

- 1 Geophysical and biogeochemical observations using BGC Argo floats in the western North
- 2 Pacific during late winter and early spring. Part 1: Restratification processes of the surface
- 3 mixed layer
- 4
- 5 Ryuichiro Inoue¹, Chiho Sukigara², Stuart Bishop¹, Eitarou Oka⁴, Takeyoshi Nagai²
- 6 Correspondence to: Ryuichiro Inoue (rinoue@jamstec.go.jp)
- 7 Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa 237-0061,
- 8 Japan.
- 9 Tokyo University of Marine Science and Technology, Minato, Tokyo, 108-8477, Japan
- 10 North Carolina State University, Raleigh, North Carolina, 27695, USA
- 11 University of Tokyo, Kashiwa, Chiba, 277-0882, Japan
- 12
- 13
- 14

- Abstract. To understand oceanic restratification in the subtropical northwestern Pacific and its influence on biogeochemical (BGC) processes, we examined post-storm restratification events
- 17 observed from February to April 2018 by BGC-Argo floats, the BGC data from which were
- 18 stoichiometrically analyzed by Sukigara et al. (2021; this issue). We found that during these
- 19 events, restratification of the mixed layer (ML) was driven by geostrophic adjustment or ML
- 20 eddy formation related to surface cooling during February to March. At the end of March, high
- 21 surface chlorophyll a concentrations were observed within submesoscale eddies and at the edge
- 22 of a mesoscale cyclonic feature observed from satellite data. Our results indicate that primary
- 23 production in the subtropical northwestern Pacific is enhanced by the combined effects of
- 24 mesoscale upwelling, storm-driven formation of a deep ML, subsequent formation of ML
- 25 eddies, weak cooling, and the length of intervals between storms.
- 26
- 27
- 28
- 29
- 30

31 **1. Introduction**

32	In the subtropical northwestern Pacific Ocean, the effects of large wintertime air-sea
33	buoyancy fluxes and wind forcing result in formation of a deep mixed layer (ML). The mixed
34	water is eventually subducted into the ocean interior to become North Pacific Subtropical mode
35	water (NPSTMW), which is an important storage reservoir for anthropogenic carbon (e.g. Oka
36	et al., 2018 and 2019). The northwestern Pacific Ocean also plays an important role in carbon
37	fixation through net community production (e.g., Riser and Johnson, 2008). Fassbender et al.
38	(2017) used data from the Kuroshio Extension observatory buoy site (Cronin et al., 2013) in the
39	region where the NPSTMW forms to quantitatively estimate the export of organic and inorganic
40	carbon from the surface to the ocean interior. They demonstrated that the amount of nutrients
41	available for phytoplankton is controlled by the balance between the maximum ML depth in
42	winter, the speed of shallowing of the ML in spring, and light conditions in the euphotic zone.
43	The shallowing of the ML in spring is caused by surface warming due to solar radiation and
44	one-dimensional air-sea heat exchange, although Mahadevan et al. (2012) showed that rapid
45	restratification in ocean frontal regions is related to the formation of ML eddies, whose strength
46	depends on mesoscale horizontal density gradients. Fox-Kemper et al. (2008) showed that
47	horizontal density differences within the ML generates ML eddies that work to rapidly restratify
48	surface waters. However, it takes more than several days for the ML to reach baroclinic

- 49 instability, so it is possible that the initial geostrophic adjustment is important (Tandon and
- 50 Garrett, 1995) if the intervals between storms are shorter than the time scale of baroclinic
- 51 instability. Tandon and Garrett (1995) also pointed out that symmetric instability (e.g., Stone,
- 52 1970) might be important during the initial geostrophic adjustment, which has also been
- 53 demonstrated by numerical simulations (Taylor and Ferrari, 2009). Furthermore, weakly
- 54 stratified waters near eddy edges create density fronts, which can enhance vertical mixing
- 55 through slantwise convection caused by symmetric instability forced by down-front winds and
- 56 submesoscale (~10 km) cooling (Taylor and Ferrari, 2010).
- 57 Because it is difficult to obtain data of high temporal and spatial resolution in the
- 58 northwestern Pacific during severe winter weather, the abovementioned stratification and de-
- 59 stratification processes have rarely been observed, so their effects on biogeochemical (BGC)
- 60 cycling are not well understood (Mahadevan, 2016).
- 61 To better understand the influence of submesoscale physical processes on BGC processes in
- 62 the subtropical northwestern Pacific, we conducted BGC and microstructure turbulence
- 63 measurements during two cruises in January and April 2018. To fill the observational gap
- 64 between the two cruises, we deployed two BGC floats (NAVIS, Sea-Bird Scientific, Bellevue,
- 65 USA), one Electro-magnetic-APEX float (Teledyne Webb Research, MA, USA), and one
- 66 SeaGlider (Kongsberg Maritime, Kongsberg, Norway) during the first cruise (on 28 January

- 67 2018) and compared the data acquired with them with high-resolution satellite data. Our aim
- 68 was to use these data to clarify the physical oceanographic conditions during post-storm
- 69 restratification events in the subtropical northwestern Pacific.
- 70
- 71 **2. Data and methods**

72 2.1. Biogeochemical floats

- 73 On 28 January 2018, during R/V Shinsei Maru cruise KS-18-1 (January 18-30, 2018), two
- 74 NAVIS BGC floats (World Meteorological Organization nos. 2903329 and 2903330) were
- 75 launched at 33.25°N, 142.50°E in the Kuroshio recirculation gyre, south of the Kuroshio
- 76 Extension (Fig. 1; see also Sukigara et al. (2021; this issue). Until 13 March, the floats moved
- 57 southwestward separated by <20 km. They then turned northward in the region between the -
- 4000 and -3000 m isobaths, maintaining a separation thereafter of about 25 km. On 10 April
- 79 they reached the Kuroshio Extension and were swept northeastward until April 20, 2018 when
- 80 those were recovered in R/V Shinsei Maru cruise KS-18-4 (April 20-May 1, 2018).
- 81 Each float was equipped with an SBE41CP conductivity-temperature-depth (CTD) sensor
- 82 (Sea-Bird Electronics, Inc., Bellevue, USA) and BGC sensors. In this study, we used the CTD
- 83 data from the floats; the BGC data have been discussed by Sukigara et al. (2021; this issue).

- 84 After descending from a parking depth of 1000 dbar to a depth of 2000 dbar, the floats
- 85 measured CTD data (vertical sampling interval of 2 dbar) during their subsequent ascent to the
- 86 sea surface. Each float reached the sea surface at about midnight and remained there for about
- 87 15 min to transmit data via the IRIDIUM satellite-based wireless communication system before
- returning to the parking depth. The same procedure was repeated daily during the two cruises.
- 89

90 **2.2. Other data sets**

- 91 We used daily mean global eddy-resolving ocean reanalysis data (1/12° horizontal resolution,
- 92 Global_ReAnalysis_phy_001_030; provided by the Copernicus Marine Environment
- 93 Monitoring Service; http://marine.copernicus.eu) covering the float observation period.
- 94 We used $1/4^{\circ} \times 1/4^{\circ}$ daily gridded sea surface height anomaly (SSHA) from the Archiving,
- 95 Validation, and Interpretation of Satellite Oceanographic (AVISO) dataset (Ducet et al., 2000)
- 96 and chlorophyll-a from Moderate Resolution Imaging Spectroradiometer-Aqua (MODIS)
- 97 satellite data. level 2 LAC (Local Area Coverage) data
- 98 (https://oceancolor.gsfc.nasa.gov/cgi/browse.pl) on 15 March
- 99 (A2018074031000.L2_LAC_OC.nc), 25 March (A2018084034500.L2_LAC_OC.nc) and 29
- 100 March (A2018088032000.L2_LAC_OC.nc).
- 101 We also used the ERA5 hourly reanalysis data from the European Centre for Medium-Range

102	Weather Forecasts (h	ttps://www.ecmwf	.int/en/forecasts/	datasets/reanal	ysis-datasets/era5) fo	r

- 103 surface heat fluxes and wind stresses during the observation period.
- 104
- 105 2.3. Heat budget of the upper ocean
- 106 Sukigara et al. (2021) showed that the atomic carbon to nitrogen (CN) ratios during four
- 107 storm events observed by the BGC floats differed considerably (Table 1). Although the CN
- 108 ratio immediately after a storm event does not necessarily correspond to the Redfield ratio
- 109 (Redfield 1958), during two of those storms, the observed CN ratios did not match the Redfield
- 110 ratio at all. The goal of the research we present here was to determine whether those differences
- 111 of CN ratio were caused by physical oceanographic conditions. We therefore calculated the
- 112 temporal changes of heat content and examined the one-dimensional heat budget of the upper
- 113 ocean. If this heat balance does not hold, we speculate that other factors such as float
- 114 movements and horizontal advection might be important.
- 115 Because the ML south of the Kuroshio Extension reaches a depth of 300 dbar, and to avoid
- 116 estimating entrainment heat fluxes associated with its deepening, for both float profiles we
- 117 calculated the heat content between the shallowest observed depth and 400 dbar. By assuming a
- negligibly small vertical heat flux across 400 dbar, the daily heat content change should be
- 119 equal to the heat flux at the sea surface, expressed as

120

is a

120
$$\rho C_p \Delta \int_{-400}^{0} \theta \, dz \sim \int_{0}^{1day} F_t |_{z=0} \, dt.$$
 (1)
121 Here, Δ is the difference between the two daily profiles and $F_t |_{z=0}$ is the surface heat flux.
122 We considered three types of surface heat flux: the air-sea heat flux and heat fluxes due to
123 Ekman transport and ML eddy formation.
124 To consider the air-sea heat flux we interpolated hourly float positions between daily
125 positions and then interpolated the ERA5 hourly reanalysis data to those positions. The
126 interpolated hourly heat fluxes were integrated over 24 h and compared with the daily change of
127 heat content.
128 To compare the daily heat content change with the heat flux due to Ekman transport (F_{EK} ,
129 Thomas and Lee, 2005) we used the following equation:
130 $F_{EK} = -\frac{(r x k) \nabla_h b}{\rho_0 f} \frac{C_P \rho_0}{ag} = -\frac{r y \partial b / \partial x - r_x \partial b / \partial y}{f} \frac{C_P}{ag}$, (2)
131 where $\mathbf{\tau} = (\tau_x, \tau_y)$ is wind stress from the interpolated ERA 5 hourly reanalysis data, \hat{k} is a
132 unit vector, f is the Coriolis frequency, C_P is the specific heat of sea water, α is the thermal
133 expansion coefficient of sea water, g is gravitational acceleration, and $\nabla_h b$ is the horizontal
134 gradient of buoyancy. Here, we used the reanalysis data provided by the Copernicus Marine
135 Environment Monitoring Service to estimate $\nabla_h b$ at the sea surface by center differentiation on
136 each model grid and interpolated it to float positions at their surfacing times. Note that the

137 reanalysis data cannot resolve the submesoscale differences related to the spatial separation of

150

3. Results

138 the two floats. We also used the differences of the ML densities obtained by the two floats to 139 calculate $\nabla_h b$ and compared the resultant values with the reanalysis data. In this approach, we 140 used the wind stress normal to the line drawn between two floats' positions to calculate F_{EK} . 141 The heat flux due to ML eddy formation (F_{ME} , Fox-Kemper et al., 2008) is $F_{ME} = 0.06 \frac{|\nabla_h b|^2 H^2}{f} \frac{C_P \rho_0}{\alpha g} > 0,$ 142 (3) 143 where H is the average of the ML depths obtained from the two floats. ML depth was defined 144 as the depth at which the potential density became 0.03 kg m³ heavier than the average potential 145 density above 10 dbar. Note that the F_{EK} and F_{ME} values we determined represent upper bounds, because the time 146 147 scale of those processes is longer than that of the initial geostrophic adjustments (less than a few 148 days) (e.g., Thomas and Ferrari, 2008; Fox-Kemper et al., 2008). 149

151 **3.1.** Atmospheric conditions during the period of the two BGC floats observations

- 152 In early February, a week or so of strong winds was followed by a few calm days. From the
- 153 middle of February, the calm intervals between periods of strong wind were mostly longer than
- 154 a few days (Fig. 2a). Hourly net sea-surface heat fluxes showed diurnal cycles (24-h averages

- approaching zero), and cooling during storm events weakened approaching April (Fig. 2b).
- 156 Sukigara et al. (2021; this issue) discuss the stoichiometry during restratification events
- 157 following four storms (Table 1 and Fig. 2), which are also the focus of this study.

158

159 3.2. Float observations

- 160 The two BGC floats deployed in the Kuroshio recirculation gyre on 28 January 2018
- 161 indicated that the ML was deep (Fig. 3) during the period when the floats initially circled and
- 162 began to move westward (Fig. 1). Isothermal heaving was apparent below the ML at various
- 163 times. We examined the physical oceanographic conditions during a period of heaving between
- 164 11 and 18 March, which corresponds to the period of the third post-storm restratification event
- 165 (Case 3 in Table 1). The deepest ML was observed between 18 and 25 March (which
- 166 corresponds to Case 4). In April, the ML rose to a shallower level in response to atmospheric
- 167 conditions and the positions of the two floats which approached to the Kuroshio Extension.

168

169 **3.3. Changes of heat content**

- 170 In this section, we focus on the four storm events recognized by Sukigara et al. (2021; this
- 171 issue), all of which occurred between January and March (Table 1). The average temperature of
- 172 the water column from the surface to the 400 dbar level (Fig. 4a) increased until 10 March,
- 173 decreased suddenly around 11 March, and then started to increase again. Because surface heat
- 174 fluxes measured in February and March showed cooling of the ocean surface, we suggest that
- 175 the observed increases were likely caused either by lateral advection of warm water, or by
- 176 lateral movement of the floats.

177	The largest values of F_{EK} and F_{ME} were of the same magnitude as the surface heat fluxes,
178	except on 22 February (Fig. 4b). Comparison of the values of $\nabla_h b$ from the ocean reanalysis
179	data with those determined from the float observations showed that F_{EK} from the reanalysis
180	data tended to be larger. In contrast, the F_{ME} values determined from the float observations
181	were larger than those from the reanalysis data. These differences indicate that $\nabla_h b$ may be
182	underestimated in the reanalysis data, possibly because of differences in the horizontal
183	resolution of the reanalysis data and float observations, and that the inner product of wind stress
184	and $\nabla_h b$ estimated from float observations in (2) is also underestimated because winds normal
185	to the line drawn between two floats' positions do not match the largest Ekman transport. The
186	daily change of heat content is 10 times (or even more) the time-integrated net heat flux, which
187	supports the importance of changes due to horizontal temperature gradients, even though there

- 188 are large uncertainties in estimating F_{EK} and F_{ME} . Our results suggest that of the post-storm
- 189 events identified, only Case 4 is close to a one-dimensional exchange of heat budget in the
- 190 upper 400 dbar of the water column.
- 191 Next, we examine the details of each of the post-storm restratification events shown in Table
- 192 1.
- 193

194 **3.3.1.** Case 1 (6–9 February, after the storm of 5 February)

- 195 After deployment on 28 January, the circling BGC floats drifted westward (Fig. 5a). After the
- storm on 5 February, deepening and cooling of the ML continued until 7 February (Fig. 5b-c);
- 197 then, during 8–9 February, it shoaled and warmed. During 8–11 February, a warm front within
- 198 the ML was identified near the western end of a SeaGlider transect across the float trajectory
- 199 (Figs. 5a and 6). We therefore concluded that the warmer water encountered by the floats as
- 200 they drifted westward after deployment represented a different water mass, which was
- substantiated by the low CN ratio of water sampled after the storm (Table 1).

202

203 **3.3.2.** Case 2 (18–23 February, after the storm of 17 February)

204	By 18 February the circling floats had drifted eastward and returned to the vicinity of their
205	deployment (Fig. 7a), where the observed water temperature was lower compared to that in the
206	west. The potential temperature in the ML above the 200 dbar level changed little but showed
207	some evidence of restratification (Fig. 7b-c). Changes of heat content were mainly below the
208	200 dbar level; we therefore consider that below the 200 dbar level the floats were within the
209	same water mass of the ML, which may explain why the estimated CN ratio (Table 1) was
210	relatively close to the Redfield ratio. The restratification process within the ML is further
211	discussed in the section 4.2.
212	
213	3.3.3. Case 3 (9-15 March, after the storm of 7 March)

214	While the floats moved westward roughly along the sea surface height anomaly (SSHA)
215	contour during this period (Fig. 8a), a cyclonic feature moved northward through the area and
216	the floats observed a doming isotherm (Fig. 3) below the ML (Fig. 8c). The doming isotherm
217	was accompanied by salinity intrusions (Fig. 8b), which disappeared when the floats left the
218	doming structure. This mesoscale doming and the accompanying salinity intrusions are
219	indicative of the importance of lateral processes, which may explain the large difference
220	between the two CN ratios estimated during this period (Table 1).

221

222 **3.3.4.** Case 4 (22–27/28 March, after the storm of 21 March)

223	The floats moved northward during 22–27/28 March and the cyclonic structure retreated (Fig.
224	9a–b). We observed the deepest ML (\sim 320 dbar) during this period, and potential temperature in
225	the water column above it was relatively uniform and was gradually stratified during this period
226	(Fig. 9c-d). Case 4 showed the largest increments of particulate organic carbon (POC) among
227	the four events (Table 1). The increased POC might be explained by post-storm formation of
228	submesoscale cyclonic eddies in the ML (Fig. 10), which trapped nutrients and phytoplankton
229	near the surface during the calmer and warmer weather at the end of March (as discussed in
230	section 3.1). Note that March 28 was chosen as the end of Case 4 for the float no. 2903330,
231	which corresponded to the maximum concentration of chlorophyll a after the storm (Sukigara et
232	al., 2021), and we speculate that the difference of dates is related to the patchiness of high
233	chlorophyll <i>a</i> distribution seen in Figure 10c.
234	In the next section, we further explore the effects of mesoscale features during Cases 3 and 4
235	that could have enhanced submesoscale activities and the vertical transport of nutrients below
236	the ML.

238 4. Discussion

239 4.1. Effects of mesoscale features

- 240 It is known that moving cyclonic eddies promote local upwelling (McGillicuddy et al., 1998).
- 241 In winter, enhanced entrainment of nitrate during deepening of the ML can be expected if there

242 is a cyclonic eddy below the deep ML. To investigate vertical motion due to such mesoscale

- 243 phenomena, we calculated the Q vector normalized by the horizontal buoyancy gradient Q.
- 244 $\nabla_h b/|\nabla_h b|$ and its negative horizontal divergence $-\nabla_h \cdot Q(\sim w)$.
- If we assume a quasi-geostrophic balance, $Q \cdot \nabla_h b / |\nabla_h b|$ and $-\nabla_h \cdot Q(\sim w)$ correspond to

changes of the horizontal gradient of buoyancy with time and vertical velocity, respectively.

247 The **Q** vector (e.g. Hoskins et al., 1978) is defined as

248
$$\boldsymbol{Q} = (Q_1, Q_2) = \left(-\frac{\partial u}{\partial x}\frac{\partial b}{\partial x} - \frac{\partial v}{\partial x}\frac{\partial b}{\partial y}, -\frac{\partial u}{\partial y}\frac{\partial b}{\partial x} - \frac{\partial v}{\partial y}\frac{\partial b}{\partial y}\right). \tag{4}$$

249 We calculated the above variables at 400 m depth by using ocean reanalysis data (described in

- 250 Section 2.2) that do not provide vertical velocity fields. We examined those variables in March,
- when both cyclonic features and high surface concentrations of chlorophyll a (e.g., Fig. 10c)
- were observed (during Cases 3 and 4).

- The Q vector at 380 m depth (below the ML) indicated that the density field there was
- squeezed in early March when upwelling was observed at the edge of cyclonic features (Fig.
- 255 11a and d). From the middle of March, the density field became relaxed and the distribution of
- upwelling became patchy (Fig. 11b and e). By 21 March, the mesoscale changes of the density
- 257 field and upwelling had slowed (Fig. 11c and f). We speculate that the patchy upwelling
- associated with mesoscale fluctuations of the density field in early and middle March increased
- 259 local nutrient concentrations below the ML. Then, during sporadic storms toward the end of
- 260 March, nutrients were entrained in the deepening ML and restratification due to ML eddies
- created high surface concentrations of chlorophyll *a* .
- 262 In the next section, we discuss restratification processes during Cases 2 and 4, when the heat
- 263 budget indicated that the effects of horizontal advection and float movement on heat contents
- 264 were small.
- 265

266 4.2. Potential vorticity budget

- 267 Based on the potential vorticity (PV) budget, the rate of change of stratification in the ML
- 268 can be scaled by ML eddy formation, surface Ekman buoyancy flux, surface buoyancy flux, and
- 269 geostrophic adjustment according to the relationships

270
$$\frac{\partial N_{ME}^2}{\partial t} \sim 0.06 \, (\nabla_h b)^2 / f, \frac{\partial N_{EK}^2}{\partial t} \sim -\frac{(\tau \times \hat{k}) \cdot \nabla_h b}{\rho_0 f H^2}, \frac{\partial N_{BUO}^2}{\partial t} \sim -\frac{B_0}{H^2}, \text{ and}$$

271
$$\frac{\partial N_{GEO}^2}{\partial t} \sim (2\pi)^{-1} \left(\nabla_h b \right)^2 / f, \qquad (5)$$

272 respectively (e.g., Tandon and Garrett, 1995; Wenegrat et al., 2018). Here, B_0 is surface

273 buoyancy flux, which is approximated as $B_0 \approx -\alpha g F_T / C_p \rho_0$ (positive for cooling). For

 $274 \quad \partial N_{GEO}^2 / \partial t$, the inertial period was used as the time scale. We set H to 200 dbar for Cases 2 and

275 4 (Figs. 7 and 9) to exclude the effects of changes in the main thermocline. During Cases 2 and

276 4 (Fig. 12), when the two floats observed a similar water mass, we suggested that stratification

277 in the ML was caused by geostrophic adjustment and/or ML eddy formation related to

278 wintertime cooling and smaller Ekman transports after the storms. We speculate that the

279 formation of ML eddies was important for Case 4 because the intervals between storms were

- 280 longer in late winter and the satellite data (Fig. 10) showed submesoscale cyclonic eddies at that
- 281 time.

282

283 5. Conclusions

284 This paper focuses on four post-storm restratification events that were observed by two

autonomous BGC floats during February to April 2018 in the subtropical northwestern Pacific.

- The BGC data acquired were stoichiometrically analyzed by Sukigara et al. (2021; this issue).
- 287 From February to April, periods of strong wind became shorter and calm intervals between
- storms increased. To exclude the effects of water advection and float movement, we calculated
- temporal changes of heat content and the one-dimensional heat budget. During the events when
- the two floats observed relatively uniform water in the ML, daily average surface heat fluxes we
- 291 calculated were indicative of cooling during January to March and suggest that ML
- restratification was driven by geostrophic adjustment or the formation of ML eddies.
- At the end of March, high surface concentrations of chlorophyll *a* were observed within
- submesoscale eddies and at the edge of a mesoscale cyclonic feature identified from satellite
- 295 data. From the Q-vector distribution and PV balance, we speculate that upwellings caused by an
- 296 enhanced mesoscale cyclonic feature in late March caused local increases of nutrient
- 297 concentrations below the ML. Then, nutrients were entrained in the deepening ML during
- 298 sporadic storms and restratification related to the formation of eddies in the ML led to high
- surface concentrations of chlorophyll *a*. Therefore, we conclude that primary production in the
- 300 subtropical northwestern Pacific was enhanced by the combined effects of mesoscale upwelling,
- 301 formation of a deep ML due to storm activity, subsequent formation of ML eddies, weak daily
- 302 average cooling (increasing sunlight), and longer intervals between storms.

304 Acknowledgements

305	We are indebted to the ca	aptain and crew of R/V	' Shinsei Maru for	their seamanship.	. We thank
		•			

- 306 H. Hosoda, M. Hirano and K. Sato at JAMSTEC and T. Iino at Marine Works Japan Ltd.
- 307 (MWJ) for their helps for operation and calibration of BGC Argo floats, and K. Katayama, S.

308 Oshitani, and H. Tamada at MWJ for their onboard analysis and deck work. We thank A.

309 Fassbender at NOAA Pacific Marine Environment Laboratory and Y. Takeshita at Monterey

- 310 Bay Aquarium Research Institute for their onboard analysis and discussions. We also thank D.
- 311 Hasegawa and T. Okunishi at Tohoku National Fisheries Research Institute for operating the
- 312 SeaGlider. This experiment was supported by Grant in Aid for Scientific Research on
- 313 Innovative Areas (Ministry of Education, Culture, Sports, Science and Technology [MEXT]
- 314 KAKENHI JP15H05818 and JP15K21710). The SeaGlider survey was partly supported by
- 315 Japan Society of Promotion of Science through Grants-in-Aid for Scientific Research in
- 316 Innovative Areas 2205. TN was supported by Grant in Aid for Scientific Research (MEXT
- 317 KAKENHI 16H01590, 18H04914, 19H01965 and 20K20634).

318

319 References

- 320 Cronin, M. F., Bond, N. A., Farrar, J. T., Ichikawa, H., Jayne, S. R., Kawai, Y., Konda, M., Qiu,
- 321 B., Rainville, L., and Tomita, H.: Formation and erosion of the seasonal thermocline in the
- 322 Kuroshio Extension recirculation gyre, Deep Sea Res., Part II, 85, 62–74,
- 323 doi:10.1016/j.dsr2.2012.07.018, 2013.
- 324 Ducet, N., Le Traon, P. Y., and Reverdin, G.: Global high-resolution mapping of ocean
- 325 circulation from the combination of T/P and ERS-1/2, J. Geophys. Res., 105, 19477-19498,
- 326 2000.
- 327 Fassbender, A. J., Sabine, C. L., Cronin, M. F., and Sutton, A. J.: Mixed-layer carbon cycling at
- 328 the Kuroshio Extension Observatory, Global Biogeochem. Cycles, 31, 272-288,
- 329 doi:10.1002/2016GB005547, 2017.
- 330 Fox-Kemper, B., Ferrari, R., and Hallberg, R.: Parameterization of Mixed Layer Eddies. Part I:
- 331 Theory and Diagnosis, J. of Phys. Oceanogr., 38(6), 1145-1165, 2008.
- 332 Hoskins, B. J., Draghici, I., Davies, H. C.: A new look at the ω-equation, Quart. J. R. Met. Soc.,
- 333 104, 31–38, 1978.
- 334 Mahadevan, A.: The Impact of Submesoscale Physics on Primary Productivity of Plankton, Ann
- 335 Rev Mar Sci. 2016 8:1, 161-184, 2016.

- 336 Mahadevan, A., D'Asaro, E., Lee, C., Perry, MJ.: Eddy-driven stratification initiates North
- 337 Atlantic spring phytoplankton blooms, Science, Jul 6;337(6090):54-8. doi:
- 338 10.1126/science.1218740. PMID: 22767922, 2012.
- 339 McGillicuddy, D. J., Robinson, A. R., Siegel, D. A., Jannasch, H. W., Johnson, R., Dickey, T.
- 340 D., McNeil, J., Michaels, A. F., and Knap, A. H.: Influence of mesoscale eddies on new
- 341 production in the Sargasso Sea, Nature, 394, 263–266, 1998.
- 342 Oka, E., Ishii, M., Nakano, T., Suga, T., Kouketsu, S., Miyamoto, M., Nakano, H., Qiu, B.,
- 343 Sugimoto, S., and Takatani, Y.: Fifty years of the 137E repeat hydrographic section in the
- 344 western North Pacific Ocean, J. Oceanogr., 74, 115-145, 2018
- 345 Oka, E., Yamada, K., Sasano, D., Enyo, K., Nakano, T., and Ishii, M.: Remotely forced decadal
- 346 physical and biogeochemical variability of North Pacific Subtropical Mode Water over the last
- 347 40 years, Geophys. Res. Letters, 46, 1555-1561, 2019
- 348 Redfield, A. C.: The Biological Control of Chemical Factors in the Environment, American
- 349 Scientist, 46, 3, 205–21, 1958
- 350 Riser, S. and Johnson, K.: Net production of oxygen in the subtropical ocean, Nature, 451, 323-
- 351 325, https://doi.org/10.1038/nature06441, 2008

- 352 Stone, P. (1970). On non-geostrophic baroclinic stability: Part II. J. Atmos. Sci., 27, 721–726.
- 353 Wenegrat, J.O., L. N. Thomas, J. Gula, and J. C. McWilliams (2018). Effects of the
- submesoscale on the potential vorticity budget of ocean mode waters. J. Phys. Oceanogr. 48, 9,
- 355 2141-2165.
- 356 Tandon, A. and C. Garrett (1995). Geostrophic Adjustment and Restratification of a Mixed
- 357 Layer with Horizontal Gradients above a Stratified Layer, Journal of Physical Oceanography,
- 358 25(10), 2229-2241. doi: 10.1175/JPO-D-17-0219.1.
- 359 Taylor, J. and R. Ferrari (2009). The role of secondary shear instabilities in the equilibration of
- 360 symmetric instability. J. Fluid Mech., 622, 103–113, doi:10.1017/S0022112008005272.
- 361 Taylor, J. and R. Ferrari (2010). Buoyancy and wind-driven convection at mixed-layer density
- 362 fronts. J. Phys. Oceanogr., 40, 1222–1242, doi:10.1175/2010JPO4365.1.
- 363 Thomas, L. N. (2005). Destruction of potential vorticity by winds. J. Phys. Oceanogr., 35,
- 364 2457–2466, doi:10.1175/JPO2830.1.
- 365 Thomas, L. N. and C. M. Lee (2005). Intensification of Ocean Fronts by Down-Front Winds, J.
- 366 Phys. Oceanogr., 35, 1086-1102.
- 367 Thomas, L. N. and R. Ferrari (2008). Friction, frontogenesis, and the stratification of the surface
- 368 mixed layer, J. Phys. Oceanogr., 38, 2501-2518.
- 369 Wenegrat, J. O., L. N. Thomas, J. Gula, and J. C. McWilliams (2018). Effects of the

- submesoscale on the potential vorticity budget of ocean mode waters. J. Phys. Oceanogr. 48, 9,
- 371 2141-2165.
- 372

374

Figure 1. (a) Trajectories of the two BGC-Argo floats used in this study. Circles and squares
indicate the positions of float nos. 2903329 and 2903330, respectively. (b) Temporal changes of
the distance between the two floats.

Figure 2. (a) Hourly wind stress and (b) heat flux at float positions. Hourly float positions were
linearly interpolated between daily positions. Blue solid and red dashed lines indicate data for
float nos. 2903329 and 2903330, respectively. Thick red and blue lines in (b) show 24-h running
averages. The thick red lines at the bottom of each plot mark the durations of the post-storm
restratification events shown in Table 1. Negative values in panel (b) represent surface cooling.

385

386

387 Figure 3. Time series of vertical potential temperature profiles observed by BGC-Argo float nos.

388 (a) 2903329 and (b) 2903330. The white line indicates the depth of the ML. The thick red lines

389 at the bottom of each panel mark the durations of the post-storm restratification events shown in

390 Table 1.

Figure 4. Time series for both floats of (a) average potential temperature above the 400 dbar level (b) surface heat flux, and (c) changes of heat content and cumulative heat flux (thick black line). In all panels, the blue and red dashed lines represent data of float nos. 2903329 and 2903330, respectively. Red thick lines on the bottom of each panel indicate the storm events (Table 1). In panel (b), the green and magenta lines show F_{ME} and F_{EK} , respectively, from float data (thin lines) and the modeled values (thick dashed lines).

Figure 5. (a) SSHA contours on 7 February and BGC float trajectories (blue and red dashed lines
indicate float nos. 2903329 and 2903330, respectively). Solid and dashed lines are positive and
negative, respectively. Contour interval is 0.05 m. Blue and red asterisks are daily float positions

403	between 5 and 9 February. The magenta line shows the trajectory of the SeaGlider between 7 and
404	10 February, and the magenta circles are observation positions between 7 and 9 February. (b) and
405	(c) Vertical profiles from 5 to 9 February of potential temperature from float nos. 2903329 and
406	2903330.
407	
408	
409	
410	
411	
412	
413	
414	

- 416 Figure 6. Time series of the vertical profile of potential temperature from SeaGlider data. The
- 417 fixed time (at the start of profiling) is used for generating the figure.

419 Figure 7. Same as Figure 5 but for Case 2. SSHA contours in (a) are for 20 February. Asterisks in

^{420 (}a) are BGC float profiling positions between 18 and 23 February. Vertical profiles in (c) and (d)

⁴²¹ are for 18 to 23 February.

Figure 8. Same as Figure 5 but for Case 3. (a) and (b) SSHA contours for 8 and 13 March,
respectively. (c) and (d) Vertical profiles on alternate days from 7 to 15 March of potential
temperature and salinity, respectively, from BGC float no. 2903329.

426

427 Figure 9. Same as Figure 5 but for Case 4. (a) and (b) SSHA contours for 22 and 27 March,

428 respectively. (c) and (d) Vertical profiles from 22 to 27 March of potential temperature from BGC

⁴²⁹ float nos. 2903329 and 290330.

431 Figure 10. SSHA contours and sea surface chlorophyll *a* concentrations (mg m³, color scale)

derived from satellite data on (a) 15 March, (b) 25 March, and (c) 29 March. Solid and dashed
lines are positive and negative, respectively. Contour interval is 0.05 m. The magenta circles and
triangles show the positions of BGC float nos. 2903329 and 2903330, respectively. Storms (see
Table 1 and Fig. 2) passed through this area on 7 March (before Case 3) and 21 March (before
Case 4).

Figure 11. Horizontal distributions of (a–c) the normalized Q vector, $10^{13} \times Q \cdot \nabla_h b/|\nabla_h b|$, and (d–f) the horizontal divergence of the Q vector, $10^{17} \times -\nabla_h \cdot Q$, at 380 m. (a) and (d) are for 5 March, (b) and (e) for 13 March, and (c) and (f) for 21 March. Contours show modeled SSHA (difference between SSH and the time-averaged SSH for January–March). Solid and dashed

contours represent positive and negative values, respectively. The contour interval is 0.05 m.

443

Figure 12. Time series of (a) and (c) buoyancy frequency squared, N^2 , and (b) and (d) rate of change of buoyancy frequency squared, $\partial N^2 / \partial t$. Solid and dashed blue lines are for BGC float nos. 2903329 and 2903330, respectively. In (b) and (d), the blue lines were obtained by the linear fit to N^2 in (a) and (c). The solid red lines in (b) and (d) are $\partial N_{BUO}^2 / \partial t$; the solid black lines are $\partial N_{GEO}^2 / \partial t$ from float data; the green solid and dashed lines are $\partial N_{ME}^2 / \partial t$ from the BGC float data and the model, respectively; and the magenta solid and dashed lines are $\partial N_{EK}^2 / \partial t$ from the BGC float data and the model, respectively.

452	Table 1. Stoichiometric comparison of the surface layer in each post-storm restratification events

453 (case 1-4) adapted from Sukigara et al. (2021)

455	CN ratio	-1.5	0.7		-6.7	-5.2		-8.1	+12.7		-4.3	-7.8
456	decrement IN kg d]	-0.264	-0.213		-0.028	-0.057		-0.039	0.012		-0.181	-0.078
458	NO. [µmo.				•						•	
459	ement - ¹ d ⁻¹]	5	8		4	8		0	8		5	3
460	DC incre molC kg	0.40	0.14		0.18	0.29		0.31(0.148		0.78:	0.61
461	P([µ]							_	-		()	()
462	riod (days)	3 days)	3 days)		(5 days	(5 days		(6 days)	(6 days)		. (5 days	: (6 days
463	vent per t – End) th Feb. (th Feb. ($\overline{\mathbf{C}}$	3 ^{ra} Feb.	3 rd Feb.	_	5 th Mar.	5 th Mar.	r.)	:7 th Mar.	28 th Mar.
464	E	5 th Feb. 6 th -9	6 th -9	17 th Feb	18 th -2	18 th -2	7 th Mar.)	9 th -1;	9 th -1;	21 st Ma	22 nd -2	22 nd -2
400		orm on 9	0	orm on	6	0	orm on	6	0	orm on	6	0
467 <u>-</u>	Float #	se 1 (St 290332	290333	se 2 (St	290332	290333	se 3 (St	290332	290333	se 4 (St	290332	290333
468		Ca		Ca			Ca			Ca		