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Abstract. A hierarchy of global 1/4◦ (ORCA025) and Atlantic Ocean 1/20◦ nested (VIKING20X) ocean/sea-ice models is

described. It is shown that the eddy-rich configurations performed in hindcasts of the past 50-60 years under CORE and

JRA55-do atmospheric forcings realistically simulate the large-scale horizontal circulation, the distribution of the mesoscale,

overflow and convective processes, and the representation of regional current systems in the North and South Atlantic. The

representation, and in particular the long-term temporal evolution, of the Atlantic Meridional Overturning Circulation (AMOC)5

strongly depends on numerical choices for the application of freshwater fluxes. The interannual variability of the AMOC

instead is highly correlated among the model experiments and also with observations, including the 2010 minimum observed

by RAPID at 26.5◦N pointing at a dominant role of the forcing. Regional observations in western boundary current systems at

53◦N, 26.5◦N and 11◦S are explored in respect to their ability to represent the AMOC and to monitor the temporal evolution

of the AMOC. Apart from the basin-scale measurements at 26.5◦N, it is shown that in particular the outflow of North Atlantic10

Deepwater at 53◦N is a good indicator of the subpolar AMOC trend during the recent decades, if the latter is provided in

density coordinates. The good reproduction of observed AMOC and WBC trends in the most reasonable simulations indicate

that the eddy-rich VIKING20X is capable in representing realistic forcing-related and ocean-intrinsic trends.

1 Introduction

The Atlantic Meridional Overturning Circulation (AMOC) is one of the most iconic quantities in large-scale oceanography and15

climate sciences (Srokosz et al., 2020; Frajka-Williams et al., 2019). As an integral calculation it summarises individual current

systems and local velocities into a basin-scale latitude-depth representation. Owing to the combination of warm northward

surface and cold southward deep flows, the AMOC is responsible for a net meridional heat transport from low to high latitudes

(Biastoch et al., 2008a; Msadek et al., 2013), hence is a key for understanding the impact of the ocean on climate and the

evolution of climate change. Projections performed within the ‘Climate Model Intercomparison Project’ (CMIP, Eyring et al.,20

2016) foremost evaluate the future evolution of the AMOC strength (e.g. Weijer et al., 2020). And yet, despite its importance

is the AMOC and its past evolution most difficult to obtain and to quantify.
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Several attempts aim to monitor the AMOC. Building on historical measurements, RAPID at 26.5◦N is the longest and most

complete array, that continuously monitors boundary currents and interior geostrophy to combine with Ekman transports to a

full AMOC time series since 2004 (Moat et al., 2020). Others concentrate on individual currents where the AMOC manifests25

in individual surface or deep components, such as the western boundary current (WBC) structure in the Labrador Sea at 53◦N

(Handmann et al., 2018; Zantopp et al., 2017), the Line W off the U.S. coast (Toole et al., 2017), the MOVE array at 16◦N

(Send et al., 2011) or the North Brazil Current at 11◦S (Hummels et al., 2015). As a basin-wide counterpart to RAPID, the

SAMOC array aims to estimate the AMOC at 34.5◦S (Garzoli and Matano, 2011; Meinen et al., 2018), but is available only

for shorter time periods and less complete because of the vigorous eastern and western boundary currents at this latitude.30

Owing to the importance of processes in the subpolar-subarctic North Atlantic, in particular for the decadal variations of the

AMOC, most recent activities concentrate on a basin-wide array crossing the subpolar North Atlantic from both sides towards

the southern tip of Greenland, covered through the international activity ‘Overturning in the Subpolar North Atlantic Program’

(OSNAP, Lozier et al., 2017), also including the array at 53◦N . Common to all observational attempts is the limited spatial

and temporal coverage, that allows to focus only on individual components and/or limited time periods of up to a maximum of35

24 years.

Numerical models help to expand the limited view from observations and guide the interpretation of the physical causes for

the evolution of the AMOC. It has been shown that ocean general circulation models (OGCM) performed under past observed

forcing, so-called ‘hindcasts’, simulate a robust and realistic interannual variability because of the direct impact of wind as a

driving force (Danabasoglu et al., 2016; Biastoch et al., 2008a). However, in particular the simulated decadal variability differs40

among individual model realisations because of the importance of deep water formation and spreading, processes that are very

sensitive to choices of the numerics, resolution and parameterizations (Hewitt et al., 2020). Two specific aspects can be seen

as instrumental for a proper simulation of the spatio-temporal evolution of the AMOC: an adequate ocean-grid resolution and

a well-balanced atmospheric forcing.

Owing to the dominance of the mesoscale in the ocean, eddies play an important role, leading to the strong and fast changes45

of the AMOC seen on monthly and even daily time scales (Frajka-Williams et al., 2019). According to Hallberg (2013), a

horizontal grid resolution of at least 1/10◦, better 1/20◦, is required to resolve the mesoscale in the subtropical and subpolar

North Atlantic. An increased resolution of frontal and WBC structures also contributes to the correct simulation of pathways

(Bower et al., 2019). As a specific aspect pertinent to simulations of the AMOC, it was also shown that the outflow of the

densest component of the North Atlantic Deep Water (NADW) through the Denmark Strait and the Faroe Bank Channel from50

the Nordic Seas, in particular, the entrainment of ambient water masses in the downslope flow regimes south of the sill, is

strongly dependent on resolution and numerics (Legg et al., 2006).

For about 20 years basin-scale and global configurations exist at 1/10◦ or higher resolution. While early experiments aimed

at realistically simulating WBC dynamics such as the separation of the Gulf Stream and eddy-mean flow interactions (Maltrud

et al., 1998; Smith et al., 2000; Eden and Böning, 2002), later studies concentrated on more challenging processes impacting55

the AMOC such as the convection and overflow (Treguier et al., 2005; Xu et al., 2010). The success of high-resolution models

enabled detailed comparisons with the real ocean and improved the design and interpretation of ocean observations (Handmann
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et al., 2018; Breckenfelder et al., 2017). Multi-decadal hindcasts can now be routinely integrated by a number of groups (Hirschi

et al., 2020), also allowing to study the impact of external impacts such as enhanced melting from Greenland’s glaciers (Böning

et al., 2016).60

Besides horizontal resolution, another important ingredient is a realistic atmospheric forcing. In contrast to coupled ocean-

atmosphere models, which simulate intrinsic variability of the ocean circulation not necessarily in phase with observations,

ocean hindcasts require a full set of atmospheric variables binding these to observed variability at the surface. The represen-

tation of the wind-driven circulation as well as of thermohaline-driven events depends on realistic representations of these

surface boundary conditions. An additional constraint to the availability of the specific data is a well-balanced set of variables65

for the heat and freshwater budgets. The atmospheric forcing data specifically created by Large and Yeager (2009) for the

‘Coordinated Ocean Reference Experiments’ (CORE, Griffies et al., 2009) was such a standard for the past decade. In recent

years it was replaced by the new JRA55-do dataset, which is continuously updated to the present and available at higher spatial

and temporal resolution (Tsujino et al., 2020). Forcing products for ocean models are limited by the lacking feedback between

the ocean and the planetary boundary layer in the atmosphere, e.g. through the inclusion of sea surface temperatures (SST)70

for the calculations of sensible heat flux and evaporation using Bulk formulae. However, in this formulation the atmospheric

temperature needs to be prescribed and it cannot respond to changes in the SST, thereby attenuating an important negative

feedback mechanism that in the real, coupled ocean-atmosphere system effectively acts to stabilise the AMOC (Rahmstorf and

Willebrand, 1995). In consequence, the AMOC in these models can become more strongly influenced by the positive feedback

involved in the meridional freshwater transport, rendering them excessively sensitive to the freshwater forcing, e.g., to changes75

or errors in the prescribed precipitation and continental runoff (Griffies et al., 2009).

In this study, we describe an OGCM (VIKING20X) aiming at hindcast simulations of Atlantic Ocean circulation variabil-

ity on monthly to multi-decadal time scales and with a spatial resolution sufficient to capture mesoscale processes well into

subarctic latitudes. VIKING20X is an expanded and updated version of the original VIKING20 model configuration (Behrens,

2013; Böning et al., 2016), now covering the Atlantic from the Nordic Seas towards the southern tip of Africa with a 1/20◦grid,80

nested into a global ocean/sea-ice model at 1/4◦ resolution. We demonstrate that both the ‘eddy-rich’ coverage and the new at-

mospheric forcing provide a configuration that improves the simulation of various key aspects of wind-driven and thermohaline

ocean dynamics. However, we will also show that even at this resolution some numerical choices remain of critical importance,

particularly for the evolution of the AMOC on inter-decadal and longer time scales. We will exploit this sensitivity here by

exploring a set of experiments differing in choices of the forcing (i.e., based on CORE and JRA55-do), initial conditions, and85

some aspects of the formulation of the freshwater fluxes. A particular emphasis of the study is on the imprints of AMOC

variability and trends on WBC systems which, in turn, contributes to exploring the capability of regional observation systems

to capture changes in the basin-scale AMOC. Using the different evolution of the experiments in respect to the long-term

evolution of the AMOC, we turnaround the question and ask which regional observations are able to capture changes in the

AMOC.90

This manuscript is organised as follows: After a comprehensive description of the model configurations and experiments and

their atmospheric forcing (Section 2), we describe the basin-wide horizontal circulation and the AMOC (Section 3). Section 4
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examines the regional representations of key components for the AMOC, from north to south. Section 5 discusses the result

and summarises the manuscript.

2 Model configurations and atmospheric forcing95

VIKING20X is an updated and expanded version of VIKING20. Originally developed by Behrens (2013) to study the impact

of Greenland’s melting glacier on the North Atlantic (Böning et al., 2016), hence representing the Atlantic Ocean from 32◦N

to 85◦N at high resolution, VIKING20 has been shown to improve a series of key feature in the subtropical-subpolar North

Atlantic compared to older and coarser-resolved models: the correct separation of the Gulf Stream and the subsequent path of

the North Atlantic Current (Mertens et al., 2014; Breckenfelder et al., 2017; Schubert et al., 2018), the path of the Denmark100

Strait overflow into and around the subpolar gyre (Behrens et al., 2017; Handmann et al., 2018; Fischer et al., 2015), and the

impact of the West Greenland Current eddies on the convection in the Labrador Sea (Böning et al., 2016). The success of the

physical circulation enabled the use of VIKING20 also for a series of interdisciplinary applications such as the studies on the

impact of ocean currents on the spreading of juvenile eels (Baltazar-Soares et al., 2014), the connectivity of deep-sea mussel

populations (Breusing et al., 2016; Gary et al., 2020) and on the distribution of methanotrophic bacteria off Svalbard (Steinle105

et al., 2015). The ongoing use of VIKING20X for physical and biophysical studies motivates a complete model description

and a thorough verification of the large-scale circulation.

VIKING20X has already been used by Rieck et al. (2019) to study mesoscale eddies in the Labrador Sea and their impact

on the deepwater formation. They confirmed the ability of VIKING20X to simulate the generation of Irminger Rings (Brandt

et al., 2004), convective eddies (Marshall and Schott, 1999) and boundary current eddies (Chanut et al., 2008) and their impacts,110

e.g., on the stratification of the Labrador Sea. In a model comparison on the AMOC Hirschi et al. (2020) found VIKING20X to

be comparable with other eddy-rich models in respect to the representation of the AMOC. Rühs et al. (manuscript under review

at J. Geophys. Res.) demonstrated a good representation of the amount and timing for deepwater formed in the Labrador Sea

and showed that the model is capable in also simulating deepwater in the Irminger Sea.

2.1 ORCA025 and VIKING20X115

The model simulations described and analysed in this study are based on the ‘Nucleus for European Modelling of the Ocean’

(NEMO, Madec, 2016) code version 3.6, also involving the ‘Louvain la Neuve Ice Model’ (LIM2, Fichefet and Morales

Maqueda, 1997). The primitive equations describing the dynamic-thermodynamic state of the ocean are discretised on a stag-

gered Arakawa C-type grid while the two-layer sea-ice model simulating one ice class with a viscous-plastic rheology is solved

on a B-type grid. A global configuration (ORCA025) is used as an ‘eddy-present’ stand-alone configuration as well as host for120

the eddy-rich configuration VIKING20X where ‘Adaptive Grid Refinement In Fortran’ (AGRIF, Debreu et al., 2008) allows to

regionally increase the resolution by embedding a so-called nest, here covering the Atlantic Ocean.

The global ORCA025 (Barnier et al., 2006) is described by orthogonal curvilinear, quasi-isotropic, tripolar coordinates

yielding to a finer horizontal resolution with higher latitudes at a nominal grid size of 1/4◦. The vertical grid is given by 46
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Figure 1. Domain and resolution (in km) of the VIKING20X configuration. The nest area is marked by increased resolution ranging from 5

to 3 km embedded into a global ORCA025 host grid (for both grids every 60th grid line is shown in x and y direction).

geopotential z-levels with layer thicknesses from 6 m at the surface gradually increasing to ∼250 m in the deepest layers.125

Bottom topography is represented by partially filled cells with a minimum layer thickness of 25 m allowing for an improved

representation of the bathymetry (Barnier et al., 2006) and to adequately represent flow over the dynamically relevant f/H

contours (f being the Coriolis Parameter and H the water depth). Together with a momentum advection scheme in vec-

tor form with applied Hollingsworth correction (Hollingsworth et al., 1983), conserving both energy and enstrophy (EEN,

Arakawa and Hsu, 1990), this leads to an good representation of the large-scale, horizontal flow field (Barnier et al., 2006). For130

tracer advection, a 2-step flux corrected transport, total variance dissipation scheme (TVD, Zalesak, 1979) is used, ensuring

positive-definite values. Momentum diffusion is given along geopotential surfaces in a bi-Laplacian form with a viscosity of

15×1010 m4s−1. Tracer diffusion is along iso-neutral surfaces in Laplacian form with an eddy diffusivity of 300 m2s−1. Fast

external gravity waves are damped applying a filtered free surface formulation (Roullet and Madec, 2000) in a linearised form

to ensure a volume conservative ocean. Horizontal sidewall boundary conditions are formulated as free-slip everywhere except135

for a region around Cape Desolation where no-slip is applied to improve the representation of West Greenland Current eddies

(Rieck et al., 2019). A quadratic bottom friction term is applied as vertical boundary condition. In the upper ocean, a turbulent

kinetic energy (TKE) mixed layer model (Blanke and Delecluse, 1993) diagnoses the depth of the mixed layer and increases

vertical mixing for unstable water columns. This includes the representation of deep convection in formation regions of deep

and bottom waters.140

VIKING20X consists of a global ORCA025 host grid and a nest covering the Atlantic Ocean from 33.5◦S to∼65◦N (Owing

to the tripolar grid, the northernmost latitude varies, with a maximum of 69.3◦N and a mean of 65.1◦N) at a nominal horizontal

resolution of 1/20◦. Both grids are connected through a two-way nesting capability, using AGRIF with a grid refinement factor

of 5 (Fig. 1). Due to its mandatory rectangular shape on the host grid, the nest reaches into the Pacific Ocean to 100◦W and
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cuts through the Mediterranean at∼22◦E. (Note that the eastern boundary ranges from 20◦E in the south to 32◦E in the north.)145

Both grids share the same vertical axis. The bottom topography in the nest is generated by interpolating ETOPO1 (Amante and

Eakins, 2009) to the model grid and connected to the host via a transition zone along the nest boundaries. Not only bathymetry

but also coast lines are thereby better resolved. To guarantee that all ocean grid cells in the nest are embedded into ‘wet’ cells on

the host grid, the coast lines on the host grid within the nested area are adjusted accordingly; an updated bathymetry is applied

for the host. To meet the Courant-Friedrichs-Lewy (CFL) criterion, the time step for the integration on the nest grid is reduced150

by a factor of 3 compared the host grid. The two-way nature of the nesting not only provides boundary conditions from the host

to the nest but also communicates back the effect of resolving smaller scale processes in the nested area to the global ocean.

This is achieved by an exchange along the nest boundaries in both directions at every common time step of the host and nest

integration (here, every third nest time step). Furthermore, the solution on the host grid is updated with the three-dimensional

ocean state on the nest grid, usually every third host grid time step (for the freshwater budget corrected experiments, see below,155

this is done at every host grid time step).

Diffusion parameters are adjusted for the nest grid to meet the increased resolution. The Laplacian parameter for tracers is

60 m2s−1 and the bi-Laplacian parameter for momentum is 6×109 m4s−1. To allow for a smooth transition between the host

and the nest grids, a sponge layer is applied as a second-order Laplacian operator with a damping scale of 600 m2s−1.

2.2 Atmospheric forcing160

For the simulations used here, we employ two different atmospheric forcing sets developed for the use in ocean models, CORE

(version 2) (Large and Yeager, 2009; Griffies et al., 2009) and JRA55-do (Tsujino et al., 2020).

The CORE dataset is a merged product on a regular 2◦ grid covering the period 1948 to 2009. It builds on the NCEP/NCAR

reanalysis which is corrected with observations and climatologies. Provided are zonal and meridional winds as well as air

temperature and humidity 10 m above sea level available as interannually varying fields at 6-hourly resolution throughout165

the entire forcing period. For the earlier phase, precipitation (at monthly resolution) and radiation (at daily resolution) are

provided as climatology whereas for the later decades CORE incorporates precipitation (since 1979) and radiation (since

1984) as interannually varying fields from satellite-based measurements. Atmospheric fluxes are globally balanced on the

basis of observed sea surface temperature and salinity data. A set of Bulk formulations also provided by Large and Yeager

(2009) connects the atmospheric forcing fields with the ocean model. The surface wind stress is formulated as relative winds,170

by using the difference between wind and ocean velocities for the calculation of the Bulk formulae. CORE was used for a

series of ocean model intercomparisons (OMIP) (e.g., Griffies et al., 2009; Danabasoglu et al., 2014) and builds the basis for

the official OMIP under CMIP6 (Griffies et al., 2016). For the simulation forced with the CORE dataset, we employ a monthly

climatological field representing 99 of the major rivers and coastal runoff (Bourdallé-Badie and Treguier, 2006) to simulate

freshwater input from land to the ocean.175

The CORE dataset is no longer maintained and the forcing period therefore ends with the year 2009. As a successor,

JRA55-do (used here is version 1.4) is meant to replace CORE as a common forcing product for ocean hindcasts and for

model inter-comparison studies (Tsujino et al., 2018). JRA55-do (with ‘do’ for ‘driving the ocean’) builds on the Japanese
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reanalysis product JRA-55 with improvements through the implementation of satellite and several other reanalyses products.

All atmospheric forcing fields are available on a 1/2◦ horizontal grid at 3-hourly temporal resolution covering the period 1958180

to 2019. JRA55-do will be continuously extended into the present at least until 2023. In the simulations presented here, the

same Bulk formulations as used in CORE are applied.

Along with the atmospheric fields, JRA55-do also provides an interannually varying daily river runoff field at 1/4◦ horizontal

resolution, which includes freshwater fluxes from ice sheets. For Greenland, this even includes the enhanced observed melting

of the past decades (Bamber et al., 2018). This runoff field needs to be remapped from the JRA55-do to the ocean model185

grid. Here, the challenge is in the discrete placement of runoff along the different coastlines. The JRA55-do runoff covers a

broader band along the coast while fjords and bays are differently represented on the two grids. The discontinuous nature of the

runoff field prohibits a simple interpolation scheme. We thus created a remapping tool to reassign runoff to the model coastline

preserving the spatial fine-scale heterogeneity of the forcing field. The runoff of each source grid node is conservatively

redistributed within a radius of 55 km (80 km for VIKING20X-JRA-OMIP and ORCA025-JRA-OMIP) onto ocean nodes190

on the global (host) grid using a distance-weighted (D−3) scheme to reduce spatial smoothing of the freshwater flux. A few

forcing field nodes are located farther than 55 km from the model coastline, for instance far inside fjords not represented

in the model’s topography. We account for this error by proportional upscaling of the remapped global runoff field at each

time instance. The rather exact remapping yields some high-runoff locations, such as the Amazon river mouth with a long

term average discharge of 0.28 kg m−2 s−1. Runoff in VIKING20X-JRA-short and in VIKING20X-JRA-long before 1980195

was applied including these locally very confined and high values, leading to some rare and only short lived instabilities. To

overcome these, we apply a simple river plume scheme, i.e. a spreading of the runoff within a radius of 100 km, again applying

distance-based (D−1) weights to keep the focus on the actual river mouth for grid cells with at least 0.005 kg m−2 s−1 runoff,

representing the 27 largest rivers in VIKING20X-JRA-long from 1980 onwards and in all other JRA55-do forced experiments.

Compared to the previous runoff field used in conjuction with the CORE forcing these river plumes are considerably smaller.200

Runoff in the VIKING20X nest is then based on the runoff field on the host grid and interpolated onto the nest following the

same procedure (Lemarié, 2006) as for all other initialisation fields. Inherent to this procedure is a spatial smoothing over 5×5

grid cells depending on the nesting scheme: runoff in the nest is supposed to enter the ocean in the same geographic area as it

does on the underlying host grid, which has a five times coarser resolution. Note, the interpolation scheme erroneously assigns

runoff to land grid cells, which we corrected by redistributing the runoff to ocean nodes within the associated 5×5 grid boxes.205

2.3 Experiments

A series of simulations is used in this study (Table 1). VIKING20X-CORE is an experiment forced by the CORE dataset

for the period 1958 to 2009, already used and described by Rieck et al. (2019) and Hirschi et al. (2020). It is based on a

spin-up integration under the interannually-varing CORE forcing for the period 1980 to 2009 that originally started at rest from

hydrographic conditions as provided by the World Ocean Atlas 1998 (Levitus et al., 1998) with corrections for the polar regions210

(PHC2.1, Steele et al., 2001). The sea-ice fields for the spin-up are initialised from a pre-spun state of a former simulation in

ORCA025 to allow for a smooth start of the spin-up integration avoiding strong shocks to the fresh water budget.
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Table 1. Experiments with forcing and integration period. Also provided are internal names used to identify the specific experiments. For

the initialisation, ‘Spinup’ refers to an experiment covering the period 1980 to 2009 under CORE forcing, ‘Rest’ to an initialisation with

temperatures and salinities of WOA13 and velocities at rest. VIKING20X-JRA-short was restarted from the end state of year 1979 of

VIKING20X-CORE. SSSR is the sea surface salinity restoring timescale in m yr−1, FWB is a potentially used freshwater budget correction.

Experiments are grouped according to their initialisation and application of freshwater fluxes.

Short name Long/internal name Forcing Period Initialisation SSSR FWB

VIKING20X-CORE VIKING20X.L46-KKG36013H CORE v2 1958-2009 Spinup 12.2 -

VIKING20X-JRA-short VIKING20X.L46-KKG36107B JRA v1.4 1980-2019 Year 1979 12.2 -

VIKING20X-JRA-long VIKING20X.L46-KFS001 JRA v1.4 1958-2019 Spinup 12.2 -

ORCA025-JRA ORCA025.L46-KFS001-V JRA v1.4 1958-2019 Spinup 12.2 -

ORCA025-JRA-strong ORCA025.L46-KFS006 JRA v1.4 1958-2019 Spinup 50.0 ×

VIKING20X-JRA-OMIP VIKING20X.L46-KFS003 JRA v1.4 1958-2019 Rest 50.0 ×
ORCA025-JRA-OMIP (2 cycles) ORCA025.L46-KFS003-V (-2nd) JRA v1.4 1958-2019 Rest 50.0 ×

INALT20-JRA-long INALT20.L464-KFS10X JRA v1.4 1958-2019 Spinup 50.0 -

Three hindcasts in VIKING20X are forced by the JRA55-do forcing: VIKING20X-JRA-short is a short hindcast integration,

branched off VIKING20X-CORE at the end of 1979 and performed from 1980 to 2019. VIKING20X-JRA-long is based on the

spinup for VIKING20X-CORE and performed over the whole forcing period 1958 to 2019. VIKING20X-JRA-OMIP instead215

follows the OMIP-2 protocol (Griffies et al., 2016) and started from rest and an initialisation of temperature and salinities of

the World Ocean Atlas 2013 (WOA13, Locarnini et al., 2013; Zweng et al., 2013). It also differs in respect to the sea surface

salinity (SSS) restoring and the balance of the freshwater budget (see below). For comparison, the two long-term experiments

were accompanied by experiments in ORCA025: ORCA025-JRA and ORCA025-JRA-strong following VIKING20X-JRA-

long, and ORCA025-JRA-OMIP following VIKING20X-JRA-OMIP.220

To reduce model drifts due to missing feedbacks from the atmosphere, a SSS restoring towards the initial climatological

field is applied in most VIKING20X experiments with a piston velocity of 50 m 4.1 yr−1 (12.2 m yr−1) leading to a restoring

timescale of 183 days for the uppermost 6-m grid cell. In sea-ice covered areas as well as where runoff enters the ocean,

restoring is suppressed. Furthermore, at the river mouths vertical mixing in the upper 10 m of the water column is enhanced.

ORCA025-JRA-strong, ORCA025-JRA-OMIP and VIKING20X-JRA-OMIP instead used a stronger piston velocity of 50 m225

yr−1 (timescale of 44 days) and a freshwater budget correction that globally balances the freshwater fluxes to zero at any host

timestep. In all experiments under JRA55-do forcing restoring is also suppressed in an 80 km wide band around Greenland to

allow for a free spread of the enhanced fresh water input to the ocean from melting ice-sheets.

For comparison, in particular to assess potential restrictions due to the location of the southern boundary in VIKING20X,

a nested configuration where the refinement from 1/4◦ to 1/20◦ applies to the South Atlantic and western Indian Ocean, is230
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used: INALT20-JRA-long, also performed under JRA55-do forcing similar to VIKING20X-JRA-long. A full description of

INALT20 is provided by Schwarzkopf et al. (2019). In contrast to VIKING20X-JRA-long, the SSS restoring in INALT20-

JRA-long is stronger (50 m yr−1), and the restoring also applies around Greenland. INALT20-JRA-long is initialized with

the ocean state of a spin-up integration in INALT20 under CORE forcing from 1980-2009. The lateral boundary condition

in INALT20-JRA-long is no-slip in the nest and free-slip on the host grid without any special treatment at Cape Desolation.235

Furthermore, INALT20-JRA-long includes the simulation of tides.

It is important to acknowledge that the integration history of eddy-rich models is often less systematic as one would like

to have for a systematic evaluation, often aiming at the ‘best’ experiment under demanding computational costs. The use

of accompanying experiments with ORCA025 helps to isolate individual choices, such as the SSS restoring parameter by

comparing ORCA025-JRA and ORCA025-JRA-strong. The latest experiment (VIKING20X-JRA-OMIP), also differing in240

the initialisation, is following the recent OMIP-2 protocol (Tsujino et al., 2020) and was completed during the writing of this

manuscript. ORCA025-JRA-OMIP was already performed over a subsequently following second cycle through the JRA55-do

forcing.

3 Basin-wide Circulation

We start the analyses with an evaluation of the basin-scale circulation. In contrast to the horizontal circulation, for which245

satellite altimetry provides a good estimate, there is no ground-truth for the general structure of the AMOC. Utilising the

longest available observational time series by the RAPID Programme for an evaluation of the AMOC strength and evolution,

we compare the different evolution of the experiments.

The broad patterns of the mean sea surface height (SSH) are similar in all experiments (Fig. A1), reflecting a robust repre-

sentation of the upper-layer circulation in the subtropical and subpolar gyres, the equatorial circulation, and the South Atlantic-250

Indian Ocean supergyre. For the path of the North Atlantic Current and the separation of the subtropical and subpolar gyres,

VIKING20X shows a major improvement compared to ORCA025. The impact of resolution becomes even more apparent in

the patterns of the SSH variability (Fig. 2). Gauged by the observational account provided by AVISO, the VIKING20X exper-

iments show a much improved solution compared to ORCA025, applying both to the magnitude and to the horizontal patterns

of the mesoscale variability at the western boundary and along open-ocean currents such as the Azores Current at around 35◦N.255

Prominent differences particularly concern the more realistic separation of the Gulf Stream near Cape Hatteras and the course

of the North Atlantic Current in its northward turn into the Northwest Corner in VIKING20X compared to ORCA025.The

latter represents an improvement also to its precursor version (VIKING20) that simulated a Northwest Corner extending too

far north into the southern Labrador Sea (Breckenfelder et al., 2017).

More than the horizontal circulation, being in large parts already determined by the grid resolution and the wind field,260

the vertical overturning circulation strongly depends on both wind and thermohaline driving mechanisms. This does not only

involve the applied atmospheric forcing itself but also details of its application such as SSS restoring and its impact on the

freshwater budget at higher latitudes (Behrens et al., 2013). The AMOC, represented by the streamfunction derived from
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Figure 2. Variance of sea surface height (in cm2) in (a) ORCA025-JRA, (b) VIKING20X-JRA-short and (c) satellite altimetry, calculated

based on 5-day averages over the period 1993-2019.

Figure 3. Mean AMOC streamfunction (1990-2009, in Sv) in (a) ORCA025-JRA, (b) VIKING20X-JRA-long, (c) VIKING20X-JRA-short

and (d) VIKING20X-CORE. Positive (clock-wise) contour intervals are 2 Sv, negative (counter clock-wise; grey shaded) contour intervals

are 1 Sv.

zonally and vertically integrated meridional velocities (Figure 3), reflects these influences in an integral way. While the general

structure, with the North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) cells, are broadly similar in265
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Table 2. Mean and standard deviation based on monthly averaged as well as interannually filtered (using a 23-months Hanning filter) data

of the AMOC transport (given by the strength of the NADW cell) at 26.5◦N. ∗Note the different period 2004-2009 due to the availability of

RAPID data and shorter integration length of VIKING20X-CORE.

Experiment Mean [Sv] Std. dev. (2004-2018) [Sv]

1990-2009 2004-2018 monthly interannual

VIKING20X-CORE 20.4 19.3∗ 2.7∗ 0.5∗

VIKING20X-JRA-short 18.0 15.3 3.0 1.1

VIKING20X-JRA-long 14.2 12.5 3.0 1.0

ORCA025-JRA 10.9 9.2 2.8 1.0

ORCA025-JRA-strong 13.4 12.6 2.7 0.7

VIKING20X-JRA-OMIP 18.3 15.9 2.9 1.1

ORCA025-JRA-OMIP 15.9 14.8 2.7 0.7

ORCA025-JRA-OMIP-2nd 14.2 13.4 2.7 0.8

Observations (RAPID) 18.6∗ 17.7 3.4 1.5

all experiments, differences are apparent in both the strength and the vertical extensions of the NADW cells. The strength

of the NADW cell is quite different, with 1990-2009 average values at 26.5◦N ranging from 10.9 Sv in ORCA025-JRA to

20.4 in VIKING20X-CORE (Table 2). In the observational period (2004-2018), the JRA55-do-based experiments yield lower

estimates, while VIKING20X-CORE (note the joint coverage of just 5 years) appears higher compared to observations at

26.5◦N. Nevertheless, both VIKING20X-JRA-short and VIKING20X-JRA-OMIP fall well within the range of the observed270

interannual standard deviations. There is a clear resolution effect with ∼1-3 Sv higher transport in the 1/20◦ simulations

depending on the exact comparison (VIKING20X-JRA-long vs. ORCA025-JRA or VIKING20X-JRA-OMIP vs. ORCA025-

JRA-OMIP) and time period. The NADW cell is also deeper at high resolution, indicating a better representation of the lower

component of the NADW constituted by overflow across the Greenland-Scotland Ridge and the corresponding entrainment of

ambient water (discussed further below). Finally, there is dependency of the mean AMOC on initial conditions, as illustrated275

by the different strength of ORCA025-JRA-strong and ORCA025-JRA-OMIP and its subsequent second cycle. Experiments

with a longer history tend to simulate a weaker AMOC, pointing to a spin-down effect (see below). This in particular applies

to VIKING20X-JRA-short that starts from a relatively high level of VIKING20X-CORE, thus simulates (over the same time

period) a 3-4 Sv higher AMOC compared to VIKING20X-JRA-long under the same numerical conditions.

The RAPID data allow a more detailed evaluation of the depth structure. Figure 4a shows vertical profiles of the AMOC280

at 26.5◦ N; its vertical derivative represents the meridional transport per unit depth, thus providing a direct account of the

northward and southward branches of the AMOC (Fig. 4b). Regarding the total strength of the NADW cell, all model results are

lower than the observations (see also Table 2). Closer inspection shows that the differences mostly concern the representation

of the deepest portion of the southward flow, i.e., the transport of lower NADW below∼3200 m, whereas the upper part (1000-

3000 m) appears reasonably well represented. The deficit in the range of lower NADW has been recognised as a longstanding,285
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Figure 4. Profiles of the (a) AMOC (in Sv) and (b) its vertical derivative (in mSv m−1) at 26.5◦N (note the different ranges above and below

600 m depth) for experiments and RAPID observations (orange), all averaged from 2004 to 2018.

persistent issue in ocean and climate models (Fox-Kemper et al., 2019), and can largely be attributed to a loss of the high-

density source waters from the Nordic Seas, e.g., by spurious mixing in the outflows across the Greenland-Scotland ridge

system (Legg et al., 2006). The deficit is most pronounced in ORCA025; the representation is improved in VIKING20X, but

there is still a gap by about 500 m in the reversal from southward NADW to northward AABW flow (Figure 4b). It remains

unclear if this is a result of a too weak representation of the densest NADW, e.g. through spurious entrainment into the overflow,290

or by a too strong modelled AABW cell. It could also be influenced by the choice of the reference level used for the RAPID

array (Sinha et al., 2018), noting that the representation of AABW is not its major aim.

Figure 5a shows that the AMOC differs not only in mean strength but also exhibits pronounced differences in its temporal

evolution over multi-decadal time scales. The CORE-based experiment (VIKING20X-CORE) produces an increasing AMOC

with a maximum in the mid-1990s, and a decline and stabilisation thereafter. This maximum corresponds well to the reported295

phase of strong convection in the Labrador Sea from observations (e.g. Yashayaev, 2007). While VIKING20X-JRA-long
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Figure 5. AMOC evolution, provided by the strength of the NADW cell at 26.5◦N: (a) full interannual, (b) 1-5-year band-pass and (c)

pentadally filtered time series.

exhibits a long-term decline, VIKING20X-JRA-OMIP also simulates the maximum in the mid-1990s, however in contrast to

VIKING20X-CORE continues to decline in the 2000s and beyond. The observational period of RAPID is only fully covered

by the JRA55-do-based experiments. If we consider VIKING20X-JRA-OMIP and VIKING20X-JRA-short showing the ‘best’

evolution, we note a weaker AMOC at the beginning of the observational time series, but a good representation of the 2010300

minimum which was described as a wind-related response in a negative NAO winter (e.g., McCarthy et al., 2012). There is a

tendency towards a recovery thereafter, though with a stabilisation at a weaker level, compared to the observations, towards the

end of the time series.
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Figure 6. Pentadally filtered (a) Arctic and (b) subpolar Freshwater Content (computed from seawater alone, hence excluding sea-ice and

snow volume, using a reference salinity of Sref =34.7, in 103 km3). Note the inverted y-axis.

The interannual AMOC variability is remarkably robust among the range of experiments and in comparison to the observa-

tions (Figure 5b). The interannual correlations between VIKING20X-JRA-long, ORCA025-JRA and ORCA025-JRA-strong305

range around r = 0.8−0.9 (10980-2009). VIKING20X-JRA-long correlates weaker with VIKING20X-CORE (r = 0.6−0.7),

probably because of the different wind forcing. Within the overlapping period, all experiments show a good correlation with

RAPID observations (r = 0.73−0.86). This underlines the importance of the wind forcing as a major driver for the interannual

variability (Danabasoglu et al., 2016). It is interesting to note that the observed monthly variability (indicated by the standard

deviation in Table 2) is underestimated by 10-20% with only little resolution dependency. However, the interannual variability310

of VIKING20X is higher than that of ORCA025, but still underestimates the observations by more than 30%. We also no-

tice that the high variability of the latter may include errors from measurements and the processing of the different AMOC

components from RAPID data.

An important aspect for the long-term evolution of the AMOC is freshwater fluxes provided by the atmospheric forcings

and the numerical details of its application. This is demonstrated by also considering the ORCA025 sensitivity experiments:315
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ORCA025-JRA-strong (dashed green lines in Fig. 5a,c) with stronger SSS restoring and applied freshwater budget correc-

tion shows a weaker trend (at least post-1980s) compared to ORCA025-JRA (solid green lines). This is also indicated by

VIKING20X-JRA-long and VIKING20X-JRA-OMIP (thick solid blue and red lines in Fig. 5a,c), although an initialisation

effect with one experiment starting from a restart, the other from rest, could also play an additional role here.

The long-term evolution, stable and upward in VIKING20X-CORE and downward in the JRA55-do-based experiments320

(Fig. 5c), can be understood through the inspection of the evolution of the freshwater content (FWC). The trend of the Arctic

FWC over the last couple of decades is stable in VIKING20X-CORE and VIKING20X-JRA-OMIP, and increasing in the

other JRA55-do forced experiments (Fig. 6a — note the reversed y-axis to match to Fig. 5c). The trend has its origin in an

increased precipitation within the Arctic and sub-Arctic regions, which also causes a slight increase in the river runoff. It fits

to the observed increase of 600 ± 300 km3 year−1 between 1992 and 2012 found by Rabe et al. (2014).325

In contrast to the Arctic, the subpolar North Atlantic shows a different evolution in the JRA55-do based experiments, de-

pending on the application of the freshwater fluxes, and in consequence less of the forcing data itself (Fig. 6b). This effect

is isolated by the two ORCA025 experiments: While ORCA025-JRA shows strong increases in FWC, the experiments with

a stronger SSS restoring and freshwater budget correction, ORCA025-JRA-strong and ORCA025-JRA-OMIP, stabilise af-

ter 1980. As a result of the inability of Bulk formulae to properly feedback to the (largely prescribed) atmosphere, Griffies330

et al. (2009) have described a positive feedback between AMOC strength and freshwater forcing, with additional freshwater

in the subpolar North Atlantic limiting deepwater formation. The corresponding reduction of the AMOC would cause less salt

transported northward, in consequence leading to a further freshening of the subpolar North Atlantic (Behrens et al., 2013).

Both VIKING20X-JRA-OMIP and ORCA025-JRA-OMIP seem to minimise the positive feedback between subpolar North

Atlantic FWC and AMOC through stronger SSS restoring and a global FWC correction obviously lowering the FWC trend in335

the subpolar gyre.

While a clear attribution of the AMOC trends to either physical drivers (i.e., atmospheric forcing and runoff) or spurious

model drift is not possible at this stage, we can use the range of solutions with their diverging trends to assess their manifestation

in regional current systems, and thereby explore if and how regional observational arrays may be capable in depicting the long-

term evolution and variability of the AMOC. An important part of the analysis is the formation and spreading of deepwater340

masses. From a number of observational and modelling studies, Lozier (2010) concluded that NADW only partly follows a

coherent Deep Western Boundary Current (DWBC) as explained by classical theory (Stommel, 1958). In several parts of the

Atlantic Ocean deviations into the interior, recirculations and disruptions by deep mesoscale eddies play an important role in

the spreading.

Figure 7 illustrates the pathways of NADW, entering from the Nordic Sea through the Denmark Strait and through the Faroe345

Bank Channel, the latter flowing around and crossing through gaps of the Reykjanes Ridge (Zou et al., 2017). The coherent

path around Greenland is broken into mesoscale eddies in the northern Labrador Sea reaching even down into this density range

(Rieck et al., 2019), and re-configures again at the Canadian side. The export of NADW from the subpolar into the subtropical

North Atlantic and further into the South Atlantic is subject to many studies (e.g. Bower et al., 2009). General consensus,

indicated by models and observations is that a large part of NADW is deviated on a broad path towards the mid-Atlantic ridge350
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Figure 7. Mean speed (1990-2009, in cm s−1), averaged between σ0 = 27.65− 27.95 in VIKING20X-JRA-short. Regional sections are

indicated by black lines.

(Lozier et al., 2013; Gary et al., 2011; Biló and Johns, 2019; Le Bras et al., 2017), with only a narrow portion of the DWBC

flowing around Flemish Cap and through Flemish Pass. Only at around 30◦N, the flow towards the south is seen again as a

coherent DWBC, but also subject to local recirculations (Schulzki et al., manuscript under review at J. Geophys. Res.). In the
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Figure 8. Evolution of maximum overflow density and the overflow transport in the (a and b) Denmark Strait and the (c and d) Faroe-Bank

Channel respectively. Overflow transport estimates are based on southward transport of waters with density larger than 27.70 kg m−3 below

270 m.

South Atlantic, the DWBC again breaks up into mesoscale eddies (Dengler et al., 2004), and then fades out at around 20◦S.

(Van Sebille et al., 2012) has described the flow of NADW as a zonal confined pathway at 25◦S. This is not seen here.355

4 Regional Imprints

4.1 Subpolar North Atlantic

The subpolar North Atlantic is a key region for the AMOC. It receives surface water masses from the subtropics and overflow

water from the Nordic Seas. Here, the different components of the NADW are formed through exchange with the atmosphere

and mixing processes. They directly maintain the strength of the AMOC and modulate its variability.360

The densest component of the NADW is formed in the Nordic Seas: through heat loss to the atmosphere and sea-ice for-

mation, dense water is formed and, by convection, builds a large reservoir at depth between Greenland, Iceland and Norway.

It then spills over the Greenland-Scotland Ridge into the subpolar North Atlantic. Two narrow passages, the Denmark Strait

between Greenland and Iceland with a sill depth of 650 m and the Faroe Bank Channel between the Faroe Islands and Scotland
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Table 3. Maximum density and overflow transports provided as mean and monthly standard deviation for the period 1990-2009 at Denmark

Strait sill and Faroe Bank Channel. Overflow transports are based on southward transport of waters with density larger than 27.70 kg m−3

below 270 m.

max density σ0 [kg m−3] overflow transport [Sv]

Denmark Strait Faroe Bank Channel Denmark Strait Faroe Bank Channel

VIKING20X-CORE 28.05 28.04 3.4 ± 0.5 1.4 ± 0.2

VIKING20X-JRA-short 28.01 28.01 3.2 ± 0.5 1.4 ± 0.2

VIKING20X-JRA-long 27.98 27.96 3.1 ± 0.4 1.3 ± 0.2

ORCA025-JRA 27.82 27.88 1.0 ± 0.3 1.9 ± 0.2

ORCA025-JRA-strong 27.89 27.93 2.1 ± 0.5 2.2 ± 0.4

VIKING20X-JRA-OMIP 28.02 28.01 3.2 ± 0.5 1.4 ± 0.3

ORCA025-JRA-OMIP 27.93 27.96 2.3 ± 0.5 2.4 ± 0.6

ORCA025-JRA-OMIP-2nd 27.89 27.91 2.1 ± 0.5 2.3 ± 0.5

with a sill depth of 850 m, funnel this exchange. Figure 8 and Table 3 show density and transport through both passages.365

With transports of around 3 Sv and little variability through the Denmark Strait, the mean transport in VIKING20X fits to the

observational estimates (3.1 Sv by Jochumsen et al. (2017) and 3.5 Sv by Harden et al. (2016)). Transports through the Faroe

Bank Channel are around 1.4 Sv, thus smaller than the reported 2.2 Sv (Hansen et al., 2016; Østerhus et al., 2019; Rossby et al.,

2018) to 2.7 Sv (Berx et al., 2013). ORCA025 instead simulates an enhanced transport which (in parts) can be attributed to the

40% larger cross section at 1/4◦ resolution compared to 1/20◦. The simulated maximum density is typically smaller than the370

reported σ0=28.05-28.07 (Harden et al., 2016; Hansen et al., 2016), which can also be due to the limited vertical resolution not

resolving the bottom boundary layer.

Except for a strong weakening trend in ORCA025-JRA and a spindown in the first decades of ORCA025-JRA-OMIP,

transports do not show a long-term trend, and are quite stable. This is probably a result of the continuous supply of dense

water north of the sills and hydraulic control limiting the transport to its given value (Käse et al., 2003). More important than375

the transport itself is the density of the overflow water. Previous studies described a direct link between overflow density and

AMOC strength (Behrens et al., 2013; Latif et al., 2006), although the exact reason for this is still unclear and debated. For

example, Danabasoglu et al. (2014) do not find such a link in the variety of CORE-based experiments. Here we do see a

similar behaviour of both overflow density and AMOC, with stable densities in VIKING20X-CORE and (different) weakening

trends in VIKING20X-JRA-long, VIKING20X-JRA-short and VIKING20X-JRA-OMIP. ORCA025-JRA shows a decline in380

overflow densities, stronger than anticipated from the AMOC trend (Figure 5). However, similar to the AMOC, ORCA025-

JRA-strong shows a weaker declining trend compared to ORCA025-JRA after 1980. In ORCA025-JRA this is also reflected

in the overflow transport. It is interesting to note that the first cycle in ORCA025-JRA-OMIP shows a similar stabilisation after

about 25 years. The second cycle continues the remaining weak trend, but starts from a lighter density which is again reflected

in the AMOC. Instead, VIKING20X-JRA-OMIP does not show such a spin-down.385

18

https://doi.org/10.5194/os-2021-37
Preprint. Discussion started: 17 May 2021
c© Author(s) 2021. CC BY 4.0 License.



Figure 9. Spatial pattern and temporal variability of MLD in the subpolar North Atlantic: Long-term (1980-2009) mean EKE at 112 m depth

and annual maximum MLD (MLDa) in (a) VIKING20X-CORE, (b) VIKING20X-JRA-long and (c) ORCA025-JRA, light red contours

highlight long-term mean MLDa > 1000 m and grey contours the long-term maximum MLDa > 1000 m; (d) interannual variability of

spatially integrated MLDa volume.

In the subpolar North Atlantic, additional deepwater is added to the system. Owing to strong wintertime heat loss, facilitated

among others through strong and cold winds, the Labrador and Irminger Seas are regions of deepwater formation through deep

convection, providing a lighter, upper component to the deepwater, the upper NADW (in contrast to the overflows named lower

NADW).

The distribution of long-term mean annual maximum mixed layer depth (MLDa, Fig. 9a-c) shows that the spatial patterns of390

deep convection are influenced by both the ocean model resolution and the atmospheric forcing. In VIKING20X simulations

the centre of deep convection in the Labrador Sea, here indicated by the light red line encompassing the area where long-term

mean MLDa exceeds 1000 m, is limited in the north through the impact of travelling Irminger Rings visible through a tongue

of elevated EKE (Fig. 9a-b, note that the pattern for VIKING20X-JRA-short and VIKING20X-JRA-OMIP are not shown but
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are very similar to VIKING20X-CORE) as thoroughly described by Rieck et al. (2019). As Irminger Rings are not properly395

represented in ORCA025, the centre of deep convection here extends further to the northwest (Fig. 9c). Moreover, in all model

simulations, the potential deep convection region, here indicated by the light grey line encompassing the area where long-term

maximum MLDa exceeds 1000 m, extends into the Irminger Sea. However, the area covered by the centre of deep convection

as well as by the potential deep convection region vary among the different model simulations, with no clear relation to the

model resolution. While there are little differences between VIKING20X-CORE, VIKING20X-JRA-short and VIKING20X-400

JRA-OMIP (not shown), VIKING20X-JRA-long and ORCA025-JRA feature overall smaller areas and ORCA025-JRA-OMIP

(not shown) larger areas than the former.

While the resolution seems to determine the general spatial structure, the forcing and other model specific settings impact the

intensity and temporal variability of deep convection. During the first 15 years, i.e., until the mid 1970s, the MLDa volume in

the depicted domain (Fig. 9d) shows nearly the same magnitude and temporal variability for all simulations (notably, the overall405

MLD volume in the ORCA025 simulations is not systematically larger than in the VIKING20X simulations). Afterwards,

MLDa volume and variability in VIKING20X-JRA-long and ORCA025-JRA decreases compared to the other simulations.

The smaller MLDa volume is a result of shallower MLDa over the whole domain, including reduced convection intensity in

the central deep convection areas. Most interestingly, in VIKING20X-JRA-long and ORCA025-JRA the decrease of MLDa

volume sets in after the simulated AMOC decline described above, suggesting that the long-term AMOC decline is not triggered410

by weakening deep convection in the subpolar North Atlantic, but potentially adds to the decrease in deep convection intensity

(which, however, could then feedback on the AMOC). Hence, at least part of the diagnosed negative MLDa volume trends in

VIKING20X-JRA-long and ORCA025-JRA arise from spurious model drifts described above.

In comparison to observations the MLDa patterns in the VIKING20X simulations (including the occasionally large MLDs

in the Irminger Sea) seem more realistic than that of other model simulations at lower or comparable resolution. Moreover,415

the temporal evolution of the MLD volume in VIKING20X-CORE, VIKING20X-JRA-short, and VIKING20X-JRA-OMIP

agrees very well with the reported history of deep convection in the subpolar North Atlantic (while VIKING20X-JRA-long and

ORCA025-JRA seem to miss a clear maximum of MLD volume and deep convection intensity in the 1990s, and ORCA025-

JRA-OMIP experiences a too strong intensification of deep convection in recent years). A more detailed evaluation and inter-

pretation is done elsewhere (Rühs et al., manuscript under review at J. Geophys. Res.).420

The circulation in the subpolar North Atlantic can be characterised by an index based on sea surface height. Following Koul

et al. (2020), the subpolar gyre index is defined as 2nd principle component of EOF analysis with non-detrended data. It is

highly correlated with steric changes in the gyre, e.g., upper ocean density in the centre of the gyre, which are largely connected

to changes in the NAO index, and impact the upper ocean salinity in the eastern subpolar North Atlantic. A density increase in

the centre intensifies the gyre through geostrophic balance (both, stronger and larger gyre, index > 0), reduces the throughput425

of subtropical waters, and hence leads to a freshening of the eastern subpolar North Atlantic.

Figure 10 shows that the annual mean subpolar gyre index of most experiments is correlated with observations (Table

4). The experiments seem also robust on longer, decadal timescales, with a strong subpolar gyre in the 1990s, a weakening

thereafter and a recovery in the mid 2010s. While both maxima are reflected in the convection strength (the second one at least
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Figure 10. Time series of the annual mean subpolar gyre index in the experiments and based on observations (orange). Here, the index is

defined as the second PC of an EOF-analysis for non-detrended SSH in the North Atlantic between 20 and 70◦N.

Table 4. Correlations of the annual mean gyre index with observations for the period 1993-2009. Correlations are significant at 99%, except

the one for VIKING20X-JRA-short (80%).

Experiment Correlation

VIKING20X-CORE 0.85

VIKING20X-JRA-short 0.34

VIKING20X-JRA-long 0.76

VIKING20X-JRA-OMIP 0.71

ORCA025-JRA-OMIP 0.86

in VIKING20X-JRA-short, VIKING20X-JRA-OMIP, and ORCA025-JRA-OMIP see Fig. 9), the AMOC only represents the430

one in the 1990s (Fig. 5).

One important key location picking up the different constituents and timescales of subpolar gyre variability and deepwater

formation is the observational array off Labrador at 53◦N (Zantopp et al., 2017). The DWBC at this location is seen as an index

for the subpolar AMOC and for the overall AMOC on decadal and longer timescales due to the increasing meridional coherence

(Böning et al., 2006; Bingham et al., 2007; Wunsch and Heimbach, 2013; Buckley and Marshall, 2016, see also discussion).435

Since 1997 this mooring array has recorded all three constituents of the NADW exiting the Labrador Sea via the DWBC

(Zantopp et al., 2017; Fischer et al., 2004). The observations revealed a 100-150 km wide well-defined cyclonic (southward)

boundary current, featuring a strong barotropic component with significant baroclinic flow in the shallow velocity maximum

of the Labrador Current and the deep velocity maximum (typically 0.25 m s−1, reaching up to 0.4 m s−1) associated with the

lower NADW, and an anticyclonic recirculation in the interior Labrador Sea (Fischer et al., 2004; Lavender et al., 2000). Figure440

11 a-c show that the general structure of the narrow boundary current system is visible especially in VIKING20X. Similarly
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Figure 11. Mean sections (upper panel) of velocity and σ0 isolines (1997-2009) at 53◦N in (a) VIKING20X-JRA-short, (b) ORCA025-JRA

and (c) observations (non-linear colour map is used with intervals given of 1 Sv between -8 and 8 Sv, and 2 Sv beyond that range. Time series

of (d) the DWBC export across 53◦N characterised by the NADW defined by σ2 criteria (Table 5), following the analysis of Handmann et al.

(2018) and (e) the AMOC transport in σ2 density coordinates at 53◦N .

to experiments with the predecessor VIKING20, they produce a stronger surface maximum, a weaker deep velocity maximum

and a stronger recirculation than in observations (Handmann et al., 2018). In the ORCA025 experiments the boundary current

appears too wide with a split surface maximum and no deep boundary current core, the latter pointing to a too strong erosion of

lower NADW on its way around the Irminger and Labrador Seas. Both, the ORCA025-JRA and the VIKING20X-JRA-short are445
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Table 5. DWBC export (mean and std.dev.) across 53◦N for different periods, characterised by the NADW defined by σ2 criteria (ORCA025-

JRA > 36.52, ORCA025-JRA-strong > 36.63, VIKING20X-JRA-long > 36.59, VIKING20X-JRA-short > 36.68, VIKING20X-CORE

> 36.72, ORCA025-JRA-OMIP > 36.73 and VIKING20X-JRA-OMIP > 36.69), and 20-year trends.

Experiment Transport (1998-2009) Transport (2000-2017) Trend (1998-2017)

VIKING20X-CORE 39.7 ± 5.7 Sv 39.6 ± 5.1 Sv∗ -0.48 Sv/yr∗

VIKING20X-JRA-short 34.6 ± 4.7 Sv 32.0 ± 4.9 Sv -0.50 Sv/yr

VIKING20X-JRA-long 30.4 ± 4.0 Sv 28.9 ± 3.9 Sv -0.30 Sv/yr

ORCA025-JRA 20.8 ± 4.0 Sv 19.9 ± 3.9 Sv -0.23 Sv/yr

ORCA025-JRA-strong 23.9 ± 4.1 Sv 22.5 ± 4.1 Sv -0.31 Sv/yr

VIKING20X-JRA-OMIP 34.2 ± 4.5 Sv 32.2 ± 4.6 Sv -0.38 Sv/yr

ORCA025-JRA-OMIP 25.5 ± 4.3 Sv 23.6 ± 4.4 Sv -0.36 Sv/yr

Observations 30.6 ± 3.8 Sv 29.6 ± 4.4 Sv -0.27 Sv/yr

∗(2000-2009) ∗(1998-2009)

more barotropic than found in observations. Though, one finds a clear improvement of the representation of the spatial scales

and location of the DWBC at 53◦N in the VIKING20X-JRA-short. The density structures (grey lines in Fig. 11a-c) reveal a

discrepancy between the models and observations, whereby VIKING20X better compares to the observations than ORCA025.

For the comparison of NADW transports at 53◦N the water mass boundary between the upper AMOC component and the

NADW was adjusted for each individual model using the mean density of the AMOC maximum at the OSNAP section over450

the full model integration (Handmann et al., 2018). Owing to the improved representation of lower NADW, the VIKING20X

experiments simulate simulate NADW transports that fall into the observed standard deviation (Table 5). In respect to the

longer-term temporal variability (Fig. 11d), it is apparent that the observations feature stronger multi-annual variability than

the model experiments. There is no significant correlation between the simulations and the observed transports on interannual

timescales (here not shown). However, both observations and model experiments show a significant downward trend that is455

usually stronger in most of the simulations (Table 5). The general temporal evolution, though subject to much less variability on

multi-annual timescales, reflects that of the AMOC (Fig. 11e). It is important to note that the AMOC in depth coordinates is of

little use in the subpolar North Atlantic. In contrast to the lower latitudes, the ‘overturning’ is not given by an upper/warm and

deeper/cold contrast but rather a strong east-west gradient responsible for the transport across density surfaces (Danabasoglu

et al., 2014; Biastoch et al., 2008a)460

4.2 Subtropical North Atlantic

Current structures associated with the export of deep water masses from the subpolar into the subtropical North Atlantic follow

interior pathways and only a specific narrow DWBC (Fig. 7). This is in particular visible around Flemish Cap and through

Flemish Pass (Fig. 12). While completely absent in ORCA025, VIKING20X shows a continuous path around Flemish Cap,
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Figure 12. Path of the DWBC (speed on density range, see Fig. 7) and SST in degrees Celsius (solid contours) for (a) VIKING20X-JRA-short

and (b) ORCA025-JRA. SST from the HadiSST dataset (Rayner et al., 2003) is shown by dashed contours.

followed by a narrow and weak current along the American shelf. Solodoch et al. (2020) noticed the strong fluctuations in465

the DWBC at Flemish Cap due to steep bathymetric variations. This is not necessarily an eddying signal but could also be

caused by topographic Rossby waves related to Gulf Stream rings and meanders (Peña-Molino et al., 2012). Details of the

deep pathways seem to be connected to the overlying flowing Gulf Stream, so that its correct separation at Cape Hatteras and

path into the Northwest Corner might play an important role. Horizontal resolution is also of relevance here: Chassignet and Xu

(2017) noticed a much more realistic separation and path of the Gulf Stream if simulated at 1/25◦compared to 1/12◦. However,470

they also noted that 1/50◦ is required to fully represent the Gulf Stream penetration and the associated recirculation gyres at

depth. Nevertheless, Figure 12 shows that the separation of the Gulf Stream and the swing into a Northwest Corner is already

well reproduced in VIKING20X as indicated by the sea surface temperature (SST) distribution. In contrast, ORCA025-JRA
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Figure 13. Mean (1990-2009) EKE in m2 s−2 (shaded) and meridional velocity (black contours) section at 26.5◦N for (a) VIKING20X-

JRA-short and (b) ORCA025-JRA with σ0 isolines (grey).

features the too zonal path of the North Atlantic Current common for lower resolution models. This is a typical behaviour even

at 1/12◦resolution as demonstrated by Chassignet and Xu (2017).475

In the subtropical North Atlantic, the southward flow of NADW is again concentrated along the western boundary (Fig. 7). It

aligns with the northward flowing surface branch of the Antilles Current (Fig. 13), which is complemented by the flow through

the Florida Strait. The characteristics of the AMOC introduced in the subpolar and subarctic regions, but also details of the

bathymetry south of it, have an imprint in the current structure at the western boundary. In ORCA025 the flow of NADW clearly

lacks the denser part of the NADW because of the inability to maintain the overflow at this resolution, while in VIKING20X480

the DWBC reaches much deeper. This is also reflected in the integral measures of the AMOC (Figs. 3 and 4). The surface

branch instead depends on the representation of the Bahamas Islands and the Bahamas Bank. In VIKING20X the Antilles

Current is variable, eddies are crossing the section at 26.5◦N northwestward, providing a prolonged maximum of eddy kinetic

energy (EKE) (Fig. 13a). ORCA025 has a much weaker and stable surface transport, with even southward transport directly at

the surface.485

An important component of the RAPID observational array (and motivation for the choice of its particular latitude) are

the long-term measurements of the transport through the Florida Strait obtained from voltage differences with telephone

cables (e.g., Meinen et al., 2010). Table 6 demonstrates that Florida Current transports agrees well with the observations

within 1-2.6 Sv for VIKING20X-CORE, VIKING20X-JRA-short and VIKING20X-JRA-OMIP. The transport is weaker in
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Figure 14. Time series of the transport through Florida Strait from experiments (interannually filtered) and from cable measurements (orange)

given as yearly averages for years with data coverage > 70%.

Table 6. Mean and standard deviation based on monthly averaged as well as interannually filtered data of the transport through Florida Strait

for the period 1990-2009. In this period, data coverage from cable measurements is 82%.

Experiment Mean 1990-2009 Std.dev (mon) Std.dev (ia)

VIKING20X-CORE 32.1 1.94 0.98

VIKING20X-JRA-short 29.5 1.95 1.17

VIKING20X-JRA-long 27.0 1.55 0.67

ORCA025-JRA 28.9 2.03 1.12

ORCA025-JRA-strong 31.0 1.79 0.73

VIKING20X-JRA-OMIP 29.7 1.91 1.27

ORCA025-JRA-OMIP 32.6 1.92 0.75

ORCA025-JRA-OMIP-2nd 31.4 1.93 0.92

Observations 31.9 2.52 0.95

VIKING20X-JRA-long, which could correspond to the lower AMOC. Since wind forcing is similar in VIKING20X-JRA-490

short and VIKING20X-JRA-long, this difference can be attributed to the thermohaline part of the Florida Current. Variability

of the Florida Current transport in all model simulations is underrepresented at monthly timescales, but comparable to obser-

vations at interannual timescales. Some of the JRA55-do experiments are correlated on interannual timescales, but we find no
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Figure 15. Snapshot of the path of the DWBC speed (5-day mean at date 22-02-1990, density range as in Fig. 7) and upper-ocean EKE

(contours, in J m−3, mean between 1990-2009 for the upper 1000 m) for (a) VIKING20X-JRA-short and (b) ORCA025-JRA.

correlation with the observations. Also, some experiments (e.g. VIKING20X-CORE and VIKING20X-JRA-OMIP) showed a

correlation of ∼0.75 between the Florida Current and the AMOC, while others (in particular VIKING20X-JRA-long, but also495

the experiments in ORCA025) did not. This demonstrates that the Florida Current is not just a WBC closure in form of net

(wind-related) Sverdrup changes from the interior but is rather regionally influenced from the flow through the Caribbean Sea

and through regional atmospheric forcing (Lee and Williams, 1988; DiNezio et al., 2009; Hirschi et al., 2019).

Surprisingly, all VIKING20X experiments (including VIKING20X-CORE) show a declining trend that starts in the 1990s

which is not reflected in the latter part of the observations. The VIKING20X experiments forced by JRA55-do simulated a500

decline of the Florida Current of ∼0.1 Sv per year over the RAPID period 2004-2018, which is about 27-43% of the AMOC

in the same period (here not shown).

4.3 Tropical Atlantic

From the subtropical North Atlantic towards the tropics, the NADW transport is concentrated along the western boundary (Fig.

7). Between 10◦N and 10◦S, offshore recirculation patterns appear more prominently than at other latitudes. Figure 15 (similar505

to Fig. 7 but here as a snapshot) indicates a connection with North Brazil Current rings (Kirchner et al., 2009) that are spun

off from the reflection of the North Brazil Undercurrent (NBUC) and drift northwestward, as suggested by eddy kinetic energy
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Table 7. Mean and monthly std. dev. of NBUC and DWBC transports across 11◦S from 12 observational sections, mooring measurements

and experiments for the period 2000 to 2019 (for VIKING20X-CORE 2000-2009) and sampled from monthly data according to the ship

based observational coverage. The transport calculation is modified from Hummels et al. (2015) by changing from γn to almost equivalent

σ0 criteria. For observations, transports based on γn criteria are given as reference. (NBUC transport is calculated by integration of positive

velocities in three boxes: west of 35.4◦W above σ0 = 27.53, between 35.0 and 34.65◦W above σ0 = 26.73, between 35.4 and 35◦W above

the line connecting σ0 = 27.53 at 34.5◦and σ0 = 26.73 at 34.65◦W; DWBC transport is calculated by integration of negative velocities west

of 34.65◦W between σ0 27.53 and second crossing of 27.88; all σ0 criteria are based on temporally varying fields; the latter condition cannot

always be fulfilled, if this second crossing does not exist, the integration is down to the bottom; these boxes are outlined in Figure 16d.)

Experiment NBUC+ DWBC-

(2000-2019) (obs) (2000-2019) (obs)

VIKING20X-CORE 33.5 ± 5.7 33.6 ± 15.2

VIKING20X-JRA-short 27.8 ± 4.1 28.7 31.1 ± 12.6 33.7

VIKING20X-JRA-long 23.6 ± 3.8 23.4 25.6 ± 10.4 31.6

ORCA025-JRA 18.8 ± 3.8 19.3 21.7 ± 5.7 22.6

ORCA025-JRA-strong 21.4 ± 3.6 22.0 24.8 ± 6.0 27.4

VIKING20X-JRA-OMIP 29.4 ± 4.3 30.5 32.0 ± 12.6 38.1

ORCA025-JRA-OMIP 24.8 ± 4.0 25.1 28.1 ± 6.1 30.4

ORCA025-JRA-OMIP-2nd 22.5 ± 3.8 23.7 26.6 ± 6.0 29.5

Moorings (γn)∗ 25.9 ± 4.5 20.0 ± 9.2

Ship sections (γn) 25.5 30.4

Ship sections (σ0) 25.4 30.4

∗(interrupted from 2005-2012)

(EKE) much better represented in VIKING20X-JRA-short than ORCA025-JRA. Schulzki et al. (manuscript under review at J.

Geophys. Res.) describe that recirculation pattern and instabilities in the DWBC can be related to incoming Rossby waves and

mesoscale eddies. Further south, at around 6-8◦S, the DWBC splits into eddies transporting the deep water in their cores to the510

south, consistent with observations (Dengler et al., 2004). Due to the coherent pathways, the time-mean field (Fig. 7) shows

a continuous path, but also displays the enhanced values of the offshore recirculations described above. The eddy pathway

merges again as a DWBC, then fades out at the Vitória-Trindade Seamount Chain at around 20◦S.

Measurements and long-term monitoring of the WBC system off Brazil have been motivated by the concentration of the

northward upper-ocean flow in the NBUC (Hummels et al., 2015). They are part of the ‘Tropical Atlantic Circulation and515

Overturning at 11°S’ (TRACOS) array (Herrford et al., 2021), which consists of bottom pressure observations at 300 m and

500 m depth since 2013 on both sides of the basin in order to obtain an AMOC estimate, the mentioned long-term western

boundary array (since 2000, but with a gap between 2004 and 2013) and current observations at the eastern boundary off

Angola since 2013. Rühs et al. (2015) show that the NBUC transport can be used as an indicator for the upper branch of
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Figure 16. Mean along-shore velocity (m s−1) section at 11◦S for (a) ORCA025-JRA, (b) VIKING20X-CORE, (c) VIKING20X-JRA-short

and (d) from 12 observational ship sections in the periods 2000-2004 and 2013-2019 with σ0 isolines. Dashed boxes in (d) indicate the area

taken into account for NBUC and DWBC transport calculations.

the AMOC if the horizontal wind-driven circulation is also accounted for. In addition to the northward return flow associated520

with the AMOC, the NBUC also carries most of the equatorward flow related to the South Atlantic Subtropical Cell (Schott

et al., 2004). Figure 16 shows that the general structure of the WBC system is visible in all experiments. The NBUC with its
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subsurface maximum and the DWBC below already exist in ORCA025-JRA. The eddy-rich configurations better represent

the elongated subsurface core of the NBUC and the wider, eddying (cf. Fig. 15a) DWBC, merging with a recirculation pattern

offshore of the (deeper part of the) NBUC. The representation of the water masses (here indicated by the density lines) appears525

quite well. Model transports are usually within the standard deviations of the observational estimates based on the moorings,

but are generally too weak at low resolution and by 1/3 (NBUC) and 2/3 (DWBC) too strong for VIKING20X-CORE (Table

7).

It is interesting to note and a guidance for future model-observation comparisons that even for a (with 12 ship-based ob-

servations) well-covered section a detailed temporal selection of model output can be important depending on the variability530

of the system in question (Schwarzkopf, 2016). While the values deducted from the moorings show a good agreement with

the ship sections for the NBUC, those for the DWBC are off by more than 10 Sv (Table 7). This is due to the fact that the

ship-based estimate is biased by intra-seasonal variability (Hummels et al., 2015), with ship sections often conducted during

times of maximum southward flow that often only lasts for a few days (Fig. 17e, especially during 2000-2004). It is important

to emphasise that the simulations capture the strong variability and confirm the apparent discrepancy between the long-term535

and the subsampled values.

Figure 17a shows the temporal evolution of the AMOC at 11◦S. In contrast to the one at 26.5◦N (Fig. 5a), it shows a

minimum in the late 1960s which is in particular the case in VIKING20X-JRA-OMIP that started one decade earlier from

rest. In the following decades, the experiments (apart from VIKING20X-JRA-long) simulate an increase into the 1990s with a

decline thereafter.540

Transports of the NBUC and DWBC are less robust among the experiments and show no clear or consistent multi-decadal

evolution. In consequence, trends over limited periods are less consistent. Apart from the trends, both AMOC and NBUC

are significantly correlated between individual experiments on interannual timescales with r values of up to 0.85. In contrast,

DWBC transports are rarely correlated.

Within individual experiments, there is no robust co-variability of the AMOC with NBUC (or DWBC) transports. Some (e.g.545

VIKING20X-JRA-OMIP) show significant correlations while others (e.g. VIKING20X-JRA-long) do not (here not shown).

4.4 Subtropical South Atlantic

Entering the subtropical South Atlantic brings us closer to the southern boundary of VIKING20X’s high-resolution nest. In the

following we explore the ability of the nested configuration to simulate the mesoscale circulation in the Agulhas Current system

and the Brazil-Malvinas confluence and if the host model is capable in correctly simulating the transports at the SAMOC550

observations which are placed just outside the nested area. For comparison we use INALT20 (Schwarzkopf et al., 2019),

a configuration that is in large parts (in particular resolution and atmospheric forcing) similar to VIKING20X, but with an

eddy-rich nest reaching into the Southern Ocean and into the western Indian Ocean.

Figure 18 confirms the general ability of VIKING20X to simulate parts of the mesoscale in the vicinity of the southern

nest boundary. It is logical that the variability in the Brazil-Malvinas confluence in VIKING20X-JRA-short is lower and rather555

comparable to ORCA025-JRA (Fig. 18a and b), given the fact that this latitudes are only represented on the host grid at
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Figure 17. Time series of interannually filtered (a) AMOC, (b) NBUC and (c) DWBC transports at 11◦S; monthly averages of positive

(NNE-ward) NBUC and negative (SSW-ward) DWBC transports (see Table 7 for details of the definitions) are given in (d) and (e) together

with mooring based (orange curves; thick monthly, thin 2.5-day averages) and ship based observations (purple dots)

1/4◦resolution. In addition to the mesoscale signal Schwarzkopf et al. (2019) demonstrated that the correct representation of

the confluence region has consequences for the structure and transport of the Malvinas Current. The picture is similar for the

path of Agulhas rings. Here, the formation process in the retroflection of the Agulhas Current south of Africa is outside the

VIKING20X nest. Since Agulhas rings are generally represented in ORCA025 (Schwarzkopf et al., 2019), they also enter560

the nest. The difference compared to a configuration fully resolving the Agulhas Current dynamics (and observations) is that

ORCA025 simulates too regular Agulhas rings. This results in too regular pathways into the South Atlantic (cf. Fig. 18b and

d).

The AMOC at 34.5◦S shows the same evolution as the one in the North Atlantic, with a maximum in 1990s (in some

experiments relative and generally less pronounced) and a weakening thereafter if performed under JRA55-do forcing (Fig.565

19). Even though the representation of the mesoscale is different as discussed above, the mean, interannual variability and

long-term trend in INALT20-JRA-long and VIKING20X-JRA-long are remarkably comparable. By comparing the transports

in VIKING20X-JRA-long with those in ORCA025-JRA, and VIKING20X-JRA-OMIP with ORCA025-JRA-OMIP we notice
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Figure 18. Sea surface height in the Brazil-Malvinas Confluence zone (upper row) and west Agulhas region (lower): 1990-2009 mean

(contours, in m) and variance (shaded) in (a,b) ORCA025-JRA, (c,d) VIKING20X-JRA-short, (e,f) INALT20-JRA-long and (g,h) from

satellite altimetry. Dashed lines in (c,d) mark the southern boundary of the nested region in VIKING20X.

a similar resolution effect as seen in the North Atlantic (Table 8). Compared to the (temporally limited) observations by Meinen

et al. (2018), most experiments underestimate the mean AMOC transport through the section. However, all VIKING20X570

experiments are in the range of the standard deviations in respect to the monthly variability. The representation of Agulhas

rings even in the eddy-present ORCA025 resolution could be an important prerequisite for the realistic AMOC variability.

The interannual variability is correlated among experiments, with r-values of, e.g., 0.8 between VIKING20X-JRA-long and

VIKING20X-JRA-OMIP, similar to the other latitudes (here not shown). Interestingly, this is also the case when mesoscale

variability is better resolved. INALT20-JRA-long interannually correlates with VIKING20X-JRA-OMIP at r=0.81. Given the575

fact that the generation of Agulhas rings is a highly stochastic process (Biastoch et al., 2009), this shows that the interannual

variability of the AMOC at 34.5◦S has a significant deterministic component by the atmospheric forcing.

5 Discussion and conclusions

Our results show that a ‘realistically’ configured ocean hindcast configuration like VIKING20X is well suited for simulating

the large-scale circulation dynamics in the Atlantic Ocean. Depending on a proper representation of the mesoscale provided580
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Figure 19. Time series of the AMOC strength at 34.5◦S (a) interannually filtered and (b) monthly averages for the most recent 15 years with

observations from Meinen et al. (2018) (orange).

Table 8. Mean and standard deviation based on monthly data of the AMOC transport at 34.5◦S for the period 1990-2009 (for VIKING20X-

CORE only the overlapping year 2009 is used. ∗The observational period covers the years 2009/2010 and 2013-2017).

Experiment 1990-2009 obs∗

VIKING20X-CORE 17.5 ± 3.6 17.2 ± 5.2

VIKING20X-JRA-short 15.5 ± 3.3 13.6 ± 2.9

VIKING20X-JRA-long 13.0 ± 3.2 11.1 ± 2.5

ORCA025-JRA 10.7 ± 3.2 8.6 ± 2.7

ORCA025-JRA-strong 11.7 ± 3.2 10.5 ± 2.7

VIKING20X-JRA-OMIP 16.3 ± 3.1 15.0 ± 2.8

ORCA025-JRA-OMIP 14.2 ± 3.2 13.3 ± 2.8

ORCA025-JRA-OMIP-2nd 12.3 ± 3.2 11.0 ± 2.9

INALT20-JRA-long 12.3 ± 3.2 10.8 ± 3.0

Observations 14.7 ± 5.4
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by an adequate resolution over the full model domain and the availability of an accurate atmospheric forcing, many aspects

of the simulated wind-driven and thermohaline circulation compare very well with observations. These include the large-scale

structure of the mean flow, the distribution and strength of mesoscale eddies, WBC structures and individual current systems.

There is good agreement between model and observations in terms of velocity structures and integral transports, even of their

temporal variability and trends. Because of the strong impact of the wind forcing, the role of the atmospheric forcing data set585

cannot be underestimated for such an ocean-only model. With the shift of the ocean model community from CORE forcing

(Large and Yeager, 2009) to the higher resolved and updated JRA55-do (Tsujino et al., 2018) forcing comes an important

change. CORE was known to enhance individual wind systems such as the equatorial trades or the Southern Hemisphere

westerlies (Large and Yeager, 2009; Brodeau et al., 2010) which could be the cause for generally higher WBC transports in

VIKING20X-CORE. Together with a different subpolar/subarctic freshwater budget, e.g. by the precipitation components and590

river input, this leads to a stronger and more stable AMOC, as well as its regional components.

Even though WBC transports and AMOC strength are generally enhanced at eddy-rich resolution, other aspects are re-

markably independent. One example is the decadal transport variability of the subpolar gyre. It is important to note that our

configurations do not allow to isolate the effect of eddies. We acknowledge that the eddy-present ORCA025 does not use any

eddy-parameterisation, it explicitly simulates ‘some’ (the larger-scale) part of the mesoscale spectrum, while neglecting others.595

This dilemma is similar to many modern eddy-present configurations performed for CMIP6 (Hewitt et al., 2020). And yet,

although the level of mesoscale variability significantly increases from 1/4◦ to 1/20◦, the interannual variability of the AMOC

appears quite robust. Features like the 2010 minimum can be simulated well at eddy-present resolution, pointing to an ability

of the CMIP6 suite in simulating an important part of the mesoscale contribution to the AMOC.

More caution is required with respect to the thermohaline driven part of the circulation. Although we see an improvement600

in the deep convection regions in the Labrador and Irminger Seas from 1/4◦ to 1/20◦, the amount of potentially produced

upper NADW (here quantified in terms of the MLD volume) appears remarkably robust. In contrast, for the backbone of the

AMOC, the overflow across the Greenland-Scotland Ridge is clearly improved with enhanced horizontal resolution. And still,

the underestimation of the lower NADW at 53◦N confirms that the entrainment of ambient water masses into the overflow

along its downward descent while circling the subpolar gyre even simulated at high resolution is subject to spurious mixing.605

The simulations cannot maintain the observed high densities to yield the correct transports in the densest levels. The under-

representation of the lower NADW throughout the whole Atlantic still remains an important challenge in z-coordinate models

(Legg et al., 2006), even though an eddy-rich resolution is an important improvement. As a cautionary note, we point to the

study by Colombo et al. (2020) who showed that a higher vertical resolution does not automatically enhance the spreading of

dense overflows and sometimes even leads to the contrary effect.610

For the estimation of the decadal variability and any long-term trend of the AMOC, realistically distributed components of

the freshwater budget are crucial because of the enhanced sensitivity of ocean-only models to freshwater fluxes, in particular

their corresponding subpolar freshwater budget (Griffies et al., 2009; Behrens et al., 2013). Because of this sensitivity, AMOC

trends from internal variability and external forcing are usually difficult to quantify against model-related drifts. The modelled

trends depend on artificial choices of the prescribed freshwater fluxes, such as the required strength of the SSS restoring or (as615
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in our case) a global balance of the freshwater budget. Since these parameter or forcing choices are not well constrained and

may even interfere with each other, the quantification of the AMOC evolution over the past decades from hindcast simulations

remains a challenge . Any quantification of global warming related trends induced by the atmospheric forcing is compromised

by the underlying model drift.

Beyond the description and verification of the VIKING20X set of experiments, our main objective is to test whether regional620

current systems are able to detect AMOC changes. In the remaining discussion, we address this task by answering three ques-

tions: (1) How coherent are AMOC changes across latitudes throughout the Atlantic Ocean? (2) Are AMOC trends detectable

in regional current systems? And if so, (3) can regional observations help to verify and confirm modelled AMOC trends?

(1) How coherent are AMOC changes across latitudes throughout the Atlantic Ocean?

Most VIKING20X experiments (apart from VIKING20X-JRA-long showing a continuous decline of the AMOC throughout625

the whole hindcast period) show a similar evolution of the AMOC, with an increase towards the mid-1980s and 1990s and a

decline thereafter. This is exemplary provided for VIKING20X-JRA-OMIP (Fig. 20). The Hovmoeller diagram (here given

in density coordinates to correctly address the subpolar North Atlantic) shows the evolution and the spreading of AMOC

anomalies throughout the Atlantic Ocean. Consistent with earlier findings, the strongest anomalies arise in the subpolar gyre

as a response to a decadally varying heat and freshwater forcing (Biastoch et al., 2008a; Yeager and Danabasoglu, 2014). On630

decadal timescales, this signal is evident at all latitudes, but with decreasing amplitudes towards the south (cf. Figs. 20a and

c, but also Figs. 5a, 17a, and 19a). Other signals such as the minimum in the late 1960s or the maximum in the 2000s seem

to be of southern origin and remain restricted until ∼20◦N. AMOC anomalies appearing on shorter timescales add interannual

‘noise’ to this decadal evolution. We identify both latitudinally restricted changes of interannual variability, but also anomalies

propagating from the north or the south throughout the full Atlantic Ocean. These anomalies are either caused by local wind635

changes inside the high-resolution nest itself or provided from the eddy-present host grid outside of the nested domain, which

rapidly propagate north- and southward via topographic and shelf waves along both sides of the Atlantic Ocean (Getzlaff

et al., 2006; Biastoch et al., 2008b). In the Hovmoeller diagram the associated patterns are only slightly slanted, indicating the

fast wave propagation. Only Besides the typical equatorial discontinuity, anomaly propagation is significantly delayed at the

transition between the subpolar and the subtropical North Atlantic because of the complex exchange between the gyres (Zou640

et al., 2019).

If we now focus on the ‘trend’ of the AMOC over the recent two decades (Fig. 21), which itself is part of a multi-decadal

evolution, VIKING20X-JRA-OMIP shows a coherent spin-down of the NADW cell. The general evolution of the other exper-

iments is similar but differs in the strength of the decline (Fig. A2). Since all experiments are based on the same atmospheric

forcing, differences in the decline are due to choices of the freshwater application and the initialisation. Changes in the over-645

flow and subpolar deepwater formation provide the main origin for the AMOC evolution, and consequently the decline (once

provided in density coordinates to correctly address the subpolar North Atlantic, Fig. 21b) is strongest north of ∼40-45◦N.

Quantitatively, the AMOC decline peaks at ∼60◦N, the latitude close to the southern tip of Greenland until which the over-

flow has entrained most of its ambient water masses (Fig. 21c). South of the transition towards the subtropical North Atlantic,

at around 35◦N, the decline in VIKING20X-JRA-long and VIKING20X-JRA-OMIP is consistent 1-1.5 Sv per decade, even650
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Figure 20. Hovmoeller diagrams of AMOC anomalies in density coordinates given as (a) interannually (b) bandpass and (c) pentadally

filtered time series of the maximum strength between σ2=36 and 37 from VIKING20X-JRA-OMIP. Lines indicate latitudes considered in

this study.

though their mean AMOC strength differs by more than 4 Sv. (Fig. 21c, see also Table 2). VIKING20X-JRA-short features a

stronger decline since it starts from a relatively high value as a result of the preceding CORE forcing and obviously experi-

ences a spindown from the high level of the CORE forcing. Owing to the general spindown of the NADW cells we conclude
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Figure 21. Mean (contours) and linear trend (shading) in the AMOC for the period 2000 to 2019 in VIKING20X-JRA-OMIP (a) in depth

and (b) density (σ2) coordinates. (c) shows the linear trend of the vertical maximum in the AMOC in depth coordinates below 400 m (thin)

and in density coordinates below σ2 = 36 (thick). All fields are meridionally smoothed with a Hanning filter of 10◦window size.

that decadal and longer-term AMOC trends could, in principle, be estimated throughout all latitudes of the North and South

Atlantic but with different strengths.655

(2) Are AMOC trends detectable in regional current systems?
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Table 9. Linear trends (Sv per decade, all based on monthly averaged data) in AMOC strength (in depth or density coordinates) and western

boundary current transports at different latitudes for the period 2000-2019 from the three experiments in VIKING20X under JRA55-do

forcing. Observational estimates cover different periods, as indicated.

53◦N 26.5◦N 11◦S 34.5◦S

Experiment AMOC(σ2) DWBC AMOC(z) FC AMOC(z) NBUC DWBC AMOC(z)

VIKING20X-JRA-short -3.6 -3.8 -2.0 -1.6 -1.2 -1.6 -1.0 -0.9

VIKING20X-JRA-long -3.0 -2.6 -1.3 -1.0 -1.4 -1.4 -0.7 -1.3

VIKING20X-JRA-OMIP -2.9 -2.6 -1.5 -1.6 -1.1 -2.1 -1.1 -0.7

Observations -2.5 -1.3 -0.3 -0.1 +0.8 -

(2000-2017) (2004-2018) (2000-2004 & 2013-2019)

Apart from the basin-wide estimate at 26.5◦N, regional observations exist and contribute long-term observations of key

components of the AMOC. In this analysis we have focused on three time series, the WBC array at 53◦N monitoring DWBC

transports at the exit of the Labrador Sea, the transport through the Florida Strait an important part of the upper branch of the

AMOC, and the WBC array at 11◦S in which both the upper and the deep branch of the AMOC are assumed to be concentrated660

along the western boundary.

It is intriguing that the DWBC trend at 53◦N is able to capture the of the AMOC trend calculated in density coordinates

within 10-15% (Table 9). This correspondence even holds for the stronger trends in VIKING20X-JRA-short. This agreement

confirms the high potential of WBC measurements at 53 ◦N (Fischer et al., 2004; Zantopp et al., 2017; Handmann et al., 2018)

to truly monitor changes of the AMOC in the subpolar North Atlantic (Böning et al., 2006).665

For the transport through the Florida Strait and its agreement with AMOC changes at 26.5◦N, we get a different picture: In

VIKING20X-JRA-short and VIKING20X-JRA-long, the decline of the Florida Current is about 75-80% of the decline of the

AMOC; in contrast to VIKING20X-JRA-OMIP where it is stronger. This may indicate that the Florida Current could act as a

general precursor of the AMOC trend, but is unable to exactly quantify it. This is confirmed by the observations itself, where

the Florida Current decline represents just 15% of the AMOC decline. It is obvious that the Florida Current is not just a simple670

closure of Sverdrup dynamics but rather shielded by the shallow bathymetry west of the Bahamas and fed through the Gulf

of Mexico, with upstream anomalies determining its transport (Hirschi et al., 2019). This may also explain the disagreement

between modelled and observed trends of the Florida Current, even though both show comparable mean transports (Table 6.

At 11◦S, the WBC system is more exposed to the open ocean. Although the experiments show a robust AMOC decline of

about 15%, their NBUC changes are much less consistent and do not necessarily reflect the AMOC: for VIKING20X-JRA-675

long the NBUC trend does equal the one of the AMOC, while for VIKING20X-JRA-OMIP the NBUC trend is almost twice

as large as the AMOC trend. For the DWBC instead, trends in VIKING20X-JRA-short and VIKING20X-JRA-OMIP fit to

that of the AMOC, whereby VIKING20X-JRA-long simulates a 50% weaker trend than for the AMOC. While the signs of
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NBUC and DWBC trends still point towards a spin-down of the AMOC cell, an exact quantification of the reduction remains

challenging. Apart from changes in the interior, not represented by the boundary current measurements, the disagreement can680

also be attributed to the overlying wind-driven subtropical cell (viz. counter-clockwise circulation in the upper few 100 meters

in Fig. 3 and in Fig. 21b), at this latitude requiring the addition of the wind-induced gyre circulation for the interpretation

of AMOC changes (Rühs et al., 2015). We also have to acknowledge that the large variability of transports associated with

mesoscale structures and the large gaps in the observational record between 2005 and 2012 adds another line of complication

and requires longer time series to draw consistent conclusions. At 34◦S, we note a disagreement of AMOC trends in the685

different experiments. As shown by Fig. 20, AMOC anomalies are entering from the south and interfere with the anomalies

arriving from the north. These may have an impact on the calculation of longer trends.

(3) Can regional observations help to verify modelled AMOC trends?

Together with the AMOC measurements at 26.5◦N, the WBC array at 53◦N provides the longest observational time series.

As shown above, the latter has (according to the model) a good potential to provide trends of the basin-scale AMOC. The690

observational AMOC estimate at 26.5◦N indicates a decline that is in the range of all three experiments (Table 9), again with a

stronger trend in VIKING20X-JRA-short. We note that the observational AMOC trend has to be taken with caution since the

evolution of the AMOC measured at RAPID does not show a continuous decline but rather a strong minimum around 2010

and a stabilisation thereafter (Fig. 5a). A strong argument for a realistic AMOC trend in the past two decades emerges from the

comparison at 53◦N. Both VIKING20X-JRA-long and VIKING20X-JRA-OMIP are within 0.1 Sv of the observed reduction of695

the DWBC transport of 2.5 Sv per decade (Table 9), hence seem to realistically simulate the decline of the subpolar AMOC. For

the subtropical North Atlantic at 26.5◦N this reduces 1.3 Sv, again with VIKING20X-JRA-long and VIKING20X-JRA-OMIP

realistically representing the AMOC as derived from RAPID.

Apart from the observation-model comparison, additional insight comes from the Ocean Model Intercomparison Project

2 (OMIP-2), performed under JRA55-do forcing. According to Tsujino et al. (2020), the ensemble average of 11 models,700

performed with different numerical code bases and mainly configured at eddy-parameterising (few at eddy-present) resolutions,

show a linear trend of -1.19 Sv per decade over the time frame 2000-2018 at 26.5◦N, which is weaker than RAPID. We cannot

conclude if the stronger decline simulated by VIKING20X-JRA-OMIP and VIKING20X-JRA-long is caused by the better

representation of mesoscale eddies, as indicated by the resolution dependence throughout this study, or by the details of the

freshwater flux application. An important factor could be the 5th cycling of the simulations through the forcing period done for705

OMIP-2. While 5 cycles are not achievable at such high resolution, the comparison of the 1st and the 2nd cycle of ORCA025-

JRA-OMIP already suggests that this may play a role. The trend in ORCA025-JRA-OMIP reduces from -0.88 Sv per decade

in the 1st cycle to -0.67 in the 2nd cycle. On the other hand, it is quite foreseeable that the overall strength of the AMOC and

the related water masses may also drift away from the observations causing a general reduction of the AMOC strength and its

key components (Fig. 8).710

Even though we find good agreement with estimates at 26.5◦N and 53◦N, we can not conclusively assess how much of the

trends simulated by the different experiments are still related to the model settings. We can also not be entirely sure whether

the trends provided by the JRA55-do forcing are realistic. If we consider VIKING20X-JRA-OMIP as the most promising
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simulation given good agreement of mean transports, it is clear that the AMOC is subject to multi-decadal variability with a

stable evolution in the 1960s and 1970s, an increase towards the mid-1990s and a decline thereafter. For the past two decades715

our experiments suggest that the AMOC (in density coordinates) in the subpolar North Atlantic was subject to a decline of up

to 3 Sv. For the subtropical North Atlantic and further south this reduces to about 1.5 Sv and less. This is generally in line with

a compilation of proxy observations presented by Caesar et al. (2021). On a longer timescale, it also fits the 4-Sv decline from

the 1950s/1960s towards the recent decade indicated by an SST-based proxy (Caesar et al., 2018).

What is needed to better quantify trends in future experiments and limit the influence of model drift? Apart from further720

improvements of ocean model configurations, it is clear that multi-decadal hindcasts would directly benefit from a better

closure of the heat and freshwater budget. This can only be achieved up to a certain degree since the fluxes are by construction

less variable due to the prescribed atmospheric state. Further relaxation of the Bulk formulae or a move towards coupled

atmosphere-ocean models may help. While the latter are now routinely available, even at basin-scale mesoscale resolution

(Matthes et al., 2020), additional ‘constraints’ such as the ‘partial coupling’ approach described by Thoma et al. (2015), could725

be a potential solution to re-introduce the interannual to multi-decadal hindcast ‘timing’ into coupled experiments.

In this study we had to concentrate to a limited set of long-term observations. In addition, a number of historic ocean

observations exist, from individual measurements dating back to the 19th century, repeated ship sections during the WOCE era

in the 1990s, to a drastic increase through satellite measurements and autonomous instruments such as ARGO in the 2000s.

Ocean modellers usually make use of those for model initialisation or verification. More systematic approaches to combine730

model and data through assimilation are powerful, but also fail in terms of their ability to exactly quantify the required trends

(Karspeck et al., 2015; Jackson et al., 2019). A novel route in this respect that has only been started to be explored, are data

science approaches. These have demonstrated to push the limits of the interpretation of big data and provide insight not only

to pattern and distributions but also the interpretation (and ultimately the understanding) of dynamics (Sonnewald et al., 2019;

Aksamit et al., 2020; Reichstein et al., 2019). Nevertheless, our results demonstrate the value and importance of thoroughly735

and carefully adjusting forcing, grid resolution and settings of ‘classic’ ocean models to the tasks of simulating the AMOC and

filling observational gaps for the benefit of an improved understanding of the ocean.
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Code and data availability. The NEMO code is available at https://www.nemo-ocean.eu. For reproducibility of all results, the scripts as well

as all data required to produce the figures are made available through GEOMAR (https://hdl.handle.net/20.500.12085/a8f98a1a-473f-11ea-

a036-c81f66eb46c3). Additional model output is provided on request.740

Figure A1. Mean (1993-2019) sea surface height in (a) ORCA025-JRA, (b) VIKING20X-JRA-short and (c) satellite altimetry.
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Figure A2. Mean (contours) and linear trend (shading) in the AMOC in (a and b) depth and (c and d) density (σ2) coordinates for the

period 2000 to 2019 for VIKING20X-JRA-short and VIKING20X-JRA-long. All fields are meridionally smoothed with a Hanning filter of

10◦window size.
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