresponds to a particular transition between classes. Points with low I-metric values are not shown. The above is a subset of data taken

from 12 months of monthly averaged B-SOSE data, inclusively between August 2011 and July 2012.

3.2 Geographic view of the I-metric225

The I-metric viewed in latitude-longitude space illustrates the rich variety of transition types found in the Southern Ocean

(Fig. 3). In all sectors of the SO, we see sharp transitions where the regions of high I values are narrow and more gradual

transitions where the regions of high I values are more spread out. Some features are circumpolar, in consistency with the view

of SO fronts as continuous lines that encircle Antarctica. However, we also see regions where the continuity and circumpolar

nature of the fronts is not as clear, suggesting that a broader view may be appropriate (Chapman et al., 2020). The fronts are not230

9



uniformly sharp across all longitudes; for example, the northernmost transition is broad and gradual in the Atlantic sector, sharp

in the Indian sector, and relatively broad in the Pacific sector. The southernmost band of high I-metric values is relatively sharp

in the Atlantic sector, becoming increasingly broad as we follow it into the Indian and Pacific sectors. In the Pacific sector, it

extends into an especially broad region in the Amundsen Sea, in consistency with the intersection of the classically-defined

southern boundary (SBdy) with the Antarctic continent (Kim and Orsi, 2014). Upstream of Kerguelen Plateau, there is a region235

where the I-metric is spread out and diffuse between classes 2 and 3; this region also features a standing meander associated

with enhanced eddy kinetic energy (Frenger et al., 2015; Siegelman et al., 2019). The enhanced mesoscale eddy kinetic energy

associated with the meander is consistent with increased lateral mixing and the spread out pattern in the I-metric found in the

same region. Closer to the Antarctic continent, we also see the imprints of both the Weddell Gyre and the Ross Gyre, in regions

of coherent structures with low I-metric values, in part enforced by the gyre circulation.240

The monthly mean I-metric (Fig. 3(a)) also highlights individual ring-like eddies; although these features are not typically

considered fronts, they are small-scale transition regions between different hydrographic structures. We do expect the I-metric

to be non-zero across these features. The monthly view also features mesoscale meanders, highlighting the detailed structure

of the SO, which is partly a result of the energetic mesoscale eddy field. The I-metric does feature some month-to-month

variability; in some locations the fronts meander in their north-south extent, and in others they are relatively stationary, likely245

due to bathymetric constraints (see animations in Thomas (2021), in the “gifs" directory).

By averaging the four years worth of monthly means, we obtain a map of the climatological I-metric, which is averaged

over many eddy lifetimes (Fig. 3(b)). Comparing an example monthly field with the climatological field, we can examine the

imprint of eddy spatial variability and the meandering of the fronts on the I-metric pattern. Most of our observations about the

metric are unchanged by this averaging; we identify three roughly circumpolar bands of high I-metric values, with significant250

spatial variability and some overlap. The three bands are fairly distinct in the Atlantic sector, with the northernmost transition

being the broadest. Upstream of Kerguelen plateau, the two northernmost bands become somewhat hard to distinguish. This

is possibly a consequence of the eddy mixing and upwelling hotspot in that region, which tends to spread out hydrographic

features in latitude-longitude space, increasing the degree of spatial correlation found there. Upstream of Kerguelen plateau,

the Polar Front features strong seasonal variability (Pauthenet et al., 2018). Note that the I-metric band aligned roughly with255

the Polar Front only passes south of the plateau (e.g. south of Heard Island), in consistency with other studies of the subsurface

component of the Polar Front (e.g. Pauthenet et al. (2018)).

The three bands of higher I-metric values are distinct downstream of the Kerguelen plateau in the Indian sector; notably,

the southernmost band features especially high I-metric values in this sector. This pattern is associated with the transition

between the Antarctic Circumpolar Current and the Antarctic Slope Current (ASC), which tend to flow in opposite directions260

(Thompson et al., 2018; Pauthenet et al., 2021). In the Pacific sector, we see the southernmost band turn into the Amundsen

Sea and intersect with the Antarctic continental slope, spreading out in a diffuse region that is consistent with the behaviour of

the southernmost extent of the ACC, the eastern boundary of the Ross Gyre, and the eastward shelf circulation along the West

Antarctic Peninsula (Nakayama et al., 2018). In this same sector, two large regions of low I-metric values spatially correspond

to export pathways of Subantarcitc Mode Water and Antarctic Intermediate Water (Iudicone et al., 2007; Sallee et al., 2010,265
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Figure 3. The magnitude of the I-metric highlights transitions between coherent thermohaline regimes. Panel (a) is the I-metric for a single

month (April 2012) and (b) for the time average of the B-SOSE iteration 106 dataset (60 months). Latitude lines are shown between 80◦S

and 40◦S every 10◦, and longitude lines are shown every 60◦. Animations showing month-to-month and interannual variability are available

in the software release (Thomas, 2021).

2012; Jones et al., 2016). The higher I-metric values delimit the edges of these more coherent thermohaline regimes (Fig. 3(b)),

which are influenced by basin-scale stratification and the structure of the South Pacific Gyre.

3.3 Properties of the thermohaline regimes

In order to better understand the coherent thermohaline regimes underlying our I-metric results, we examine their lateral extents

and their vertical properties. Despite not being given any latitude or longitude information, the underlying GMM captures270

several coherent, large-scale features of Southern Ocean thermohaline structure (Fig. 4(a)). Class 1 contains the coldest waters

in the SO, covering both the Weddell and Ross gyres near Antarctica. The mean profile in this class features cold temperatures

that are nearly uniform with depth; in general, they are salt stratified in that the near-surface waters are fresher than the

subsurface waters, ensuring that the density profile is stable overall (Fig. 5). The boundary between class 1 and class 2 broadly

lies between the classically-defined Southern ACC front (SACCF) and the Southern Boundary (SBDY) (Kim and Orsi, 2014),275
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including the turn of the SBDY towards almost being perpendicular with the Antarctic continent in the Pacific sector of the

SO. Class 2 is circumpolar, with excursions into the Amundsen Sea and the area just south of Kerguelen Plateau. It features

salt stabilisation, with a fresh layer near 300 m (Fig. 5). Class 3 is also circumpolar, with a northward excursion in the Atlantic

sector. The boundary between classes 2 and 3 roughly follows the Polar Front (PF), separating the colder, fresher Antarctic

waters from the warmer, saltier subtropical waters further north. Finally, there are two subtropical classes; class 4 represents the280

Atlantic and Indian sectors of the subtropics, and class 5 represents the large-scale South Pacific Gyre. The boundary between

classes 3 and 4 roughly aligns with the Subantarctic Front (SAF), particularly over large portions of the Indian and Pacific

sectors (Fig. 4). The mean of class 5 has a salinity minimum around 700 m, corresponding to the presence of the Antarctic

Intermediate Water layer (Iudicone et al., 2007).
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Figure 4. (a) The cluster assignments with K = 5 and (b) the I-metric for all present class transitions. This view highlights the transitions

between specific classes. The transitions in (b) have some similarities to the altimetric fronts from Kim and Orsi (2014). These fronts are

shown overlain on (b) (SBDY: Southern boundary, SACCF: Southern ACC front, PF: Polar front, SAF: Sub-Antarctic front). Data from June

2011 as a representative month.

3.4 An edge detection approach towards identifying fronts285

For comparison with the GMM method, which uses properties of an entire training dataset to detect changes in thermohaline

structure, we use a more local front detection method implimented by Hjelmervik and Hjelmervik (2019) in the North Atlantic.

This method, called the Sobel method, directly examines spatial gradients in the principal component fields using a Sobel

operator (Sobel and Feldman, 1968). To do this, the PCs of each grid point are placed onto a rectangular grid with the same

spacing as the data sampling, where points without data are masked. The strength of an edge at a point is found by the two290

dimensional convolution (represented by *) of the gridded PCs and the following two matrices. In the x direction the Sobel

13



Figure 5. Profiles of the five GMM clusters between 300 m and 1800 m in (a) temperature and (b) salinity. This is calculated from the profiles

classified using the statistical model fitted on training data itself. The central line is the mean and the envelope on either sides indicates one

standard deviation.
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operator is

Gx =


1 0 −1

2 0 −2

1 0 −1

 , (4)

and in the y direction the Sobel operator is

Gy =


1 2 1

0 0 0

−1 −2 −1

 . (5)295

The effect of this operator is similar to a gradient operator with some smoothing. There is a correlation coefficient of 0.99

between Gy ∗PC1 and the y gradient, and there is a correlation coefficient of 0.999 between Gx ∗PC1 and the x gradient of

PC1. The motivation for using the Sobel operator rather than the gradient operator is principally that it can reduce the noise

in data, as shown by application to photographs (Vincent et al., 2009). Hjelmervik and Hjelmervik (2019) used the magnitude

of the x and y Sobel operators, which approximates the magnitude of the gradient, to examine fronts in the Arctic and North300

Atlantic. They show that the magnitude of the Sobel gradient can be thresholded to highlight features such as the Gulf stream.

Rather than working with the gradient magnitude, Fig. 6 shows Gy*PC1, Gy*PC2, Gy*PC3 alone. This is more inter-

pretable, as the Gy*PC1 component is strongly correlated to the zonal velocity U (r = 0.85). Hjelmervik and Hjelmervik

(2019) use a threshold value to define fronts, but instead we plot the gradient directly as a colormap for each PC, which is

useful as it does not obscure any information about the fronts themselves. Appendix A shows that the correlation between the305

Sobel Gy gradient of PC1 with the meridional velocity, V , and the correlation between Gx*PC1 and zonal velocity U increase

for roughly the first 2 years of B-SOSE iteration 106, suggesting that the model is still spinning up to geostrophic balance.

The GMM and Sobel methods are complementary. GMM reveals the large-scale temperature and salinity structure associated

with changes in stratification, which has traditionally been used to define the fronts, whereas edge detection methods like the

Sobel method used here reveals the smaller-scale structure of multiple jets, which can merge and separate. As such, both310

approaches may be useful ways of characterising ocean structure without making ad-hoc assumptions related to particular

property values or strict requirements that the structures be circumpolar and continuous. The present proliferation of front

definition and analysis methods is driven by the need to expand how the oceanographic community deals with ocean structure

across a wide variety of spatial and temporal scales (Chapman et al., 2020).

4 Discussion315

In this section, we discuss the sensitivity of our results to our choice of dataset (Sect. 4.1), touch on the temporal variability in

our results (Sect. 4.2), discuss a possible connection with the Antarctic Slope Current (Sect. 4.3), examine the sensitivity of the

results to the choice of the number of classes K (Sect. 4.4), and discuss the interpretation of posterior probabilities (Sect. 4.5).
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Figure 6. Gy Sobel edge operator convolved in 2D (*) with the principal component coefficient fields for the month of June 2011. The

correlation coefficient between panel (a) for PC1, and the zonal velocity U for the same month in B-SOSE iteration 106 is 0.85, showing that

the structure it highlights is substantially similar to the ACC. Panels (b) and (c) for PC2 and PC3 are also related to the ACC, (correlation

coefficients of 0.18, and -0.18 respectively). The grey line is the 2000 m isobath.

4.1 Sensitivity to choice of dataset

We chose to use B-SOSE data for this study in order to (1) work with a dataset that features relatively uniform cover-320

age in latitude-longitude and (2) to allow us to examine temporal variability as well as spatial variability. B-SOSE is an

observationally-constrained estimate of the hydrographic structure of the Southern Ocean, so it does accurately capture many

features of large-scale and mesoscale structure (Verdy and Mazloff, 2017). However, because B-SOSE is a numerical model

run, it will no doubt have some biases with respect to observations, particularly on smaller scales. We expect that our results

would not change dramatically on basin-wide scales across different state estimate and reanalysis products.325

To examine the differences of this bias on the class structure and the structure of the inter-class comparison metric, this

study could be repeated with a purely observational dataset such as Argo. One trade-off for such a study would be the fact that

observational datasets are relatively sparse in terms of both spatial and temporal coverage relative to a state estimate or other

numerical model run. One could attempt to use the same GMM trained on B-SOSE with Argo data, but possible biases between

B-SOSE and the Argo dataset could make this challenging. It might be possible to adjust for those biases in the data cleaning330

and preparation step of the analysis; the standardisation process, which is already a part of the analysis presented here, is a

step towards this bias removal and correction that may facilitate comparisons between models and observations. Alternatively,

one could attempt to re-train the GMM using Argo data alone. This has been done in other studies, so it should be possible in

principle (e.g. (Maze et al., 2017; Jones et al., 2019; Rosso et al., 2020)).
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4.2 Temporal variability of the fronts335

We found that the class structure and boundary positions did not feature large temporal variability with respect to the mean state,

but much more work could be done to examine this variability and its connection to the processes that determine thermohaline

structure (e.g. surface forcing, subsurface mixing, advection). This is outside the scope of our present study, which is focused

on proposing a new metric for identifying and tracking boundaries in Southern Ocean structure.

4.3 The Antarctic Slope Current340

The Antarctic Slope Current (ASC) that separates warmer open ocean waters from the colder waters on the Antarctic conti-

nental shelf is an important component of heat transport in the Southern Ocean. It acts to control the flow of warm water onto

the continental shelf and eventually under the floating ice shelves. In a recent paper, Thompson et al. (2020) suggest that if the

source of the Antarctic Slope Current (ASC) intersects with the ACC in the Bellingshausen Sea, then the ASC source would

be considered a major component of the overturning circulation. In our study, we found a diffuse boundary between classes in345

the Bellingshausen Sea region, which may be relevant for the physical context of the ASC, which is still under investigation

(Fig. 4(b)).

4.4 Sensitivity to the maximum number of classes

In this study, we chose K = 5 as the number of classes based on sensitivity tests and also based on a priori knowledge.

Specifically, previous studies used a front structure with five broad regions, delineated by four fronts, so we might expect a350

value around K = 5 based on this (e.g. Orsi et al. (1995); Pollard et al. (2002); Kim and Orsi (2014)).

Generally, the choice of the maximum number of classes K can be thought of as a way to select models of varying degrees

of complexity. Statistical models with lower K values are potentially easier to interpret, only capturing the most dominant

structures in the dataset. For example, the probabilistic boundary between the two classes in a K = 2 statistical model roughly

separates colder, fresher Antarctic waters from the warmer, saltier subtropical waters (Fig. 7(a)). Notably, in this case, the355

magnitude of the I-metric appears to largely decrease as we follow it from the Atlantic and Indian basins and into the Pacific

basin, indicating that the boundary becomes less sharp with longitude. This possibly reflects the fact that the Pacific basin hosts

some of the dominant northward export pathways of Subantarctic Mode Water and Antarctic Intermediate Water, consistent

with a less sharp transition between polar and subtropical waters (Iudicone et al., 2007; Herraiz-Borreguero and Rintoul, 2011;

Jones et al., 2016). A statistical model with K = 4 retains most of the features of our analysis with K = 5, but the transition360

region closest to Antarctica in K = 5 is no longer present.

TheK = 5 statistical model we used in this work captures near-Antarctic and circumpolar structure, as well as some subtrop-

ical structure. A more complex statistical model with higher K would capture more of the subtropical structure (not shown).

This is consistent with sensitivity studies using temperature-only Argo data, where increasing K added details to the sub-

tropical class structure while leaving the circumpolar class structure largely unchanged (Jones et al., 2019). Statistical models365

with much higher K values may capture more structure in the data, but increasing K also risks overfitting. That is, if we tune
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Figure 7. Decreasing K removes details from the statistical description of Southern Ocean thermohaline structure. Shown is the GMM-

derived I-metric, using (a) K = 2 and (b) K = 4, for a monthly average over June 2011. Grey line is 2000 m isobath.

the GMM statistical model to match an increasing number of structures in PC space, we risk losing generality; the goal is to

represent the dominant structures of the dataset without overfitting every small variation, some of which could represent noise

in the data. This has a direct analogue with overfitting in terms of simple statistical models; it is unwise to use a 10th-order

polynomial when a quadratic captures the dominant features of the dataset, because the higher-order polynomial is less likely to370

generalise to other similar datasets. In addition, statistical models with very high K values are increasingly difficult to interpret

in terms of our current physical and biogeochemical understanding. Note that regional studies, e.g. those carried out in specific

sectors of the SO may find it useful to increase K based on local structure (e.g. Rosso et al. (2020)). This is consistent with

the suggestion by Chapman et al. (2020) that front definitions may need to be more flexible and region-specific, as opposed to

expecting a particular definition to apply globally (or even across a single ocean basin).375
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4.5 Interpreting posterior probabilities

The posterior probabilities returned by a Gaussian mixture model are affected by our choice of K. We should be careful not

to over-interpret the posterior probabilities as confidences in the correctness of the assigned labels. Notably, GMM does not

indicate the probability that a given profile belongs to none of the classes in a given statistical model. With that in mind,

we can interpret the posterior probability as a measure of unambiguity in the context of a given statistical model. When one380

probability is larger than all others with some margin, the profile is unambiguously classified, while probabilities of similar

magnitude indicate that the profile cannot be unambiguously classified in the current statistical model with the specified number

of classes. In this study, we used the posterior probability distribution to identify boundaries between coherent thermohaline

regimes, taking advantage of this property of GMM.

5 Conclusions385

In this study, we proposed a new metric for defining and identifying boundaries between coherent regimes of temperature

and salinity structure. Our method uses Gaussian mixture modelling, a type of unsupervised machine learning, to establish a

statistical model of thermohaline structure that is intended to capture the large-scale features of the dataset in both PC space

and in geographic space. We developed our method in the Southern Ocean due to the presence of circumpolar structures and

relatively clear fronts, but our approach could be applied to other regions or even to the global ocean as a whole. The I-metric390

provides a flexible, probabilistic method to define and identify boundaries in an oceanographic dataset without using ad hoc

property contours; the boundaries are derived in a generalised method that reflects the structure of the dataset. The I-metric

has potential as a method for comparing different observational and numerical modelling datasets in a robust, algorithmic

way that is not heavily affected by biases in the mean state between datasets. It features a parameter K that allows users to

increase and decrease the level of complexity of the statistical model; the optimal value of K will vary between applications.395

The Sobel edge detection method may be useful for defining and tracking smaller-scale fronts and jets in model or reanalysis

data. As discussed in Chapman et al. (2020), the field of oceanography needs to consider fronts and boundaries in a more

general, application-specific way, due in part to the richness of ocean structure on different spatial scales. The I-metric was

designed with this problem in mind; it is intended to be a complementary addition to the oceanographic toolbox as opposed to

a replacement for any particular method.400

Code and data availability. B-SOSE iteration 106 state estimate data is available from the Scripps Institution of Oceanography (http://sose.

ucsd.edu/B-SOSE6_iter106_solution.html). The MITgcm source code that was used to create B-SOSE is available on GitHub (https://github.

com/MITgcm/MITgcm). Original climatological front positions from Kim and Orsi (2014) are available on Researchgate (https://www.

researchgate.net/publication/338420242_ACC_fronts). The code used to carry out the analysis and figure creation for this paper is available

via Zenodo (Thomas, 2021) (Up-to-date repository: https://github.com/so-wise/so-fronts). This software uses scikit-learn (Pedregosa et al.,405

2011) and pyxpcm (Maze, 2020) as foundations. We used Cartopy for mapping (Met Office, 2010 - 2015).
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Figure A1. A comparison between the Gx*PC1 Sobel edge detection field and the zonal velocity, U , at 2m. Panels (a) and (b) are from the

monthly mean over June 2011, whereas (c) and (d) are the mean over all of the monthly means in the dataset.

Appendix A: The relation between edge detection and the velocity field

Fig. A1 and Fig. A3 illustrate the spatial resemblance between Gy*PC1 and U , Gx*PC1 and V , respectively, compared over

June 2011 or as an average over the full B-SOSE period. The domain-averaged correlation is shown quantitatively in Fig. A2

and Fig. A4, where in the last couple of years of the reanalysis product there is an especially high correlation between the two.410

That Fig. A2 and Fig. A4 show opposite signs in the correlation is equivalent to the reversal in sign between that we would

expect (Cushman-Roisin and Beckers, 2011, chapters 15 and 18). Those figures also show that the magnitude of the correlation

between the respective variables increases during the first two years of the dataset before flattening off. This is suggestive of the

model spinning up towards geostrophic balance. As the first principal component statistically explains the first-order structure

in the ocean, it primarily represents the density contrast produced by the thermohaline structure from the tropics to the poles.415

Appendix B: Principal component structure

In this work, we use principal component expansion for dimension reduction and to examine the structure of the Southern

Ocean. In this appendix we display the principal components (i.e. eigenvectors) used in this expansion. First, we examine the

means of the temperature and salinity structure across the entire dataset (Figure B1. The temperature decreases with depth,

whilst the salinity has a minimum around 750 m, in part associated with the presence of Antarctic Bottom Water (AABW).420

The structure of the first three principal components (i.e. eigenvectors) reflects small variations on the mean structure (Fig-

ure ??). The mean profiles are similar, but the variation associated with an increase or decrease in the principal component

value changes with depth. The first principal component (PC1) explains 76% of the variability in the dataset, notably con-

sisting of variations throughout the mid-range of the profiles in temperature and throughout nearly the entire depth range in

salinity. The second principal component explains 16% of the variability and consists of larger changes in the upper part of425

the profile, above roughly 1000 m. The third principal component (PC3) explains 7% of the variance and exhibits variations
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Figure A2. The correlation between Gx*PC1 and the zonal velocity, U , at 2m, for each monthly mean in the B-SOSE iteration 106 dataset.

The increase in the correlation over the first two years could be interpreted as the spin-up.

Figure A3. A comparison between the Gy*PC1 Sobel edge detection field and the meridional velocity, V , at 2m. Panels (a) and (b) are from

monthly mean over June 2011, whereas (c) and (d) are the mean over all of the monthly means in the dataset.
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Figure A4. The correlation between the Gy*PC1 and the meridional velocity, V , at 2m for each monthly mean in the B-SOSE iteration 106

dataset. The increase in the correlation coefficient over the first two years could be interpreted as the spin up as in Fig. A2

Figure B1. The means and standard deviation of samples taken from B-SOSE iteration 106.
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above and below a somewhat fixed mid-point. After principal component expansion is applied, each profile is represented by

just three numbers, i.e. the eigenvalues of the principal component expansion.

Appendix C: Gaussian mixture modelling

A Gaussian mixture model (GMM) attempts to represent a dataset using a linear combination of multi-dimensional Gaussian430

distributions. A multi-dimensional Gaussian (Eq. C1), is a simple generalisation of a Gaussian to D dimensions.

N (xn;µk,Σk) =
exp

[
− 1

2 (xn−µk)
T (

Σ−1
k

)
(xn−µk)

]
√

(2π)D ‖Σk‖
, (C1)

where k is the index for the k-th cluster of K clusters, n is the index for the n-th data point of N data points, and D

corresponds to the three principal components of the data.

We make the assumption that the probability distribution that generated the dataset can be approximated by a set of multi-435

variate Gaussians (Eq. C2):

P̃(xn)' P(xn) =

K∑
k=1

λk N (xn ; µk , Σk) . (C2)

Any probability distribution function (PDF) could be described by an arbitrarily large number of Gaussians (Eq. C3), but to

be a good method of describing the data this should be a manageable number.

P̃(xn) = lim
K→∞

K∑
k=1

λk N (xn ; µk , Σk) (C3)440

In this paper, we showed that our Southern Ocean thermohaline dataset can be fairly represented as a series of plateau-

like regions in PC variable space, so it can be approximated by a PDF made from a set of multivariate Gaussians, where the

boundaries between these Gaussians correspond to the fronts (Fig. 2).

C1 Expectation Maximisation

To initialize the method, the firstK clusters are created randomly. Next, the set of Gaussians is iteratively adjusted (Eq.s C4, C5 and C6)445

until it reaches a local minimum in the cost function Maze et al. (2017). It is generally expected that reducing the number of

dimensions in the pre-processing step helps improve the convergence. The following section draws heavily from Maze et al.

(2017).

The expectation of the model given the data is increased by updating the weights λk, means µk, and covariance matrices Σk

in the following way:450

λk
(t+1) =

1

N

N∑
n=1

P
(
cn = k | xn ; {λk , µk , Σk}(t)

)
, (C4)

23



Figure B2. The temperature and salinity components of the three retained principal components that were used in this work. Specifically,

they are PC1 (left coumn), PC2 (middle column), and PC3 (right column). Shown are the mean structures (black lines) with the effect of

adding (red line) or removing (blue line) one unit of a principal component as a deviation from the mean profile, after Figure 4 in Pauthenet

et al. (2017). When compared to Figure 1 we can see that PC1 corresponds to the hot-cold north-south contrast.
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µk
(t+1) =

∑N
n=1P

(
cn = k | xn ; {λk , µk , Σk}(t)

)
xn∑N

n=1P
(
cn = k | xn ; {λk , µk , Σk}(t)

) , (C5)

Σk
(t+1) =

∑N
n=1 P

(
cn=k | xn; {λk, µk, Σk}(t)

)
·(xn−µk

(t+1))
(
xn−µ(t+1)

k

)T∑N
n=1 P(cn=k | xn; {λk, µk, Σk}(t))

, (C6)

where cn is the classification of the n-th cluster which could be any one of the K clusters. This is repeated until the

parameters of the model have converged.455

C2 Information Criterion

GMM needs an input hyperparameter K that sets the number of clusters that will be fitted to the data. GMM is relatively cheap

to run, and so it is reasonable to run it with a large range of K and choose the K which best describes them. The often-used

criterions are the Bayesian Information Criterion (BIC) (Eq. C7) and Akaike Information Criterion (AIC) (Eq. C8). They both

essentially contain a term that measures the agreement of the model to the data, and have a penalty term for the number of460

parameters that have been used to achieve this (related to K). So we are looking for minima in AIC / BIC to guide our choice

of K. There is no clear minimum for this dataset in K for 2≤K ≤ 100, which is typical of oceanographic applications due

in part to the highly correlated nature of the data (e.g. (Sonnewald et al., 2019; Jones et al., 2019)). Because K is weakly

constrained, we are able to select a lower value of K for ease of interpretation, having verified that it captures the large-scale

structure of the data in PC space, which is suitable for our purposes. BIC and AIC take the forms:465

BIC = −2L(K) + ηf (k) log(N), (C7)

with ηf = K − 1 +KD+
KD(D− 1)

2
,

AIC = 2K − 2L, (C8)

where the log-likelihood is expressed as:

L= log[P(X)] =

N−1∑
n=0

log

(
K∑
k=1

λk N (xn ; λk , µk , Σk)

)
(C9)470

C3 Labelling the Data Set

Each data point is assigned a posterior probability distribution across the K clusters (Eq. C10). This uncertainty information is

one of the useful features of GMM. The probability takes the form:

P(cn = k | xn ; λk , µk , Σk) =
λk N (xn ; µk ,

∑
k)∑K

k=1λk N (xn ; µk ,Σk)
. (C10)

25



To label a dataset, each data point is assigned a label from the cluster that it would be the most likely to be generated by, in a475

statistical sense (Eq. C11).

C = argmaxk (P(cn = k | xn ; λk , µk , Σk) , 1 : k) (C11)
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