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Abstract. Open ocean oxygen minimum zones (OMZs) occur in regions with high biological productivity and weak ventila-

tion. They restrict marine habitats and alter biogeochemical cycles. Global models show generally a large model-data misfit

with regard to oxygen. Reliable statements about their future development
:::
the

:::::
future

:::::::::::
development

::
of

:::::
OMZs

:
and the quantifica-

tion of their interaction with climate change are currently not possible. One of the
::::::::::
world-wide most intense OMZs is located in

the Arabian Sea (AS). We give an overview of the main model deficiencies with a detailed comparison of the historical state of5

ten climate models from the 5th coupled model intercomparison project (CMIP5) that present our present-day understanding

of physical and biogeochemical processes. Considering a threshold of 60 µmol l−1, we find
::::
Most

::
of

:::
the

::::::
models

:::::
show a general

underestimation of the OMZ volume in the AS compared to observations, that is caused by a too shallow layer of oxygen-poor

water in the models. The deviation of oxygen values in the deep AS is the result of subduction of higher oxygenated waters

:::
too

::::
high

::::::
oxygen

:::::
levels

:::::::::
simulated in the Southern Ocean

::::::::
formation

:::::::
regions

::
of

::::::
Indian

:::::
Ocean

:::::
Deep

:::::
Water

:
in the models com-10

pared to observations . In addition, model deficiencies related to the coarse resolution of the abyssal ocean, are identified
:::
and

::::::::::
uncertainties

:
in the deep water mass transport from the Southern Ocean northward into the AS. Differences in simulated water

mass properties and ventilation rates of Red Sea Water and Persian Gulf Water cause different mixing in the AS and thus influ-

ence the intensity of the OMZ. These differences
::
in

:::::::::
ventilation

::::
rates also point towards variations in the parametrisations of the

overflow from the marginal seas among the models. The results of this study are intended to foster future model improvements15

regarding the OMZ in the AS.

Copyright statement. TEXT

1 Introduction

Just like on land, marine animals also need oxygen to breathe, and they suffer if the oxygen concentration in the ocean falls

below certain thresholds. Oxygen concentrations below the oceanic permanent thermocline depend on two mechanisms: (i)20

atmospheric oxygen enters the ocean at the surface mixed layer and is transported into the ocean interior by subduction and

mixing, and (ii) biological consumption by microbial respiration of sinking organic matter and respiration by higher trophic
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organisms. Main ventilation regions of the ocean are found at higher latitudes, where mode and deep water masses are formed

(McCartney and Woodgate-Jones, 1991; Sverdrup, 1938). There is a close connection between age and oxygen concentration

of a water mass (Jenkins, 1977). The water mass age is defined by the time passed since the last surface contact, where its prop-

erties can be changed by gas exchange with the atmosphere. Older water masses typically feature lower oxygen concentrations

because oxygen consumption has accumulated over longer time periods.5

Worldwide there are three major regions with very low oxygen levels in the open ocean, so called oxygen minimum zones

(OMZs; e.g. Stramma et al., 2008). Those are located in the eastern tropical Pacific, eastern tropical Atlantic and the tropical

Indian Ocean (IO). Typically, OMZs occur at intermediate depths between 100 and 1000 m where the respiration of exported

organic matter is highest (Suess, 1980; Sverdrup, 1938). In the eastern tropical Atlantic and Pacific Ocean sluggish ventilation

(Karstensen et al., 2008) and high biological consumption are drivers for the OMZs. The tropical IO differs from those ocean10

basins because it is bounded by the continent in the north and split into two basins by the Indian subcontinent. East of India,

the Bay of Bengal shows a shallow OMZ (∼200 to 600 m; Rao et al., 1994), whereas west of India, the Arabian Sea (AS) hosts

one of the thickest OMZs in the global open ocean (∼200 to 1200 m). Compared to the other open ocean OMZs, the horizontal

extent of the Arabian Sea oxygen minimum zone (ASOMZ) is relatively small. Nevertheless, it is considered to be one of the

most intense OMZs due to its large vertical extent of oxygen-depleted water with
::::
very

:::
low

:
oxygen concentrations typically15

around 3 µmol kg−1 (Rao et al., 1994; Kamykowski and Zentara, 1990).

Various processes that determine the formation, maintenance and shape of the ASOMZ are already known from observations.

The strong influence of the semi-annually changing monsoon winds on the circulation and resulting upwelling and subduction

in the AS shapes the OMZ
:::::::
ASOMZ

:::::::::::::::::::::::::::::::::::::::::
(Schott and McCreary, 2001; Schmidt et al., 2020). A strong upwelling area is located off

the Arabian peninsula and Somalia, which is associated with pronounced biogeochemical activity. A second upwelling region20

emerges along the south west coast of India during summer monsoon (Sharma, 1978; Shetye et al., 1990). During the winter

monsoon downwelling occurs in the northern and northwestern AS (Schott and McCreary, 2001; Hood et al., 2017). Also the

surface circulation of the northern IO, which is well known from drifter data (Shenoi et al., 1999) and satellite altimetry (Beal

et al., 2013), changes direction in response to the monsoon forcing (Schott and McCreary, 2001). The underlying subsurface

ventilation pathways of water masses entering the AS are more uncertain
::
not

::::
that

::::
well

::::::
known

:
due to a lack of observational25

data (McCreary et al., 2013; Schmidt et al., 2020).

The water of the ASOMZ comprises a variety of water masses with very different origins that are advected by the seasonally

changing current system (e.g. Hupe and Karstensen, 2000; You, 1997; Schmidt et al., 2020). Mixing analyses show that the

bottom of the ASOMZ (below 1700 m) is predominantly ventilated by oxygen-rich Indian Ocean Deep Water (IODW, Acharya

and Panigrahi, 2016). In the literature there are various definitions of IODW also referred to as Indian deep water
::::
Deep

:::::
Water.30

According to Schott and McCreary (2001) it is generated by deep upwelling of Circumpolar Deep Water and is a water mass

that is specified for the northern IO. The Circumpolar Deep Water enters the Madagascar basin (Schott and McCreary, 2001)

and according to Tomczak and Godfrey (1994) IODW is transported northward along the western boundary, where it has water

mass properties similar to North Atlantic Deep Water. Along the same route, just beneath IODW, Antarctic Bottom Water flows

northward. In the northern hemisphere, IODW spreads eastward into the AS.35

2



The dominant ventilating water masses influencing the upper ASOMZ are Red Sea Water (RSW), Persian Gulf Water (PGW)

and Indian Central Water (ICW). The former two originate
:::
are

::::::
formed

:
in the marginal Seas and enter the AS below the per-

manent thermocline (Prasad et al., 2001; Beal et al., 2000; Shankar et al., 2005). They are easily defined by their respective

salinity maxima. ICW is subducted in the subtropics of the southern IO, spreads westward with the South Equatorial Current

and is transported northward across the Equator with the Somali Current along the western boundary (Schott and McCreary,5

2001) but also enters the AS from the east along the coast of India (Acharya and Panigrahi, 2016; Shenoy et al., 2020; Schmidt

et al., 2020; Rixen and Ittekkot, 2005).

In addition to the physical parameters
:::::::
variables, the biogeochemistry is also subject to seasonality (e.g. primary production,

Acharya and Panigrahi, 2016). Although many individual processes influencing the ASOMZ are already known, the interplay

of these processes is still under discussion. What we do know, however, is that OMZs affect the ecosystem structure and reduce10

the habitat of higher trophic marine life (Levin et al., 2009; Stramma et al., 2012; Resplandy et al., 2012).

It is expected that global warming will intensify deoxygenation (Keeling et al., 2010; Bopp et al., 2013) and will
:::::
might

:
also

induce changes in ventilation, stratification, and solubility. Eutrophication
::::::
oxygen

:::::::::
solubility.

:::::::::::
Furthermore,

::::::::::::
eutrophication may

drive enhanced microbial respiration, which in turn enhances deoxygenation (Breitburg et al., 2018; Keeling et al., 2010; Diaz

and Rosenberg, 2008). The insufficient quantitative understanding of these processes results in uncertainties in the predictions15

:::::::::
projections of the extent and intensity of the OMZs.

For projections of further development of the OMZs
::::
future

:::::
OMZ

:::::::
changes

:
and for the exploration of the interplay of different

physical and biogeochemical mechanisms we rely on coupled biogeochemical ocean models. However, models seem to have a

general problem in estimating the oxygen content
:::
such

:::::::
models

::::::
contain

::
a

::::::::::
considerable

::::::
degree

::
of

::::::::::
uncertainty

:::::
when

:::::::::
simulating

::::::::
dissolved

::::::
oxygen

::::::::::::
concentrations

:
and changes in oxygen content in the ocean (Stramma et al., 2012; Séférian et al., 2020). The20

global deoxygenation trend, clearly visible in observations, as well as intensification and extension of OMZs with regional

variations (Stramma et al., 2008, 2010; Keeling et al., 2010; Diaz and Rosenberg, 2008) is typically underestimated by Earth

System Models (ESMs). In comparison to the observational trend
::::::
between

:::::
1960

:::
and

:::::
2010 the oxygen loss suggested by ESMs

of the IPCC type is too weak and the simulated OMZ volumes differ substantially among models (Bopp et al., 2013; Cabré

et al., 2015; Oschlies et al., 2018, 2008). Especially for the IO there is no clear visible trend among a variety of models from25

the coupled model intercomparison project (CMIP; Oschlies et al., 2017), while global syntheses
:
of

:::::::::::
observational

::::
data

:
reveal

a weak decrease of dissolved oxygen concentrations in the ASOMZ over the past decades (Ito et al., 2017; Schmidtko et al.,

2017). There is some evidence that these model flaws are related to a deficient representation of ventilation pathways in models.

On this basis, it is hardly possible to say whether the models’ biogeochemistry does have deficiencies that are associated with

the oxygen representation (Oschlies et al., 2018; Segschneider and Bendtsen, 2013). If we look towards the future, the predic-30

tions regarding oxygen concentrations in the ocean differ considerably. Keeling et al. (2010) expect the global OMZ volume to

expand, while for example Cocco et al. (2013) and Bopp et al. (2013) show that in many models, the volume of OMZs shrinks

over the 21st century. With such large uncertainties, we cannot rely on future projections.

:::::
There

:
is
:::::
some

:::::::
evidence

::::
that

::::::::
modelled

::::::::::
thermocline

:::::
OMZs

:::
are

::::::::::
particularly

:::::::
sensitive

::
to

::::::
applied

::::
wind

:::::::
forcing

:::::::::::::::::::::
(Oschlies et al., 2017) and

:::
that

:::::
these

:::::
model

:::::
flaws

:::
are

::::::
related

::
to
::

a
:::::::
deficient

::::::::::::
representation

:::
of

:::::::::
ventilation

::::::::
pathways

::
in

:::::::
models.

:::
As

:::
the

:::::::::
underlying

:::::::
physics35
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:::::::
influence

:::
the

::::::::::::::
biogeochemical

:::::
model

:::::::::::
components,

:::::
there

:
is
:::::

some
::::
risk

:::
that

::::::
errors

::
in

:::
the

::::::
physics

::::
may

:::
be

:::::::::::
compensated

::
by

::::::
errors

::
in

:::
the

:::::::::::::
biogeochemical

::::::
model

::::::::::
components

:::::::::::::::::::::::
(Löptien and Dietze, 2019).

::::::::::
Therefore,

:::
we

:::::::
consider

::
it
:::::::::

important
:::
and

:::::::
prudent

:::
to

:::::::
evaluate

::
the

::::::
model

::::::
physics

::::
first

:::::
before

:::::::::
addressing

:::::::
possible

::::::
errors

::
in

::
the

::::::
model

::::::::::::::
biogeochemistry.

:::::::
Without

:
a
::::::
proper

:::::::::
evaluation

::
of

::
the

::::::
model

:::::::
physics,

::
it

:
is
::::::
hardly

:::::::
possible

::
to

:::
say

:::::::
whether

:::
the

:::::::
models’

::::::::::::::
biogeochemistry

::::
does

:::::
have

::::::::::
deficiencies

:::
that

:::
are

:::::::::
associated

::::
with

::
the

:::::::
oxygen

::::::::::::
representation

::::::::::::::::::::::::::::::::::::::::::::::
(Oschlies et al., 2018; Segschneider and Bendtsen, 2013).5

A first step to check the reliability of numerical models is to look how the models reproduce the current status . The presented

study identifies the major processes that are responsible for the uncertainties in the modelled oxygen with a specific
:::
with

::
a

focus on the
::::
ocean

:
physics in the IO. Therefore we

:::
We assess the representation of the OMZ in the AS in the

:::::::
ASOMZ

:::
in

::
the

:
ten CMIP5 (coupled model intercomparison project phase 5) models that include a biogeochemical model component

::::::::
including

::::::
oxygen. These models summarize our present-day process understanding of the earth system and produce a fairly re-10

alistic large-scale picture of the global climate features. We aim to identify weaknesses of the ESMs that cause deficient oxygen

concentrations. This will help to improve models and future predictions, not only of the change of ocean oxygen concentrations.

Specifically, this work focuses on the 3-D representation of the modelled OMZs and oxygen concentrations in the historical

experiment of CMIP5. Furthermore, we
:::
We classify the models systematically and identify similarities and differences in water

mass representation and mixing among the models and with observations. We specifically target
:::::::
physical processes that are15

responsible for oxygen differences in the ASOMZ
:
a
::::::::
deficient

:::::::::::
representation

:::
of

::::::::
simulated

:::::::
oxygen.

:::
We

::::::::
anticipate

::::
that

:::
our

:::::
study

:::
will

::::
help

::
to

:::::::
improve

:::::
future

::::::
model

:::::::::::
development

:::
and

:::::
future

::::::::::
projections,

:::
not

::::
only

::
of

:::
the

::::::
change

:::
of

:::::
ocean

::::::
oxygen

::::::::::::
concentrations.

:::
The

::::::::::
manuscript

:
is
:::::::::
organized

::
as

:::::::
follows:

:
In section 2 we continue with

::::::
provide

:
a detailed description of the observational and

model data considered, followed by the methods in section 3. In the result-section 4 we compare the representation of the

simulated ASOMZs in the CMIP5-models. Subsequently, we show the results and uncertainties of a water mass analysis in20

the core of the ASOMZ based on the observations. This analysis is then used to rate the model results, which were clustered

to identify commonalities between
::
the

:
models. The Discussion in section 5 puts these results into perspective to foregoing

studies and to more recent CMIP6 model results and possibilities for further model improvements. We finish with summary

and conclusions in section 6.

2 Data25

2.1 CMIP5 simulations

The coupled model intercomparison project (CMIP5, Taylor et al., 2012) framework was designed to identify strengths and

weaknesses of earth system models (ESMs) and thus improve climate predictions and identify uncertainties. Model
::
In

:::
this

:::::
study

::
we

::::::::
included

::
all

::::::
ESMs

::::
from

:::
the

:::::::
CMIP5

::::::
project

:::::::::::::::::
(Taylor et al., 2012),

:::::
where

:
output of dissolved oxygen was availablefrom ten

ESMs (Tab. 1) from the CMIP5 project (Taylor et al., 2012).
:
. The suite of

::::
these

:::
ten model simulations includes results from the30

Community ESM (CESM-BGC), two versions of the Geophysical Fluid Dynamics Laboratory ESM (GFDL-ESM2G/M), the

Hadley Centre Global Environment Model (HadGEM2-ES), two versions of the Institute Pierre Simon Laplace ESM (IPSL-

CM5A-LR/MR), two versions of the Max Planck Institute ESM (MPI-ESM-LR/MR), the Meteorological Research Institute
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ESM (MRI-ESM1) and the Norwegian ESM (NorESM1-ME). For References and further details see Tab. 1.

We focused on the so-called "historical" experiments, that were conducted for the years 1850 to 2005. From this time period

we extracted the years 1900 to 1999 and consider the averaged model results for further analyses. This period is long enough

for a robust calculation of the climatological mean state. Averaging also neglects
:::::::::
Averaging

:::
also

:::::::
ignores

:
the seasonal cycle.

This is a reasonable approach for a uniform process analysis over the entire depth of the OMZ between 200 and 1800 m, as5

the seasonal cycle in oxygen concentrations
:::
The

::::::::
seasonal

::::::
oxygen

:::::
cycle

:
is weak in the upper layers of the OMZ

::
AS

:
and not

noticeable at greater depth .
::::::::::::::::::
(Schmidt et al., 2020).

:::::
Thus,

:::::::::
averaging

::
is

:
a
:::::::::
reasonable

::::::::
approach

:::
for

::
a
:::::::
uniform

:::::::
process

:::::::
analysis

:::
over

:::::
large

:::::
parts

::
of

:::
the

:::::
water

:::::::
column.

:
Next to dissolved oxygen, temperature and salinity output from the same models was

::::
were used in our analysis.

The CMIP5-ESMs differ in terms of the ocean circulation and biogeochemical modules. The horizontal resolution ranges from10

2◦ x 2◦ to 0.4◦ x 0.4◦ and the number of
::::::
vertical

:::::::::
resolution

:::::
varies

::::::::
between

::
31

::::
and

:::
63 resolved depth levelsranges from 31

to 63.
:
. Table 1 gives an overview of the circulation and biogeochemical model components and their resolution. In order to

compare the model outputs with the observations, all model outputs were re-gridded to the same 1◦ x 1◦ grid on which the

observational data are interpolated (see below).

2.2 Observations15

For comparison to
::::
with

:
the model results we use the global climatologies of dissolved oxygen, temperature and salinity cli-

matologies provided by the World Ocean Atlas 2013 (WOA13). The climatological annual mean data cover a period from

1955-2012 and are available with a spatial resolution of 1◦ by 1◦ interpolated on 102 depth levels (Garcia et al., 2013; Lo-

carnini et al., 2013; Zweng et al., 2013).

20

3 Methods

3.1 OMZ characteristics

As a first step, we compare the models and observations with respect to simulated oxygen in the AS. Depending on the process

of interest, it is likely that different oxygen thresholds and the corresponding water volume need to be investigated. We thus

compare the volume of the OMZ for a wide
:::::::
ASOMZ

:::
for

:
a
:
range of thresholds

::::
from

:
0
::
to

::::
100

:::::
µmol

:::
l−1. We

:::
For

:
a
::::
first

::::::
spatial25

::::::::::
comparison,

:::
we chose our threshold to be 50 µmol l−1 to make it comparable to previous studies on CMIP5 oxygen distribution

(e.g. Cabré et al., 2015; Cocco et al., 2013) and looked
::::
look at the horizontal extension of the OMZ dependent on

:::::
extent

::
of

:::
the

:::::::
ASOMZ

:::
as

::
a

:::::::
function

::
of depth and the actual location of these areas in a map.
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3.2 Cluster analysis

To reduce the high amount of data of the model output
::::
large

:::::::
amount

::
of

::::::
model

::::::
output

::::
data and detect similarities between30

the models and observations we performed a hierarchical cluster analysis
:::::::
grouped

:::::
them

::::
with

:::
the

::::::::::
Hierarchical

:::::::::::::
Agglomerative

::::::
Cluster

:::::::
Analysis

::::::::::::::
(Johnson, 1967). Here, the correlation between the vertical profiles of oxygen and salinity

::::::
oxygen

:::::::
profiles

was used as the distance measure for the clusters.
:::
This

::::::
means

:::
that

:::::::
profiles

:::
that

:::
are

:::::
more

::::::
similar

::
to

::::
each

:::::
other

:::
than

::
to
::::::
others

:::
are

:::::::
grouped

:::::::
together

::
in

:
a
:::::::
cluster. We are referring primarily to the curvature of the profiles and less to a systematic bias, e.g., an

offset between profiles. For this purpose, the profiles are superimposed in such a way that the oxygen difference between the5

curves is minimal over the entire depth. This choice is motivated by the implicit assumption that the shape of the depth profiles

contains more information on the underlying processes than the offset.

To determine the optimal number of clusters we used the silhouette-criterion (e.g., De Amorim and Hennig, 2015). The silhou-

ette is a common measure of how closely a certain data point (here a profile) matches the data within its cluster and how loosely

it matches the data in the other clusters. A large value close to one implies that a data point is in the appropriate cluster, while10

negative values indicate a wrong cluster choice. We calculated the averaged silhouettes for three to six clusters and selected the

number of clusters with the highest average silhouette value. The resulting best choice of four clusters meets our visual rating.

We performed the cluster analysis for oxygen profiles in the AS for all models
::
10

:::::::
models

:::::::::
considered

::
in
::::

this
:::::
study

:
and the

observations. Furthermore, we used the same clustering method for the salinity profiles. Salinity is a conservative tracer that is

useful when investigating mixing of water masses. Clustering of the models with respect to the modelled oxygen and salinity15

profiles helped to find similarities between the models and gave hints for typical model problems in this dynamically compli-

cated region.

For this analysis we chose to exclude coastal areasand ,
:::::::
because

:::
the

:::::
model

::::
bias

::
in

:::::
these

::::
areas

::
is

::::::::
expected

::
to

::
be

::::
large

::::
due

::
to

:::
the

:::::
coarse

:::::::::
resolution

::
of

:::
the

::::::
ESMs.

:::
We

:
focus on the open ocean core of the ASOMZ in the central AS between 16 and 22 ◦N, 61

and 67 ◦E and from 10 to 1800 m depth and analysed averaged profiles in this region
:
,
:::::
which

::
is

::::::
marked

::
in
::::::
Figure

::
1c. To explain20

the differences between the models, these analyses were complemented by water mass mixing analyses and an analysis of the

water mass properties in their formation region with respect to temperature, salinity and oxygen.

3.3 Determination of Water Masses in Models

Knowing the dominant water masses that mix in the ASOMZ, we analyse the representation of the respective water masses

in the individual models. Therefore, we localised the formation regions of the water masses in observations (Fig. 2 & supple-25

ment Fig. S1-S3). Red Sea Water and Persian Gulf Water (RSWand
:
/PGW) are geographically restricted in their formation

regions(Fig. 2a) and thus easy to identify in the models. .
::::::

Figure
:::

2a
::::::
shows

:::
the

::::::::
formation

::::::
region

:::
for

::::::::::
RSW/PGW

:::
for

::::::
which

::::::::::
temperature

:::
and

:::::::
salinity

:::::
ranges

::::
and

:::::
mean

:::::
values

:::
are

::::::::::
determined

:::::
(Tab.

:
2
:::
&

:::
Fig.

::::
S4).

::
In

:::::::
contrast

:
Indian Central Water (ICW)

and Indian Ocean Deep Water (IODW) are much less
::
is

:::
not geographically restricted in their formation regionsand it is likely

that the formation regions in the models differ from the formation regions that we know from observations. We used
::
its30

::::::::
formation

:::::::
regions.

:::::
ICW

::
is

:
a
::::::

mixed
:::::
water

:::::
mass

::::
and

::
is

:::::::::::
characterised

:::
by

:
a
::::::
nearly

:::::
linear

:::::::::::::::::
temperature-salinity

:::::::
relation

::::
that

::
is

6



:::::::::::::::::
density-compensated

:::::::::::::::::
(Tomczak, 1984) and

::::
can

::
be

:::::::::
identified

::
in T-S diagramsof the whole IO to determine the T-S properties

of those water masses first from observations and applied the same procedure to the models (Fig. 3 & Fig. S4; see Tab.

2). For the observations the
:
.
::::
With

::::
this

:::::::
relation,

:::
we

:::::
were

::::
able

::
to

::::::
define

:::::
upper

::::
and

:::::
lower

::::::::::
temperature

::::
and

::::::
salinity

:::::
limits

:::
of

::::
ICW

::
in

:::::::::::
observations

:::
and

:::::::::
compared

:::::
those

::
to respective values from the T-S diagram were compared to literature values (see

Tab. 2). Figure 2
:::::::
literature

:::::::::::::::::::::::::::::::::::
(see Tab. 2; Acharya and Panigrahi, 2016).

:::::
ICW

::
is

::::::
formed

::::::
along

::::::
zonally

::::::::
oriented

:::::
fronts

::
in
::::

the

::::::
tropical

:::::
ocean

::::::::::
sub-surface

:::::
layers

:::::::::::::::
(Tomczak, 1984).

::::::::::::::::::::::::::::
Sprintall and Tomczak (1993) and

::::::::::::::::::::::::::::::::
Schott and McCreary (2001) described

::
the

:::::::::::
geographical

:::::::
location

::
of

:::
the

:::::::::
formation

:::::
region

::
of

:::::
ICW.

::::::
Figure

::
2b shows the grid boxes where these T-S properties are found

in the IO in observations and thus give us the formation region. Central waters are mixed water masses. We defined the upper5

and lower temperature and salinity limits of ICW using the linear temperature and salinity relation that can be found in
:::::::
WOA13

:::::::::::
observations.

:::::
These

:::
are

::
in
::::

line
::::
with

:::
the

::::::::::
description

::
of

::::
the

::::::::
formation

::::::
region

::
as

::::::
shown

:::
by

::::::::::::::::::::::::::::
Sprintall and Tomczak (1993) and

:::::::::::::::::::::::
Schott and McCreary (2001).

:::
To

:::::::::
investigate

:::
the

:::::::::
formation

::::::
region

::
of

::::
ICW

::
in
::::

the
::::::
models,

:::
we

::::::::
followed

:::
the

:::::
same

::::::::
procedure

:::
as

::::::::
previously

:::::::::
described

::
for

:::
the

:::::::::::
observations.

::::
The

:::::
linear

:::::::::::::::::
temperature-salinity

::::::
relation

:::
as

:::::
given

::
by

:
the T-S diagrams in

:
of

:
the indi-

vidual models and compared their formation regions with the formation regions we obtained from the observations (Fig. 2b).10

For the calculation of the oxygen content of ICW, we focused on the
::::
(Fig.

:::
S5)

::::
sets

:::
the

:::::
upper

:::
and

:::::
lower

::::::::::
temperature

:::
and

:::::::
salinity

:::::
limits

:::
(see

::::
also

::::
Tab.

::
2

::
&

:::
Fig.

:::::
S4c).

::
In

:::::::
contrast

::
to

:::
the

:::::::::::
observations

:::
and

:::
the

::::::::
literature,

:::
the

::::::::
resulting

::::::::
locations

:::
that

:::::::::
determine

:::
the

::::::::
formation

:::::
region

:::
of

::
the

:::::::::
simulated

::::
ICW

:::
are

:::
not

::::::::
restricted

::
to

:::
the

:::::::::
subduction

::::
area

::
of

:::::
ICW.

:::
For

:::::::::
consistency

:::
we

::::
limit

:::
the

:::::::::
formation

:::::
region

::
of

::::
ICW

::
in
:::
the

::::::
models

::
to
:::
the

:
subduction area of ICW as prescribed in the literature (Schott and McCreary, 2001, Fig. 2b),

to exclude water parcels
::::::::
according

::
to

::::::::::::::::::::::::::::::::::::::::::::::::::::
Sprintall and Tomczak (1993) andSchott and McCreary (2001):

:::
We

:::::::
exclude

:::
grid

::::::
boxes15

with similar T-S properties that are found in other areas in the IO. We also excluded
::::::
outside

:::
the

:::::::::
subduction

:::::::
region.

:::
We

::::
also

::::::
exclude

::::
grid

:::::
boxes

::::::
within

:
the upper 200 m so that

::
to

:::::::
analyse the oxygen content of subducted ICW is not affected by the

::::::::::
permanently

:::::::::
subducted

::::
ICW

:::::
below

:::
the

::::::
mixed

::::
layer

:::::
depth

::::
that

::
is

:::::::::
transported

::
to

:::
the

:::
AS

:::
and

:::
not

::::::::::
reventilated

::::
into

:::
the

:::::::::
seasonally

::::::
varying

:
well ventilated mixed layer. Figure S2 shows the respective area for the models

::::
each

::::::
model and the deepest depth at

each grid point
::::::
location, where the T-S properties are found. IODWoriginates from

:::::
Indian

::::::
Ocean

::::
Deep

:::::
Water

:::::::
(IODW)

:::::::::
originates20

::
in the Southern Ocean, where it is often referred to as Circumpolar Deep Water

:::
and

::::::::
Antarctic

:::::::
Bottom

:::::
Water, before it travels

northward in
:::
into the deep IO . It is very cold and forms in great depth in the southern IO (Fig. 2c). Defining the T-S properties

in the models provides
::
and

::::::
mixes

:::::
along

::
its

::::
way

::::
with

:::
the

::::::::::
surrounding

:::::
water

::::::
masses.

::::::
IODW

::
is
::::
thus

::::::
defined

:::
as

::
the

:::::::
densest

:::::
water

::::
mass

::
in

:::
the

:::
IO

::::
north

::
of

:::
60

::

◦S
::::
that

::
is

:::::
found

:::::
below

:::::
1500

::
m

:::::
depth

:::::::::::::::::::
(Talley et al., 2011a, b).

::::::
Figure

::
2c

::::::
shows

:::
the

::::::::
formation

::::::
region

::
of

::::::
IODW

::::::
derived

:::::
from

:::::::::::
observations.

:::
For

::::
this

::::::
region

::::::::::
temperature

:::
and

:::::::
salinity

:::::
limits

:::
are

::::::::::
determined.

::::::
IODW

::
in

:::
the

:::::::
models

::
is25

::::::
defined

::
in

:::
the

::::::
similar

::::
way

:::
as

::
in

:::::::::::
observations.

::
In

:::
the

:::::::
models

:::
the

::::::
derived

:
formation regions of IODW in the Southern Ocean

below 1500 m depth, that differ slightly
::::
differ from those we find in observations (Fig. S3). For the calculation of the oxygen

content of IODW we include the local distribution differences of the individual models. The oxygen content of the water masses

::
as

:::::
listed

::
in

::::
Tab.

:
2
::::
and

:::::
shown

::
in
::::
Fig.

:::
S4 is calculated, for each model

:::
and

:::
the

:::::::::::
observations, by the arithmetic mean of all grid

boxes of the corresponding source waters(see Tab. 2).
:
.30
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3.4 Analysing uncertainties of water mass mixing ratios

As we want to understand the physical mechanisms controlling the oxygen distribution in the different clusters, we looked at

::::::::::
investigated the ventilation of the OMZ

:::::::
ASOMZ at different depths. Therefore, we carried out a water mass mixing analysis

with the observations. This serves to identify the ventilation depth of the individual water masses and their contribution.
:::
The

::::
three

:::::
main

:::::
source

:::::
water

:::::::
masses

::
in

:::
the

:::
AS

:::
are

:::::::
IODW,

::::::::::
RSW/PGW

:::
and

:::::
ICW

::::
(Fig.

:::
3). We used a linear mixing approach and

restricted the input to physical water mass properties from observational data. By considering potential temperature (θ), salinity

(S) and mass conservation this yielded the possibility to resolve the mixing ratio of three different
::
the

:::::
three

::::
main

:
source water5

masses
::
in

:::
the

:::
AS. The set of linear equations was:

θ = αθ1IODW
:::::

+βθ2ICW
:::

+ γθ3RSW/PGW
::::::::

(1)

S = αS1IODW
:::::

+βS2ICW
:::

+ γS3RSW/PGW
::::::::

(2)

1 = α+β+ γ (3)

α, β and γ were the mixing ratio coefficients for each water mass
::::::
IODW,

::::
ICW

::::
and

::::::::::
RSW/PGW,

::::::::::
respectively. The equations10

were solved at each data grid point.

The three main source water masses in the AS are IODW, RSW and PGW and ICW
::
We

::::
first

::::::
solved

:::
the

::::::::
equations

:::
for

:::::
each

:::::::::::
observational

:::::::
WOA13

::::
data

::::
grid

:::::
point

::
in

:::
the

::::
box

::
in
::::

the
:::::::
ASOMZ

:
(Fig. 3) . There are two ways to determine

:::
4b)

:::
by

:::::
using

:::::::::
observation

:::::
based

:::::::::::
temperature

:::
and

:::::::
salinity

:::::
values

::
of

:
the source water masses . First by taking values from the literature that

are based on observations and second by taking the arithmetic mean of the WOA data in the IO as described in section 3.315

(
::::
from

::::::::
literature

:::::
(Table

:::
2, Fig. 4, Table 2). For both sets of source

::
a).

:::::::::::
Temperature

::::
and

::::::
salinity

::::::
values

::
of

::::
the

::::::
source

:::::
water

::::::
masses

::::
from

::::::::
literature

:::::
differ

::
to

::::
those

:::::::
derived

::::
from

:::
the

:::::::
WOA13

::::::::::::
observations.

:::
The

:::::
same

::::::
applies

:::
for

:::
the

:::::
model

::::::::::
temperature

::::
and

::::::
salinity

::::::
values.

::
In

::::::::
addition,

:::
the

:::::::::
properties

::
of

:::
the

:
water input properties the grid point data in the ASOMZ are the same data

from the WOA13. We compare the results of both approaches to
::
in

:::
the

::::::
models

:::::
differ

:::::
from

::::
each

:::::
other

:::
and

:::::
from

::::
those

:::
of

:::
the

:::::::::::
observations.

::
To

:
obtain an uncertainty range of the water mass analysis that can be related to a change of the input. This allows20

us to draw conclusions on the sensitivity of the mixing in those models, where the source water properties deviate from the

observations. The choice of the source water masses also restricts the resolvable water mass properties - it is not possible to

mix the source water masses in a realistic way and get a higher/lower temperature and salinity than the highest/lowest
:::::
source

::::
water

:::::
mass

:::::
input,

:::
we

::::::
solved

:::
the

::::::::
equations

:::::
again

::
for

:::::
each

:::::::::::
observational

:::::::
WOA13

::::
data

::::
grid

::::
point

::
in

:::
the

::::
box

::
in

:::
the

::::::::
ASOMZ,

:::
but

:::
this

::::
time

:::
we

::::
used

:::::::::
arithmetic

::::::::::
temperature

::::
and

::::::
salinity

:::::
mean

::::::
values

::
of

:::
the

::::::::
WOA13

::::
data

::
in

:::
the

:::
IO,

::::::::
following

::::
the

::::::::::
calculations25

::::::::
described

::
in

::::::
section

:::
3.3

:::
for

:::::::
oxygen

::::
(Fig.

::
4c

:::
&

::
d).

:::::
This

::::::::::
information

:::::
about

:::
the

::::::::
sensitivity

:::
of

::::::
mixing

:::::
ratios

::
to

:::
the

::::::::
definition

:::
of

::::
water

:::::
mass

::::::::
properties

::::::
allows

::
us

::
to

:::::
draw

::::::::::
conclusions

::
on

:::
the

::::::::::
significance

::
of

::::::::::
differences

:::::::
between

::::::::
modelled

:::
and

::::::::
observed

::::::
mixing

:::::
ratios.

:::::
Note,

:::
the

:::::::::
prescribed temperature and salinity of

:::::
values

:::::
from the source water masses . With the described three source

water masses this limits our analysis results
::::::::
determine

:::
the

:::::::
vertical

::::::
extent

::
of

:::
the

::::::
mixing

::::::
results

::::
and

::::
limit

:::
our

:::::::
analysis

:
to the

central AS and thus the core region of the ASOMZ, which is of the main interest of this study .
::::
(Fig.

:::
4b

::
&

::
d).

:
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4 Results

4.1 Comparison of observed and predicted OMZs in the CMIP5 Models

For an overview of the differences in the oxygen distribution between models and observations, we calculated water volumes

characterized by different oxygen thresholds in the AS westward of 79 ◦E (Fig. 1a). Eight out of 10 models underestimate the

volume of the OMZ
:::::::
ASOMZ

:::
for

::
all

:::::::::
thresholds

:
and thus overestimate the oxygen content of the water, especially for oxygen

thresholds above 50µmol l−1.

The vertical extent of low oxygen waters characterized by the 50 µmol l−1 threshold is compared by area-depth profiles in the

AS (Fig. 1b ). Observations show
:::::
Figure

:::
1b

:::::
shows

:::
the

::::
area

:::::::
integral

:::
for oxygen values below 50 µmol l−1 in the depthrange5

::
by

::::::
depth.

:::
For

:::
the

:::::::::::
observations

:::::
these

::::
areas

::::
can

::::
only

:::
be

:::::
found

:
between 200 and 1800 m (Fig. 1b). The maximal

:::::
depth.

::::
The

::::::::
maximum

:::::::::
horizontal extent of the OMZ is

:::::::
ASOMZ

:::::::
amounts

::
to around 900 m. Below 900 m the oxygen content is

::
all

:::::::
models

:::::::::::
underestimate

:::
the

:::::
area

:::
and

::::
thus

:::::::
oxygen

:::::::::::::
concentrations

::::
itself

::::
are overestimated compared to the observationsin nearly all

models. Above 900 m the models split up in two groups, where one group overestimates the
::::::::
horizontal extent of the OMZ

:::::::
ASOMZ

:
and the other

:::
one underestimates it. To investigate this model-data misfit further we focus on the depth horizon of10

the OMZs
::::::
horizon

::
at

:::
500

::
m
:::::
depth

::::::
which

::
is

:::::
within

:::
the

::::
core

::
of
:::

the
:::::
OMZ

:
in the models and look at the horizontal expansion of

the OMZs there. Figure 1cshows the spatial OMZ extend at 500 m depth, where the
::::
(Fig.

:::
1c)

::::
and

:::::
shows

::::
the

:::::
largest

:
model-

data misfitis the largest. Four out of ten models (IPSL-CM5A-MR,IPSL-CM5A-LR, HadGEM2-CC, MRI-ESM1) generally

simulate so high oyxgen values over the whole water column
:::::
largely

:::::::::::
overestimate

:::::::
oxygen

::::::::::::
concentrations

:
that there is no

water with oxygen concentrations less than 50 µmol l−1 in
::
at 500 m depth (Fig. 1c). The models that overestimate the OMZ15

:::::::
ASOMZ area of less than 50 µmol l−1 show too low oxygen values compared to observations in the whole AS and a southward

expansion of the OMZ
:::::::
ASOMZ

:
with one exception: In the NorESM1-ME model the OMZ

:::::::
ASOMZ is shifted to the south-

eastern boundary of the AS and is located between 15◦ N and the equator (Fig. 1c). All in all this wider horizontal expansion of

the oxygen-poor areas below
:::::::
(oxygen

::
< 50 µmol l−1

:
) in the models compared to the observations (Fig. 1c) cannot compensate

for the reduced thickness of the oxygen-depleted
::::::::::
low-oxygen layers, which is responsible for the overall underestimated OMZ20

::::::
general

:::::::::::::
underestimation

::
of

:::
the

::::::::
ASOMZ volume in the AS in the CMIP5 models (Fig. 1a).

Thus the oxygen distribution differs considerably among the CMIP5 models in the AS. None of the CMIP5 models reproduces

the observed oxygen distribution. Also the extent of the OMZ
::::::
volume

::
of

:::
the

::::::::
ASOMZ depends highly on the chosen threshold

(Fig. 1a). For a more general comparison of the models with each other and with the observations, we therefore decided to use

averaged oxygen profiles in the AS for the cluster analysis.25

4.2 Cluster analysis

We performed a cluster analysis to identify commonalities between the models. Figure 5 shows these profiles averaged in
::::
over

the box in the core region of the ASOMZ as shown in Fig. 1c. Based on the silhouette-criterion (see section 3.2) we obtain

four
:::
first

::::
four

:::::::
oxygen clusters. The naming of the clusters is based on their agreement with the observations. Cluster HIGH

and MEDIUM are the largest clusters. Cluster HIGH groups with the observations and contains the CESM1-BGC, GFDL-30
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ESM2G and MPI-ESM-MR/LR. Cluster MEDIUM contains the HadGEM2-CC, GFDL-ESM2M and IPSL-CM5A-MR/LR.

In addition, two outliers were identified, that each form their own cluster: MRI-ESM1 (cluster LOW1) and NorESM1-ME

(cluster LOW2).

The surface oxygen concentration of the models is similar among the models
::
At

:::
the

::::::
surface

:
in the AS but

::
all

:::::::
models

:::::
show

::
an

::::::
oxygen

::::::::::::
concentration

:::
that

::
is
:

about 25 µmol l−1 higher than in observations (Fig. 5a). Below
:::::
,d,e,g)

::::
and

::::
also

:::::
below

:
1800

m all models (except IPSL-CM5A-MR) show too high oxygen concentrations compared to observations
::::::::::
overestimate

:::::::
oxygen

::::::::::::
concentrations (Fig. 5a).

::::::
,d,e,g). The main difference between the clusters is noticeable in the oxygen content from around

:::::::
between 250 to

:::
and

:
1300 m depth in the core of the OMZ. The observations show oxygen concentrations

:::::::
ASOMZ,

::::::
where

:::::::
observed

:::::::
oxygen

::::::::::::
concentrations

:::
are

:
close to zeroover these depths. Cluster .

::::::::
Although

::::::
cluster

:
HIGH models also have an5

averaged oxygen concentration
::::
show

::::::::
averaged

:::::::
oxygen

::::::::::::
concentrations

:
close to zero, but not all cover the full depth of the

observational core .
:::::
range

::
of

:::
the

::::::::
observed

:::::::
ASOMZ

::::
core

:::::
(Fig.

:::
5a).

:
Cluster MEDIUM models generally show higher averaged

oxygen concentrations above 80 µmol l−1 in three out of four models in
::::
(Fig.

:::
5c)

::
in comparison to cluster HIGH. The model

from
:
of

:
cluster LOW1 has even higher oxygen concentrations

::::
(Fig.

:::
5e)

:
and the model in

:
of

:
cluster LOW2 has an averaged

oxygen minimum that is found in shallow depth
:
at
:::::::
shallow

::::::
depths around 400 m (Fig. 5a

:
g).10

To differentiate between physical and biogeochemical processes
:::::::::
responsible

::::
for

:::
the

:::::::::
model-data

::::::
misfit, we also carried out

::::::::
performed

:
the cluster analysis for the

:::::::
averaged

:
salinity profiles. The cluster analysis for the salinity profiles (Fig. 5b) groups

nearly all models and the observations into the same clusters as the cluster analysis for oxygen. Only the
:::::
results

:::::
show

::::
that

::::
only

:::
the GFDL-ESM2G changes from oxygen cluster HIGH to salinity cluster MEDIUM.In contrast to the averaged oxygen

profiles ,
:::
all

:::::
other

::::::
models

:::
are

::::::::
grouped

::
in

:::
the

:::::
same

:::::::
clusters

::::::::
compared

::
to
::::

the
::::::
oxygen

::::::
cluster

:::::::
analysis

:::::
(Fig.

::::::::
5b,d,f,h).

::::::
Below15

::::
1800

::
m

:
the simulated averaged salinity profiles (Fig. 5b

::::
,d,f,h) are close to observationsbelow 1800 m. Between 800 and 1800

m nine out of ten models underestimate the salinity. Above 800 m the model data show different patterns
:::::::::
Differences

:
in

over-/underestimating the
:::::::::::::
underestimation

::
of

:
salinity in the AS, which differentiate

:::::
upper

::::
800

::
m

::::::::::
characterise

:
the individual

clusters. Three out of four cluster HIGH models overestimate the salinity up to the upper boundary of the OMZ
:::::::
ASOMZ

:
(Fig.

5b). In contrast to that all cluster MEDIUM models overestimate the averaged salinity at depths around 400 m in the AS.
::::
(Fig.20

:::
5d).

:
Cluster LOW1 has even higher salinity values than the models from cluster MEDIUM. The model from

::
of

:
cluster LOW2

underestimates the salinity all the way up to the surface .
::::
(Fig.

::::
5h).

The clustering of the models reveals a connection between the representation of oxygen and salinity in the CMIP5 models

with one exception (GFDL-ESM2G). The grouping of the models from
::
of

:
cluster HIGH with the observations indicates that

the circulation in this group is similar to the real circulation, or at least that we could not identify any fundamental problems25

in the circulation models
::::::::
modelled

:::::::::
circulation. Still the OMZs

:::::::
ASOMZs

:
of the models from

::
of cluster HIGH differ in shape

and extension
:::::
extent compared to the observational OMZ. In contrast, the cluster analysis indicates

:::::::
observed

::::::::
ASOMZ.

::::
The

:::::
results

:::::::
indicate

::::::
further

::::
that

::
in

::::::
cluster

:::::::::
MEDIUM,

::::::
LOW1,

::::
and

:::::
LOW2

::::::
models deficiencies in the circulation model that

::::::
models

are responsible for deficiencies in simulated oxygen , for the models in clusters MEDIUM, LOW1, and LOW2, that do not

group with the observations regarding salinity. However, this does not exclude the possibility that the biogeochemical model30

components of these models also have problems
::
the

:::::::
oxygen

:::::::::::::
representation.

::
In

:::::::
addition

:::
to

:::
the

:::::::::::
uncertainties

::
in

:::
the

::::::::
physical

10



:::::
model

:::::::::
component

:::::
these

::::::
models

:::
can

::::
also

::::
have

::::::::::
deficiencies

::
in

:::
the

:::::::::::::
biogeochemical

::::::
model

::::::::::
components. These are just not clearly

identifiable due to the underlying uncertainties in the physical model components. To gain further insights in the water masses

and mixingprocesses we analysed the water mass representation in the models.

4.3 Water Mass Representation in Models

We
:::::::::
Differences

:::
in

:::
the

:::::::
physical

:::::
model

::::::::::
component,

::::
e.g.

:::
the

::::::::::::
representation

::
of

:::::
water

::::::
masses

:::::::::
(including

:::::::
mixing),

:::::
seem

::
to

:::
be

:::
the

:::
key

::::::
process

::::
that

:::::::::
determines

:::
the

:::::::::
affiliation

::
of

:
a
::::::

model
::
to

::
a
::::::
certain

::::::
cluster.

::
In

:::
the

:::::::::
following,

:::
we

:
concentrate on the three main

water masses that mix in the ASOMZ which are IODW, ICW and RSWand /PGW. The water mass mixing analysis (Fig.

4) shows that IODW is the dominating water mass in the deep ASand .
::::::
Above

:::::
∼900

:::
m,

:::
the

::::::
impact

:::
of ICW and RSWand5

PGW have an increasing influence on the OMZ with decreasing depth. The
:::::
/PGW

::
on

:::
the

::::::::
ASOMZ

:::::::::
dominates.

::::
The

:::::::::
underlying

:::::::::::
uncertainties,

:::
that

:::::::
include

:::
the

:
percentages of the

::::::::
individual

:
water masses with depth and their uncertainties are explained in

more detail in section 4.4.

IODW forms in the Southern Ocean, where it is often referred to as Circumpolar Deep Water. Its temperature varies from 0

to 1 ◦C and its salinity from 34.65 to 34.7 (Table 2
::::
Tab.

:
2
::
&

::::
Fig.

::::
S4a). All models reproduced

::::::::
reproduce

:
these characteristics10

fairly well. Also the formation region (Fig. 2c & Fig. S3) is correctly simulated by all modelsexcept
:
.
:::
The

::::
only

:::::::::
exception

::
is

NorESM1-ME, where these properties
:
.
::
In

:::
this

::::::
model

:::
the

::::::::
properties

::
of

::::::
IODW do not reach deep enough in the southern IO but

:::
and a large amount of water with these characteristics is

:::
can

::
be

:
found in the equatorial eastern

:::::
eastern

:::::::::
equatorial IO.

The simulated oxygen concentrations of IODW vary between 181 (IPSL-CM5A-MR) and 301 µmol l−1 (NorESM1-ME;

Table 2 ,
:::
Tab.

:
2
:::

& Fig. 6). The observational mean oxygen concentration is 200 µmol l−1 (Table 2, Fig. 6). Figure 6 shows a15

comparison of the oxygen concentrations at the bottom of the ASOMZ at 1800 m depth and the oxygen concentrations of IODW

in its formation region. The offset
::::::::
difference

:
between those two concentrations indicate that the respiration of organic matter

during the transit from the formation region of IODW to the central AS results in an oxygen consumption of 136 µmol l−1 in the

observations. In cluster
::::::
clusters

:
HIGH

:::
and

::::::
LOW1, all models show offsets in the oxygen concentration

::::::
oxygen

::::::::::::
concentration

:::::::::
differences between IODW and the bottom of the ASOMZ that are similar to the one found in the observations.

::::::::
However,

:::
the20

:::::::
resulting

::::::::
simulated

:::::::
oxygen

::::::::::::
concentrations

:::
still

:::::
differ

:::::
quite

:::::::::::
substantially.

::::
Here

::
it

::
is

::::::::
important

::
to

::::
note,

::::
that

:::
the

::::::::
modelled

::::::
IODW

:::::
shows

::
an

::::::
almost

:::::::::
systematic

::::::
oxygen

:::::
offset

::
in
:::
the

::::::::
Southern

::::::
Ocean

::::
(Fig.

:::
6). For the majority of cluster MEDIUM models (IPSL-

CM5A-MR/LR, HadGEM2-CC) and cluster LOW2 the offset in the oxygen concentration
::::::
oxygen

:::::::::::
concentration

:::::::::
difference is

smaller compared to the one in observations. In cluster HIGH we are not sure why the simulated oxygen is not closer to the

observations. Even if the salinity profiles cluster with the observations and the offset in oxygen between the formation region25

of IODW and the deep AS resembles the observations, we cannot exclude deficiencies in the physics, especially in the
::::
This

:::::::
indicates

:::::::::::
uncertainties

::
in

:::
the

::::::
oxygen

:::::::::::
consumption

::
in
:::

the
:

abyssal ocean.However, what is immediately noticeable in Fig. 6, is

that IODW almost systematically has an offset

:::::::::
Differences

::
in
:::
the

::::::
transit

::::
time

:::
can

:::
be

:::::::::
determined

:::
by

::
an

::::
age

:::::
tracer.

:::::
Only

:::
two

:::
out

::
of

:::
ten

:::::::
models

::::::
include

:::
an

::::
ideal

::::
age,

:::
that

::
is
:::
an

:::::::
idealised

:::::
tracer

::::
that

::::::
counts

:::
the

::::
time

::::
since

:::
the

::::
last

::::::
surface

:::::::
contact.

:::
We

:::::::
obtained

:::
the

:::::
ideal

:::
age

::
of

::::::
IODW

:
in the Southern Ocean30

.To find out more about the differences between clusters in the oxygen consumption of IODW on the way to the AS, we looked
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at the age since surface contact of two models.
::
by

:::
the

:::::::::
arithmetic

:::::
mean

::
of

::
all

::::
grid

:::::
boxes

:::
of

:::
the

::::::::
formation

::::::
region

::
of

:::
the

::::::
source

::::
water

::::::
mass,

::::::
similar

::
to

:::
the

:::::::::
calculation

:::
of

:::
the

::::::
oxygen

:::::::
content

:::::::
(section

::::
3.3).

:::
In

:::
the

::::
deep

:::
AS

:::
the

:::::
ideal

:::
age

::
is
:::::::::
calculated

:::
by

:::
the

::::
mean

::::::
within

:::
the

::::::::
averaging

::::
box

::
of

:::
the

::::::
profiles

::::
(Fig.

::
5)

::::::
below

::::
1800

::
m

::::::
depth. The GFDL-ESM2G (cluster HIGH) has an average

::::
ideal age of 101 yrs of water

::::::
IODW in the formation region of IODW in the deep Southern Ocean and an average age

::::
ideal of35

579 yrs of the deep water in the AS.
:
in

:::
the

:::::
deep

:::
AS

::::
(Fig.

::::
S6). In the GFDL-ESM2M (cluster MEDIUM) the respective water

mass
:::
ideal

:
ages are older with 252 yrs and 780 yrs, respectively . The age difference

::::
(Fig.

::::
S6).

::::
The

:::
age

:::::::::
differences

:
between

the formation region and the AS are 478 yrs (GFDL-ESM2G) and 528 yrs (GFDL-ESM2M). This shows that the two models

start with differently aged water
:::::
water

::::
mass

::::
age

::
in

:::
the

:::::
source

::::::
region

::
of

:::
the

:::
two

:::::::
models

:::::
differs, which already might explain the

lower oxygen concentration of GFDL-ESM2M in the Southern Ocean.Both5

::
In

:::::::
addition

::::
both

:
models have the same biogeochemical model component and the same horizontal resolution of the physical

model component, but the GFDL-ESM2G has a higher vertical resolution . This also suggest,
:::::
differ

::
in

::::
their

::::::
vertical

:::::::::
resolution

::::
(Tab.

:::
1).

::::::::::
Differences

::
in

::::
the

::::
ideal

::::
age

::
in

:::
the

::::::
source

:::::::
regions

::
of

::::::
IODW

::::::::
between

:::::
these

:::
two

:::::::
models

:::::::
indicate

:
that the vertical

resolution has an impact on the water mass formation
::::::
process

:
in the Southern Oceanand suggests .

::::::::::
Differences

::
in

:::
the

::::::
transit

::::
times

:::::::
indicate

:
that the circulation differs among the two models and thus also

:::
also

::
as

::
a

:::::
result

::
of

:::
the

:::::::::
differences

::
in

:::
the

:::::::
vertical10

::::::::
resolution.

:::
In

:::::::
addition

::::
also

:::::
export

:::::::::
production

::::::
might

::
be

:::::::
affected

::
by

:::::::
changes

:::
in the residence time and possibly also the export

production. For clusters MEDIUM, LOW1, and LOW2, we have already obtained many indications that there seem to be

deficiencies in the ventilation and water mass mixing of the ASOMZ. In clusters MEDIUM and LOW2 these offsets in the

Southern Ocean seems to be additionally superimposed by uncertainties in oxygen consumption in the abyssal ocean
::::::
vertical

:::::
model

:::::::::
resolution.15

RSWand /PGW are straightforward to define in models, as they have a distinct origin in the Red Sea and the Persian Gulf,

respectively (Fig. 2a & Fig. S1). The
:::::::
observed

:
temperature range between 18 and 30 ◦C in observations is well represented

in all models (Table 2
::
&

::::
Fig.

:::
S4b). However, the simulated salinity in the formation region varies among the models. While

the lower limit of 37.14 in observations is met by most models (Table 2
:::
Tab.

::
2
::
&

::::
Fig.

:::
S4b), the upper limit varies from 39.28

(MPI-ESM-LR) to 46.71 (IPSL-CM5A-MR). In general, we find an overestimation of the salinity of RSWand /PGW in all20

clusters. One consequence
:::::::::::
Consequences

:
of more salineand thus denserwater is that it might ventilate the OMZ at a different

depth or generate salinity maximathat are not found in observations.,
::::

thus
:::::::

denser,
:::::
water

:::
are

:
a
::::::::::

ventilation
::
of

:::
the

::::::::
ASOMZ

::
at

:::::::
incorrect

:::::
depth

:::::
levels

::::
and

:::::
model

:::::::
artificial

:::::::
salinity

:::::::
maxima.

The averaged salinity profiles in the AS confirm this overestimation of salinity especially for cluster MEDIUM (LOW1) in

depth between 200 - 500 (1000) m depth (Fig. 5b
::
d,f). For cluster LOW1 the deep reaching salinity overestimation cannot be25

explained by offsets in the source water mass properties alone, although the peak at around 500 m depth coincides with the

depth of maximal water mass contribution of RSWand
:
/PGW (Fig. 5b

:
f). A possible further explanation would be enhanced

mixing of RSWand
:
/PGW into the AS and also stronger evaporation/less precipitation over the AS. Below 500 m, the reduced

salinity and the mixing analysis indicate less input of RSWand
:
/PGW in nearly all models compared to observations. This

deficit would therefore have to be compensated by another water mass that is mixed into the ASOMZ.30

The mean oxygen content of RSWand /PGW is quite similar among the models but has a considerable positive offset compared
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to observations of up to 87 µmol/l (Table 2
:::
Tab.

::
2

::
&

::::
Fig.

:::
S4b). While the observations show a mean oxygen content of 128

µmol/l the models have a mean oxygen concentration between
:::::
range

::::
from

:
179 (CESM) and

::
to 215 µmol/l (NorESM1-ME).

The
:::::
oxygen

:
concentration differences between the clusters are comparable to those within the clusters, even though the models

in cluster HIGH tend to have lower oxygen concentrations than those in cluster MEDIUM. This higher oxygen concentration

:::
The

::::::::
enhanced

::::::
oxygen

::::::::::::
concentrations

::
in
:::
the

::::::::
ASOMZ

::
in

:::::
cluster

:::::::::
MEDIUM

:::
can

::
be

:::::::::
explained

::
by

:::
the

:::::
higher

:::::::
oxygen

::::::::::::
concentrations

in the formation region
::
of

::::::::::
RSW/PGW combined with the modified mixing of water in the ASOMZ due to density changes by

overestimated salinities of RSWand PGW in cluster MEDIUM serves to explain the enhanced oxygen in the ASOMZ
:::::
/PGW

(Fig. 5a
:::
c,d). In clusters

:::::
cluster

:
LOW1 and LOW2, RSWand /PGW have the highest oxygen concentration of all models.5

ICW is subducted in the southeastern
:::::
south

::::::
eastern IO in the subtropical cell region (Fig. 2b & Fig. S2). Central water masses

can be recognised by their linear T-S relationship. Table 2 gives
:::
and

:::
Fig.

::::
S4c

::::
give the upper and lower temperature and salinity

limits of ICW for each model. The temperature range we find in observations
::::::::::
observational

::::::::::
temperature

:::::
range

:
(7.7 - 15.8 ◦C)

is 2.2 degree
::

◦C
:
below the established literature value. The temperature range of the models thus corresponds to those values

going
::::::
ranging

:
from 7 ◦C (IPSL-CM5A-LR) to 19.9 ◦C (NorESM1-ME). Also the salinity corresponds to a great extent with10

values from 34.57 to 34.57
:::::
35.57 in observations and 34.49 (GFDL-ESM2G) to 36.13 (CESM-BGC) in models. For both

properties the clusters show no clear separation among each other (Tab. 2).

The mean oxygen content
:::::::::::
concentration

:
of ICW of the models spreads from 170 µmol l−1 (CESM-BGC) to 233 µmol/l

(HadGEM2-CC) which brackets the observational concentration of 200 µmol/l. Again, no clear separation between the clusters

is noticeable.15

4.4 Uncertainties of water mass mixing ratios impacting the OMZ according to observations

We performed the water mass analysis for the observations using
::
for

:
two different sets of the source water mass propertiesas

input. The first input
::
set

:
comes from established literature values (see Tab. 2 for input and Reference ;

:::::
values

:::
and

:::::::::
Reference

::
&

Fig. 4a). The second input
:::
set is derived from WOA13 data (Fig. 4c; section 3.4). This enables us to estimate the sensitivity of

the analysis
:::::
related

:
to differences in assumed water mass characteristics

::
in

:::
the

:::::
source

:::::::
regions.20

Starting with the input from literature values, the impact of IODW on the lower ASOMZ is dominating with a water mass

contribution of up to 80 % (Fig. 4b). IODW has still an impact of about 50 % at intermediate depths below 800 m, but is barely

found at the upper boundary of the ASOMZ at depths of 200 m, where the intermediate water masses such as
:
.
::::::
Above

:::::
∼900

::
m

ICW and RSW/PGW are dominating (Fig. 4b). This holds especially for ICW, which has a maximal contribution
::
In

:::::::::
particular,

::
the

:::::
ICW

:::
has

::
a

::::::::
maximum

:::::::::::
contribution

::
of

:::::
about

::
80

:::
% at the upper boundary of the ASOMZ of about 80 % and

:::
that decreases25

downward to a fraction of less than 20 % at 1800 m depth. Above 500 m depth RSWand /PGW contributes between 15 and 40

% to the mixed water in the OMZ
:::::::
ASOMZ

:
(Fig. 4b). This fraction is decreasing with depth tending towards 0 % at the bottom

of the ASOMZ.

The spatial variability of the composition of water masses is more variable in the upper layers of the ASOMZ. This is due to

the fact that temperature and salinity in the deep ocean vary less than in the thermoclineand permanent thermocline, which are30

:
, affected by heat and freshwater fluxes, seasonal variations and turbulent mixing.
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Switching to the source water mass definitions defined from the WOA
:::::
based

::
on

::::
the

:::::::
WOA13

:
data (Fig. 4c; section 3.4) the

greatest deviation of the input parameters is for RSWand /PGW (Fig. 4b,d). This water has mean temperature and salinity

values of
:::
a,c).

::::
The

:::::
mean

::::::::::
temperature

:::::
values

:::
of

:::
this

:::::
water

::::
mass

:::
of 24.1 ◦C and 38.9, which is higher by

:::
are 5.4 ◦C and

:::::
higher

:::
and

:::
the

:::::
mean

::::::
salinity

::::::
values

::
of

::::
38.9

:::
are 2.2

:::::
higher

:
compared to the literature values of Hupe and Karstensen (2000). For ICW

the temperature value defined
:::
The

:::::
ICW

::::::::::
temperature

::::::
derived from the mean WOA

::::::
WOA13

:
data is 15.8 ◦C and thus lower than

the literature value of Acharya and Panigrahi (2016).

Despite the change in source water definitions, the impact of IODW on the ASOMZ in the second analysis is similar to that

in the first analysis indicating a robust result for the mixing ratios diagnosed from observations
::::
The

::::::
mixing

:::::
ratios

:::
for

::::::
IODW5

::::::
derived

::::
from

:::
the

:::::::
WOA13

::::
data

:
(Fig. 4d)

:::
are

::::::
similar

::
to

::::
those

::::::::
obtained

::::
from

:::
the

::::::::
literature

:::::
values. The impact of ICW on mixing

ratios in the ASOMZ is generally a few percent higher throughout the water column in the second analysis
::
for

:::
the

::::::::
WOA13

:::
data

:
compared to the first one

::::::::
literature

:::::
values. The largest differenceshowever

:
,
:::::::
however,

:
are noticeable for RSWand /PGW

at depths between 200 and 600 m, where the maximal
::::::::
maximum

:
contribution is 20 % with WOA13 input. This is just half as

much RSWand PGW compared to the literature values
:::::
/PGW that mixes into the ASOMZ

:
as

:::::
when

::::::::
literature

:::::
values

:::
are

:::::
used10

::
to

:::::
define

:::
the

:::::
water

::::::
masses.

Comparing the outcome of these two water mass analyses gives a stable result for the mixing of water masses in the deep

AS. It is more sensitive to varying source water mass characteristics at intermediate depth and in particular, to fluctuations in

water masses whose properties differ significantly from those of the other water masses being mixed
:::::::::::
Furthermore,

:::
the

::::::
results

::
are

::::::::::
particularly

:::::::
sensitive

:::
to

::::::::
variations

::
in

::::::::::
RSW/PGW

:::::::::::
characteristics. As seen in section 4.3 RSWand /PGW is by far the saltiest15

and warmest water mass but also the
:
its

:
T-S properties of this water mass differ most clearly among the

:::::
show

:::::
largest

:::::::::
variations

:::::
across

:::
the

:::::::
different models. This can result in uncertainties in the mixing ratio of the water masses in the models in the ASOMZ.

Since the water masses are of different origins and also have different oxygen concentrations, this
:::::::
different

::::::
mixing

:::::
ratios

:
can

affect the simulated oxygen content of the OMZ.

5 Discussion20

Previous
::::::
CMIP5

::::::
models

:::
do

:::
not

::::::::
represent

:::
the

:::::::
ASOMZ

::::
very

::::::::::
realistically.

::
In

:::
the

::::
core

::::::
region

::
of

::
the

::::::::
ASOMZ

:::
the

:::::::
averaged

:::::::
oxygen

::::::
profiles

::::::::::
exclusively

::::::
display

::::::
higher

::::::
oxygen

::::::::::::
concentrations

:::
in

:::
the

::::::
models

::::
than

::
in

:::::::::::
observations

::::
(Fig.

::::::::
5a,c,e,g).

::::
Our

:::::::
findings

:::
for

::
the

:::
AS

::::::
cannot

:::::::
support

:::::::
previous

:
global and regional studies point

:::::::
pointing out that CMIP5 models systematically overestimate

the volume of OMZs (e.g. Bopp et al., 2013 (global OMZs); Cabré et al., 2015 (Pacific OMZs); threshold of 50 µmol l−1).

We cannot support the statement with our findings for the AS. All
::
For

::
a
::::
more

:::::::
detailed

::::::::::
comparison

::
of

:::::::::
simulated

:::
and

::::::::
observed25

::::::::
ASOMZs,

::
it
::
is

:::::
useful

::
to
::::::::::

investigate
:::
the

:::::
model

:::::::::
behaviour

:::
for

:
a
:::::
range

::
of

::::::::
different

:::::::::
thresholds,

::
as

:::
the

:::::::
models

::::::
behave

:::::::::
differently

:
at
::::::::
different

:::::::::
thresholds.

:::::
Eight

:::
out

::
of

:
ten models underestimate the ASOMZ volume when we consider oxygen thresholds of 60

::
for

:::
all

:::::::::
thresholds

::::
<100

:
µmol l−1 or higher (Fig. 1a). In contrast, Rixen et al. (2020) and our own analysis here show that two

:::
Two

:
models (CESM1-BGC, MPI-ESM-LR) overestimate the OMZ

:::::::
ASOMZ

:
volume when considering hypoxic conditions

(
::::::
oxygen <20

::
60

:
µmol l−1 ), with the maximum simulated OMZ volume being more than twice as large as in observations.30
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However, the other eight models still underestimate the OMZ volume for the lower threshold
:::
and

::::
<50

:::::
µmol

::::
l−1,

::::::::::
respectively

:::
and

::::::::::::
underestimate

::
it

:::
for

:::::
higher

:::::::
oxygen

:::::::::
thresholds. This is consistent with our analysis of the same 10 models (Fig. 1a ).

::
in

:::
line

::::
with

::::::::::::::::
Rixen et al. (2020),

::::
who

:::::
show

:
a
:::::
twice

::
as

::::
high

::
as

::::::::
observed

:::::::
ASOMZ

:::::::
volume

:::
for

:::::::::::
CESM1-BGC

::::
and

::::::::::::
MPI-ESM-LR

:::
for

::::::
oxygen

::::
<20

::::
µmol

::::
l−1.

We find that this volume underestimation in the models
:::
The

::::::
general

::::::::::::::
underestimation

::
of

:::
the

:::::::
ASOMZ

:::::::
volume is mainly caused

by an OMZ that has too small a vertical extent a
::::

too
:::::
small

:::::::
vertical

::::::
extend

::
of

:::
the

::::::
OMZ (Fig. 1b). Previous studies (e.g.

Kamykowski and Zentara, 1990; Rao et al., 1994) that included observations pointed out that the core of the ASOMZ was

thicker than in the Atlantic and Pacific OMZs with oxygen values below 5 µmol l−1 expanding
::::::
expands

:
over a depth range of5

about 1000 m. This large vertical expansion causes
::::::::
Specially

:::
the

::::::
vertical

:::::::::
expansion

::
of

:
the horizontally confined ASOMZ to

have such a large volume
::
is

::::::::
important

:::
for

:
a
:::::
good

::::::
volume

::::::::::::
representation. However, only one in ten models is able to completely

cover this depth of oxygen depleted water (MPI-ESM-LR; Fig. 5a).

Recent studies analysing CMIP5 and CMIP6 model data show that increasing the horizontal resolution does not overcome the

major problems with respect to simulating oxygen in the open ocean. Despite better representation of mesoscale processes10

due to higher resolution, the expected improvement in oxygen representation is absent in the CMIP6 models on a global

scale (Séférian et al., 2020). While the model-data misfit for the upper ocean oxygen content was reduced from the CMIP5

to CMIP6 model versions in the Indian and Pacific Ocean, Séférian et al. (2020) suspects a systematic bias in biogeochemical

models due to sign shifts in model-data deviations between the two CMIP phases in the Atlantic Ocean, where the CMIP5

models simulated a stronger-than-observed OMZ and the CMIP6 models a weaker-than-observed OMZ. Among the models15

considered here, we confirm the lack of an apparent correlation between model resolution and better representation of the

OMZ in the IO, because we cannot establish a relationship between the oxygen clusters and the respective resolution of the

models (Tab. 1 & 2). However, we must take into account that all CMIP5 models are far from eddy resolving and inclusion

of mesoscale processes in the CMIP6 models brought only moderate improvements in subsurface oxygen representation

(Kwiatkowski et al., 2020).To simulate the OMZ
:::::::
ASOMZ

:
accurately, both the physical (ventilation) and biogeochemical com-20

ponents (respiration) must be adequately represented in the models. Starting with the water masses that contribute to the

ASOMZ, errors in deep water mass formation and transport can result in an incorrect representation of the OMZ
:::::::
ASOMZ.

A major CMIP5 model problem that we could identify and link to ASOMZ is the higher-than-observed oxygen content in

the Southern Ocean, which is reflected in the deep AS. We find this tendency in all models and there is no cluster depen-

dency (Fig. 6). Kwiatkowski et al. (2020) and Tagklis et al. (2020) state that the spin-up times of CMIP5 models are not long25

enough to equilibrate biogeochemical conditions in the deep ocean. Mignot et al. (2013) shows that physical properties and

the large-scale circulation are already in equilibrium after 250 yrs, whereas Séférian et al. (2016) shows that this does not

hold for biogeochemical tracers. Moreover, the drift is highly model dependent and not directly correlated to the spin-up

times that range from 500 (HadGEM2-CC) to 11900 yrs (MPI-ESM-LR) . Further uncertainties are linked to a generally

coarse vertical resolution of
::
To

::::::
further

::::::
explain

:::
this

::::::::::::::::::
higher-than-observed

::::::
oxygen

:::::::
content

::
in

:::
the

:::::::
Southern

::::::
Ocean,

:::
the

:::::::::
formation30

::
of

::::::
IODW

::::
must

:::
be

::::::::::
considered.

:::::::::
Therefore,

::
it

::
is

::::::::::
meaningful

::
to

:::
use

::::
and

::::::
discuss

::::
not

::::
only

::::::::::
circumpolar

:::::
deep

:::::
water

::::::
(CDW)

::::
but

:::
also

::::::::
Antarctic

:::::::
Bottom

:::::
Water

::::::::
(AABW)

:::
as

:
a
::::::
source

:::
for

::::::
IODW.

:::::
First,

::::
this

::
is

:::::::::
reasonable

:::::::
because

:::
the

:::::
water

:::::
mass

::::::::
properties

:::
of
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:::::
CDW

::::
(1.85

::::

◦C,
::::::
34.69;

::::
multi

::::::
model

:::::
mean

:::::
from

::::::::::
Sallée et al.,

::::::
2013b)

::::
and

:::::::
AABW

:::::
(0.18

:::

◦C,
::::::
34.72)

::::::
overlap

:::::
with

:::
our

::::
and

:::
the

:::::::::
literature’s

::::::::
definition

::
of

::::::
IODW.

:::::::
Second, the deep ocean, that shape the bottom topography and limit biogeochemical processes

related to the bentho-pelagic ecosystem (Kwiatkowski et al., 2020). The coarse resolution can influence the export pathways35

and thus timescales of IODWfrom the Southern Ocean northward into the AS and the bentho-pelagic ecosystem defines the

oxygen consumption rate on its way and causes oxygen concentration differences in the deep AS. In our study we also cannot

find a connection between the model spin-up times and the oxygen change during the 20th century in the AS and the OMZ

representation in the historical experiment of the models, especially not in the deep AS (Fig. S5)
::::
term

::::::
IODW

::
is

:::::
often

::::
only

::::
used

::
in

:::
the

:::
AS

:::
and

:::::
CDW

::::
and

::::::
AABW

::::
both

::::
flow

:::::
along

:::
the

:::::::
western

::::::
margin

:::::::
towards

:::
the

:::::
north

:::
and

:::::
could

::::
thus

:::
mix

:::
on

:::
the

::::
way

::
to5

::::::
become

::::::
IODW.Nevertheless, there are opposing oxygen trends also in the deep AS in all models between 1900 and 1999 but

they are small compared to the trends in the thermocline and the OMZ layer

::::::::
Assuming

::::
that

:::
the

::::::
IODW

::
in

:::
the

::::::
models

::
is

::::::
formed

::
to
::

a
::::
large

::::::
extent

::::
from

:::::::
AABW

:::
and

::::
not

::::
from

:::::
CDW

::
as
:::::::

actually
:::::::::
described

::
in

::
the

::::::::
literature

:::::::::::::::::::::::::
(Schott and McCreary, 2001),

:::
this

:::::
could

::::::
explain

:::
the

::::::::::::::::::
higher-than-observed

::::::
oxygen

::::::
content

::
in
:::
the

::::::::
Southern

::::::
Ocean

::::::
IODW,

:::::::
because

::::::
AABW

::::::
should

:::
be

:::::::
recently

::::::::
ventilated

::::
and

:::
be

::::::::
generally

:::::::
younger

::::
than

:::::
CDW

::::
and

::::
thus

:::::::
contains

:::::
more

:::::::
oxygen.10

::::::::::::::::::::
Sallée et al. (2013b) find

::::
large

:::::::::
variations

::
in
:::::::

AABW
:::::::

volume
::
of

::::
the

::::::::
individual

:::::::
models

::::
and

::::
their

:::::
multi

::::::
model

:::::
mean

:::::::
volume

::::::
exceeds

:::
the

::::
one

::::::::
estimated

::::
from

:::::::::::
observations

::::::::::::
(5.5 ∗ 1016m3),

:::::
what

:::::::
supports

:::
our

::::::::::
assumption.

::::
Two

:::::::
models,

:::
one

::
of

::::::
cluster

::::::
HIGH

(
:::::::::::::
GFDL-ESM2G)

:::
and

:::
the

:::::
model

:::
of

:::::
cluster

::::::
LOW2

::::::::::::::
(NorESM1-ME)

::::::::::
overestimate

:::
the

:::::::
volume

::
of

::::::
AABW

:::
by

::
far

:::::::::::::::
(∼ 14 ∗ 1016m3).

:::
We

::::::
identify

:::
no

::::
clear

::::::::::
differences

::
in

::::::
volume

:::
of

::::::
AABW

::
as

::::::
found

::
by

::::::::::::::::::::::::
Sallée et al. (2013b) between

:::
the

:::::::::
individual

::::::
clusters

:::
of

:::
our

::::
study

::::
(e.g.

:::::::
volume

::
of

::::::
AABW

::
in
::::::::::::
MPI-ESM-LR

:::::::
(cluster

:::::
HIGH

:
)
:::
and

::
in

:::::::::::::
HadGEM2-CC

::::::
(cluster

:::::::::
MEDIUM

:
)
:
is
::::::
nearly

::::::
similar

::::
with15

::::::::::::
∼ 6 ∗ 1016m3),

::::::
which

::::::::
coincides

::::
with

:::
the

:::::
cluster

:::::::::::
independent

::::::
oxygen

:::::::::::::
overestimation.

::::::::::
Furthermore,

:::::::::::::::::::::
Sallée et al. (2013b) find

:::
that

::
all

:::::::
models,

::::
with

:::
one

::::::::
exception

:::::::::::::::
(HadGEM2-CC),

:::::::::::
underestimate

:::
the

:::::::
volume

::
of

:::::
CDW

::::
with

:
a
:::::
multi

:::::
model

:::::
mean

:::::::
volume

:::::::::::::
(25.2 ∗ 1016m3)

::::::
which

::::::::::
corresponds

::
to

:::::
about

::::
77%

::
of

:::
the

::::::::
observed

:::::::
volume.

::
If

:::
we

::::
look

::
at

:::
the

:::::
CDW

::::::
volume

::
of

:::
the

:::::::::
individual

::::::
models

:::::::::
considered

::
in

:::
our

:::::
study,

:::::
most

::
of

:::
the

::::::
models,

:::::::::::
independent

::
of

:::
the

:::::::
clusters,

::::
have

:
a
:::::::
volume

::
of

:::::
CDW

:::
that

::
is

:::
just

::::::
below

:::
the

::::
multi

::::::
model

:::::
mean

::::::
volume

::
of

:::::::::::::::::
Sallée et al. (2013b).

::::
This

:::::::::
excessive

::::::
amount

::
of

:::::::
AABW

:::::
along

::::
with20

::
the

:::::::
smaller

::::::
volume

::
of

:::::
CDW

::
in
:::
the

:::::::
models

:::::
could

::::::
explain

:::
the

:::::::::::::::::
higher-than-observed

:::::::
oxygen

::::::
content

::
in

:::
the

::::::::
Southern

:::::
Ocean

::
in

:::
all

:::::::
clusters.

:::
For

:::
the

::::::
models

:::
of

::::::
clusters

::::::
HIGH

:::
and

:::::
LOW1

::
we

::::
see

:::
this

:::::::
positive

:::::::
oxygen

:::::
offset

::
in

:::
the

::::::::
Southern

::::::
Ocean

::::::::::
propagating

::::
into

:::
the

::::
deep

:::
AS

:
(Fig. S5). The

:::
6).

::::::::
However,

:::
the

::::::
models

::
of

:::::::
clusters

:::::::::
MEDIUM

:::
and

::::::
LOW2

::::
show

:::::::
smaller

::::
than

::::::::
observed oxygen differ-

ences between the formation region of IODW in the Southern Ocean and the bottom of the ASOMZ (Fig. 6)are close to the25

observed oxygen differences for the clusters HIGH and LOW1, but smaller for the clusters MEDIUM and LOW2.
::::
This

:::::::
smaller

::::::
oxygen

:::::::::
difference

:::::
could

::
be

::::::::
explained

:::
by

::::::::
different

:::::::::
ventilation

::::::::
pathways

:::
and

:::::::::
timescales

:::
of

::::::
IODW

::
on

:::
the

::::
way

:::::::::
northward

::::
into

::
the

::::::::
ASOMZ

:::
and

:::::::::
associated

::::
less

:::::::::
cumulative

::::::
oxygen

:::::::::::
consumption

:::
on

:::
the

::::
way. The comparison of the two GFDL-ESMs (clus-

ter HIGH & MEDIUM), which have the same biogeochemical model component, shows similar oxygen offsets but different

oxygen concentrations in the Southern Ocean (Fig. 6) and also a difference in water mass ages
:::
the

::::
ideal

::::
age in the Southern30

Ocean of 150 yrs . The age difference between the two models
:::
and in the deep AS is only

:
of

:
50 yrs.

:::
(Fig.

::::
S6).

:
This suggests that

the circulation differs in both models and thus also the residence time what
:::::
transit

::::
time

:::::
which

:
would influence the

:::::::::
cumulative
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consumption rate on the way northward from the Southern Ocean.We therefore deduce that in clusters

:
A
::::::::

possible
::::::::::
explanation

::
of

:::::
these

:::::::::::
uncertainties

::
of

:::
the

:::::
deep

:::::
ocean

:::::::::
circulation

::::
and

:::::
water

:::::
mass

:::::::::
properties

::
in

:::
the

:::::::
models

::
is

:::
the

:::::::
generally

::::::
coarse

:::::::
vertical

:::::::::
resolution

:::::
there,

::::
that

:::::
shape

:::
the

:::::::
bottom

:::::::::
topography

::::
and

::::
limit

::::::::::::::
biogeochemical

::::::::
processes

::::::
related

:::
to35

::
the

:::::::::::::
bentho-pelagic

:::::::::
ecosystem

::::::::::::::::::::::
(Kwiatkowski et al., 2020).

::::
The

::::::
coarse

:::::::::
resolution

:::
can

::::::::
influence

:::
the

::::::
export

::::::::
pathways

::::
and

::::
thus

::::::::
timescales

:::
of

::::::
IODW

:::
and

:::
the

:::::::::::::
bentho-pelagic

:::::::::
ecosystem

::::::
defines

:::
the

:::::::
oxygen

:::::::::::
consumption

::::
rate

::
on

:::
its

::::
way

:::
and

::::::
causes

:::::::
oxygen

:::::::::::
concentration

:::::::::
differences

::
in
::::

the
::::
deep

::::
AS.

:::::
Based

:::
on

:::
the

:::::::::
ventilation

::::
time

:::::::::
differences

:::
in

::::::
clusters

::::::
HIGH

::
and

:
MEDIUM and

:::
the

::::::
oxygen

:::::::::
differences

:::::::
between

:::
the

::::::::
Southern

::::::
Ocean

:::
and

:::
the

:::
AS

::::
(Fig.

:::
6),

::
it

:::
can

::
be

:::::::::
suggested

:::
that

::
in

:::::::
clusters

::::::::
MEDIUM

:::
and LOW2,

circulation is responsible for a large part of the oxygen differences in the deep ASOMZ,
:::::
since

:::
the

::::::
models

::
of

::::::
cluster

::::::
HIGH

:::
are5

:::::
closer

::
to

:::
the

::::::::::
observations.

Besides transport times and pathways of water masses into the ASOMZ, we
::
In

:::::::
addition,

::::
we

:::
also

:
find uncertainties in the

formation of water masses among the models
:::::
models

:::
in

:::
the

::::::::
formation

:::::::
regions

::
of

::::
the

::::
other

::::::::::
ventilating

:::::
water

::::::
masses. RSW

and
:
In

:::
the

:::::::
models

:::::
RSW/PGW oxygen concentrations were quite far off in the formation regions

::::
show

:
a
:::::
huge

:::::::
positive

:::::
offset

::::::::
compared

::
to

:::::::::::
observations. The observations show a strong decrease of oxygen from around 200 µmol l−1 at the surface down10

to 50 µmol l−1 in 300 m depth. This oxygen decrease is only captured by two models (CESM1-BGC, GFDL-ESM2G). In the

other eight models, the oxygen concentration
:::::
oxygen

:
is uniformly distributed throughout the water column.

:
A

:::::::
possible

::::::
reason

::
for

::::
this

::::::::::
model-data

::::::
oxygen

:::::::::
difference

::
in

::::::::::
RSW/PGW

:::::
could

:::
be

:::
the

::::
poor

:::::::::
resolution

:::
of

::::::
coastal

::::::
regions

::::
and

:::::
shelf

::::
areas

:::
in

:::
the

:::::
coarse

:::::::::
resolution

:::::::
models,

:::::
which

:::::::
includes

:::
the

:::::::
shallow

::::::::
marginal

::::
seas.

::
It
::
is

::::
also

:::::::::
noticeable

:::
that

:::
the

:::::::::
solubility

::
of

::::::::::
RSW/PGW

::
is

:::::
higher

::
in

::
6

::
of

:::
the

::
10

::::::
models

:::::::::
compared

::
to

::::::::::
observations

::::::
(Table

::::
S1).

::::
This

::
is

::::::
another

:::::::
possible

::::::
reason

:::
for

:
a
:::::::
positive

::::::
oxygen

::::::
offset.15

Furthermore, coarse resolution models generally prescribe the overflow through small channels that are not resolved by the

grid resolution. This is also the case for the outflow of RSWand /PGW. Seland et al. (2020) find a too warm and saline core

in the AS in subsurface depth in the CMIP6 version of the NorESM and trace it back to the outflow of the Red Sea. They

state that such subsurface ocean biases can be linked to the coarse ocean resolution and deficiencies in process parametrisation.

We can find similar patterns in our study with a too saline layer in cluster MEDIUM and LOW1 above 500 m depth (Fig.20

5
::
d,f), which is likely caused by the inflow of RSWand

:
/PGW. This points towards a problem in the parameterisation of the

outflow of RSWand
:
/PGW at least in the clusters MEDIUM and LOW1. In addition, the higher-than-observed salinity could be

strengthened by the positive salinity offset in models compared to observations in the source regions of RSWand
:
/PGW, which

we found in all clusters. Somewhat surprisingly, 8 of 10 models from all clusters show less saline water than the observations

in the layer between 500 and 1800 m depth (Fig. 5
:::::
b,d,f,h), which might be explained by enhanced ventilation with other water25

masses such as
::::::::::::
overestimated

:::::::::
ventilation

::::
with ICW.

The
::::
ICW,

:::
the

:
other intermediate water mass that ventilates the ASOMZis ICW, which

:
, is subducted in the subtropical cell

region in the south eastern IO. Propagating westward and northward into the AS,
:
it likely mixes with other intermediate

water masses in the subtropical and tropical IO.
:::
The

::::::
models

::::::::::
considered

::::
here

:::::
show

:::::
water

::::
mass

::::::::::::
characteristics

::::
that

::
fit

:::
to

:::
the

::::::::::
observations

::::::
within

:::
the

::::
area

:::::
where

::::
ICW

::
is
:::::::::::
permanently

:::::::::
subducted.

::::
Our

:::::
results

:::
do

:::
not

:::::
agree

::::
with

:::::
those

::
of Sallée et al. (2013a30

& 2013b)
:::
who

:
examine the circulation and water mass formation in CMIP5 models in the Southern Ocean. They found a

warm bias in the subtropical region in nearly all models and a too strong seasonal cycle of the subtropical mixed layer .
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According to Sallée et al. (2013b) this
:::::
which

:
causes excess subduction of too light mode water in the western basin, that gets

denser in the eastern part of the basin. Further,
::::::::::::::::::::::
Sallée et al. (2013b) further

:::::
state

:::
that

:
the total amount of subtropical water in

the models is underestimated. The models considered here show no sign of subduction of too light ICW, because the water35

mass characteristics within the area where ICW is subducted in all models from all clusters fit to
::::::::
However,

:::
our

::::::
mixing

:::::::
analysis

::::::
deduces

::::
that

:::
the

::::::::
ASOMZ

:
is
:::::::::
ventilated

::
by

::
a
:::::
larger

:::::
extent

:::
by

::::
ICW

::
in
:::
the

:::::::
models

::::
than

::
in the observations. However, this is just

one water mass that is formed and transported in the IO subtropical gyre. To give
:::
We

::::
thus

:::::::
consider

::
it

::::::::
necessary

:::
to

::::::
further

:::::::::
investigate

::
the

:::::::
various

:::::::::
subtropical

:::
and

:::::::
tropical

:::
IO

::::
water

:::::::
masses

::
in

::::::
CMIP5

::::::
models

::::
and

::::
their

::::::::
formation

:::::::::
processes,

:::::
before

::::::
giving

:
a
:
clear statements about the mixing and its properties when ICW

::::::
amount

::::
and

:::
the

:::::::::
properties

::
of

:::::
ICW

:::::
when

::
it

:
reaches the5

ASOMZ, further investigations on the subtropical and tropical IO water wasses in CMIP5 models would be necessary.

More uncertainties can be found in the water mass formation in the Southern Ocean in
:::::
Recent

::::::
studies

:::
by

::::::::::::::::::::
Séférian et al. (2020) and

:::::::::::::::::::::::::::::
Kwiatkowski et al. (2020) analysing CMIP5 models, where we located the source of IODW. For the best possible comparison

with other studies on the CMIP5 models, it is meaningful to use and discuss not only circumpolar deep water (CDW) but also

Antarctic Bottom Water (AABW) as a source for IODW. First, this is reasonable because the water mass properties of CDW10

(1.85 ◦C, 34.69; multi model mean from Sallée et al., 2013b) and AABW (0.18 ◦C, 34.72) overlap with our and the literature’s

definition of IODW. Second, the term IODW is often only used in
:::
and

:::::::
CMIP6

:::::
model

::::
data

:::::
show

:::
that

:::::::::
increasing

:::
the

:::::::::
horizontal

::::::::
resolution

::
of

:
the AS and CDW and AABW both flow along the western margin towards the north and could thus mix on the

way to become IODW.Sallée et al. (2013b) find large variations among
:::::
ESMs

::::
from

:::::::::::::::::
non-eddy-resolving

::
to

::::::::::::::
eddy-permitting

::::
does

:::
not

:::::::::
overcome

:::
the

:::::
major

:::::::::
problems

::::
with

:::::::
respect

::
to

::::::::::
realistically

:::::::::
simulating

:::::::
oxygen

::
in
::::

the
::::
open

::::::
ocean.

:::::::
Despite

::::::
better15

:::::::::::
representation

:::
of

:::::::::
mesoscale

::::::::
processes

::::
due

::
to

:::
the

::::::
higher

:::::::::
resolution,

:::
the

::::::::
expected

::::::::::::
improvement

::
in

:::::::
oxygen

::::::::::::
representation

::
is

:::::
absent

::
in

:::
the

:::::::
CMIP6

::::::
models

:::
on

:
a
::::::
global

::::
scale

:::::::::::::::::::
(Séférian et al., 2020).

::::::::
Inclusion

::
of

:::::::::
mesoscale

::::::::
processes

::
in

:::
the

::::::
CMIP6

:::::::
models

::::::
resulted

::
in

::::
only

::::::::
moderate

::::::::::::
improvements

::
in

:::::::::
subsurface

::::::
oxygen

::::::::::::
representation

::::::::::::::::::::::
(Kwiatkowski et al., 2020).

:::::
While

:::
the

::::::::::
model-data

:::::
misfit

:::
for

:::
the

:::::
upper

:::::
ocean

:::::::
oxygen

::::::
content

::::
was

:::::::
reduced

::::
from

:::
the

:
CMIP5

::
to

::::::
CMIP6

::::::
model

:::::::
versions

::
in
:::

the
::::::

Indian
::::
and

::::::
Pacific

::::::
Ocean,

::::::::::::::::::::::::
Séférian et al. (2020) suspects

::
a

:::::::::
systematic

:::
bias

:::
in

:::::::::::::
biogeochemical

::::::
models

:::
due

:::
to

:::
sign

:::::
shifts

::
in
::::::::::

model-data
:::::::::
deviations20

:::::::
between

:::
the

:::
two

::::::
CMIP

::::::
phases

::
in

:::
the

:::::::
Atlantic

::::::
Ocean,

::::::
where

:::
the

::::::
CMIP5

:
models for CDW and bottom water in the Southern

Ocean. With one exception (HadGEM2-CC) all models underestimate the volume of CDW with a multi model mean volume

(25.2 ∗ 1016m3) that is about 77% of the observed volume. If we look at the CDW volume of the individual modelsconsidered

in our study, we notice no clear differences in volume between the individual clusters. Most of the models have a volume of

CDW that is just below the multi model mean value of Sallée et al. (2013b)
::::::::
simulated

:
a
:::::::::::::::::::
stronger-than-observed

:::::
OMZ

::::
and

:::
the25

::::::
CMIP6

::::::
models

::
a
::::::::::::::::::
weaker-than-observed

::::::
OMZ.

::::::
Among

::::
the

::::::::::::::::
non-eddy-resolving

::::::
CMIP5

:::::::
models

:::::::::
considered

:::::
here,

:::
we

:::::::
confirm

::
the

::::
lack

:::
of

::
an

::::::::
apparent

:::::::::
systematic

:::::::::
coherence

:::::::
between

::::::
model

::::::::
resolution

::::
and

:::::
better

::::::::::::
representation

::
of

::::
the

:::::::
ASOMZ

:::::
(Tab.

::
1

::
&

::
2).

::::
This

::
is
:::
not

:::::
what

:::
we

:::::
expect

:::::
from

:::
the

::::::
results

::
of

:::::::
regional

:::::::::::::
eddy-resolving

::::::
models,

:::
i.e.

::::
that

:::::::::
ventilation

::
of

:::
the

::::::::
ASOMZ

::::::
occurs

::::::
through

::::::
mixing

:::::::::
processes

::::::
mainly

::::::
related

::
to

::::::::
mesoscale

::::::
eddies

:::::::::::::::::::::::::::::::::::::::::
(e.g. Resplandy et al., 2012; Lachkar et al., 2016).

:::
An

::::::::
increased

::::::::
horizontal

:::::::::
resolution

::
of

:::
the

::::::
model

::::::
should

::::::::
therefore

::::
lead

:::
to

::::
more

:::::::::
explicitly

:::::::
resolved

:::::::::
mesoscale

:::::
eddy

:::::::
activity,

:::::
which

::::::
might30

::::
allow

:::
for

:::::
more

:::::::::
ventilation

::::
and

::::
thus

::
a

::::::
change

::
in

:::
the

::::::::
ASOMZ.

::
It
::::::

seems
::::
that

::::::::
resolving

:::::::::
mesoscale

:::::
eddies

:::::
leads

::
to
::::::::::

substantial

:::::::::::
improvements

::
in

:::
the

::::::::::::
representation

::
of

:::
the

:::::::
ASOMZ

:::::::::::::::::::::::::::::::::::::
(Resplandy et al., 2012; Lachkar et al., 2016). However, it is noticeable that
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the GFDL-ESM2M has a surprisingly small volume of CDW (∼ 1.6 ∗ 1016m3), which is probably balanced by a larger amount

of intermediate water.This imbalance would result in changes in circulation, reinforcing our conclusion that uncertainties in

oxygen are primarily caused by circulation in the models in cluster MEDIUM. For AABW, that is transported northward along35

the western boundary together with CDW, Sallée et al. (2013b) find larger variations in its volume of the individual models

than for CDW and also the multi model mean volume exceeds the one estimated from observations (5.5 ∗ 1016m3
::::::
moving

:::::
from

::
the

::::::
range

::
of

::::::::::::::::
non-eddy-resolving

::::::
models

:::
to

:::::::::::::
eddy-permitting

:::::::
models,

::
a

:::::
higher

:::::::::
resolution

:::::
seems

:::
to

::::
have

:
a
::::::

minor
:::::
effect

:::
on

:::
the

::::::::
ASOMZ.

::
In

:::::::
addition,

:::::::::::::::::::::::::
Kwiatkowski et al. (2020) and

:::::::::::::::::::::
Tagklis et al. (2020) state

::::
that

:::
the

:::::::
spin-up

:::::
times

:::
of

::::::
CMIP5

:::::::
models

:::
are

:::
not

:::::
long5

::::::
enough

::
to

:::::::::
equilibrate

:::::::::::::
biogeochemical

:::::::::
conditions

::
in

:::
the

::::
deep

::::::
ocean.

:::::::::::::::::::::
Mignot et al. (2013) show

::::
that

:::::::
physical

::::::::
properties

::::
and

:::
the

:::::::::
large-scale

:::::::::
circulation

:::
are

::::::
already

::
in

::::::::::
equilibrium

::::
after

::::
250

:::
yrs,

:::::::
whereas

::::::::::::::::::::::
Séférian et al. (2016) show

::::
that

:::
this

:::::
does

:::
not

::::
hold

:::
for

:::::::::::::
biogeochemical

::::::
tracers.

:::::::::
Moreover,

:::
the

::::
drift

::
is
::::::

highly
::::::
model

:::::::::
dependent

:::
and

::::
not

::::::
directly

:::::::::
correlated

::
to

:::
the

:::::::
spin-up

:::::
times

::::
that

::::
range

:::::
from

::::
500

::::::::::::::
(HadGEM2-CC)

::
to

::::::
11900

:::
yrs

::::::::::::::
(MPI-ESM-LR).

::
In

::::
our

:::::
study

:::
we

:::
also

::::::
cannot

::::
find

::
a
:::::::::
connection

::::::::
between

:::
the

:::::
model

::::::
spin-up

:::::
times

::::
and

:::
the

::::::
oxygen

::::::
change

::::::
during

:::
the

::::
20th

::::::
century

::
in

:::
the

:::
AS

::::
and

:::
the

:::::::
ASOMZ

::::::::::::
representation

::
in

:::
the

::::::::
historical10

:::::::::
experiment

::
of

:::
the

:::::::
models,

:::::::::
especially

:::
not

::
in

:::
the

::::
deep

:::
AS

::::
(Fig.

::::
S7).

::::::::::::
Nevertheless,

::::
there

:::
are

::::::::
opposing

::::::
oxygen

::::::
trends

::::
also

::
in

:::
the

::::
deep

:::
AS

::
in

::
all

::::::
models

:::::::
between

:::::
1900

:::
and

:::::
1999

:::
but

:::
they

:::
are

:::::
small

::::
(-2.5

::
to
::
2
:::::
µmol

:::
l−1)

:::::::::
compared

::
to

:::
the

:::::
trends

::
in

:::
the

::::::::::
thermocline

:::
and

:::
the

:::::
OMZ

::::
layer

:::
(-6

::
to

:::
10

::::
µmol

::::
l−1;

::::
Fig.

:::
S7).Two models, one from cluster HIGH

::
In

:::
the

:::::
cluster

::::::::
analysis,

:::::
offsets

::
in
:::::::
oxygen

::::::::::::
concentrations

:::::::
between

::::::
profiles

:::::
were

:::
not

:::::::::
considered

::::
(Fig.

::::::::
5a,c,e,g).

:::
We

:::::::
focused

:::::
rather

::
on

:::
the

:::::
shape

::
of

:::
the

::::::
curves,

:::::::
because

:::
we

:::::::
regarded

:::
the

::::::::::
information

::::::
content

::
as

::::::
higher

::
for

::::
our

::::::::
purposes.

:::
The

::::::
oxygen

:::::::::::::
overestimation15

::
of

::
all

:::
the

:::::::::
considered

::::::
models

::
at
:::
the

::::::
surface

::
in

:::
the

:::
AS

:::
can

:::
be

::::::::
explained

::
by

::::::
higher

::::::
oxygen

::::::::::
solubilities

:
at
:::
the

:::::::
surface

::
in

::
the

:::::::
models

::
of

::
up

::
to

:::
4.7

:::
%

::::::::
compared

::
to

:::::::::::
observations

::::
(Tab.

::::
S1).

:::::
These

::::::
higher

:::::::::
solubilities

:::
are

::::::
caused

:::
by

:::::::::::::::::
lower-than-observed

:::::::::::
temperatures

::
in

:::
the

::::::
models

::
at

:::
the

::::::
surface

:
(GFDL-ESM2G ) and the model from cluster LOW2 (NorESM1-ME) overestimate the volume of

AABW by far (∼ 14 ∗ 1016m3). Sallée et al. (2013b) find also differences in the location of the bottom water with a bottom

layer that rises to the surface (IPSL-CM5A-LR, IPSL-CM5A-MR) against a deep thin layer of concentrated bottom water in20

high latitudes (HadGEM2-CC). They state that these huge differences are linked to different parametrisations of convection

and formation of deep waters and that, so far, no ESM has been able to correctly simulate the properties of the abyssal oceans.

Looking at their results and sorting them into our cluster analysiswe identify no clear differences in volume of AABW between

the individual clusters of our study (e. g. volume of AABW in MPI-ESM-LR (cluster HIGH)and in HadGEM2-CC (cluster

MEDIUM) is nearly similar with ∼ 6 ∗ 1016m3). What we see in Fig. 6 are too high oxygen values in the southern IO in the25

area that we assumed for IODW formation. This might be linked to the excessive amount of AABW, which should be generally

younger than CDW, because it is recently ventilated in the Southern Ocean or at least should be according to observations, and

thus contains more oxygen. For the models from clusters HIGH and LOW2 we see this positive oxygen offset propagating

into the deep AS (Fig. 6). However, for the models from the other two clusters the uncertainties in bottom and deep water do

not show a direct link to the oxygen concentration in the Southern Ocean, as we were not able to identify a cluster-dependent30

oxygen difference there but rather clear differences in the consumption rate on the way to the OMZ
:::
S8).

:::::
With

:::
the

::::::
higher

:::::::::
solubilities

:::
and

:::
the

:::::::
positive

:::::::
oxygen

:::::
offset

::
at

:::
the

::::::
surface

::
in
::::

the
::::::
models,

:::::
more

:::::::
oxygen

:::::
could

::
be

::::::
mixed

::::
into

:::
the

:::::::
ASOMZ

:::::
from
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:::::
above

::::
than

::
in

:::
the

:::::::::::
observations.

::::::
Mixing

::
of

::::::
oxygen

:::::
from

:::
the

::::::
surface

::
to

:::
the

::::::
interior

:::::
ocean

::
is
:::::::::
dependent

::
on

:::
the

:::::::::::
stratification

::
in

:::
the

:::::
upper

:::::
ocean

::
as

::::
well

::
as

:::
the

::::::
oxygen

:::::::
gradient.

::::
The

::::::::
averaged

::::::::::
stratification

::::
over

:::
the

:::
box

::
in

:::
the

:::
AS

::
in

:::
the

::::::
models

:::::::
strongly

:::::::::
resembles

::
the

::::::::::::
observational

::::::::::
stratification

:
(Fig. 6). Thus the Southern Ocean water mass circulation might influence the sequestration and35

transport of heat, salt and nutrients into deeper layers and change the mixing and feedback cycles in the interior ocean. A

more detailed look at the parametrisation of the Southern Ocean in ESMs and the connected biogeochemical feedback cycles

is beyond the scope of this paper but should be address in a future study
:::
S9).

:::::::::::
Furthermore,

:::
all

::::::
models

::::
and

:::
the

:::::::::::
observations

::::
show

::
a
:::::
strong

:::::::
oxygen

:::::::
gradient

::::::
above

:::
the

::::::::
ASOMZ.

:::::
Thus

:
it
::
is
::::::::
possible

:::
that

::
a
:::::
small

:::::::::
proportion

::
of

:::
the

::::::::::::
overestimated

:::::::
oxygen

::::::::::::
concentrations

::
in

:::
the

::::::
models

:::::
could

::
be

:::::::::
explained

::
by

::::::::
solubility

:::::::::
differences

::
at
:::
the

:::::::
surface

::
of

:::
the

:::
AS.5

What has not yet been taken into account in this analysis and might influence the supply of oxygen from below to the OMZ

are additional
:::::::
ASOMZ

:::
are

:
possible deficiencies in upwelling in the AS. Too strong upwelling of oxygenated deep and bottom

water from below would flatten and weaken the ASOMZ. You (2000) and Stramma et al. (2002) find a deep overturning cir-

culation in the AS with inflow below 2500 m depth and an overlying outflow between 300 to 2500 m depth. Stramma et al.

(2002) state that the rising bottom water in the AS reduces its oxygen content by mixing with the less oxygenated intermediate10

waters. However, they point out that there are large uncertainties associated with computing the strength of the overturning

cell. Thus there is no reference value for upwelling strength in the AS we could compare with the CMIP5 models. This would

need further investigation from the observational perspective.

Another point that has not been examined in detail here, but which emerges from the analysis, is an overestimation of

biogeochemical oxygen consumption in the AS
::
the

::::::::::::::::::
greater-than-observed

:::::::
oxygen

::::
drop

::
in

:::
the

::::::
lower

:::::::
oxycline

::
at
:::
the

:::::::
bottom15

::
of

:::
the

:::::
OMZ in the models in

::
of

:
cluster HIGH .

:::
(Fig.

::::
5a).

:
In contrast to the models from

::
of

:
clusters MEDIUM, LOW1, and

LOW2 where the
::::
here analysed physical processes can explain much of the model-data misfits in oxygen concentrations, we

find no obvious errors in the physical processes in the cluster HIGH models . They nevertheless show a greater-than-observed

oxygen decrease in the lower oxycline at the bottom of the OMZ (Fig. 5a) what can be caused by
:::
that

::::::
would

::::::
explain

::::
this

::::
drop

::
in

::::::
oxygen

:::::::::::::
concentrations.

:::::::
Possible

:::::::
physical

:::::::::::
explanations

:::::
might

:::
be

:
a
:::
too

:::::
weak

::::::::
upwelling

::::
and

::::
thus

:::::::::
ventilation

::::
from

::::::
below

:::
the20

::::
OMZ

:::
or

:::
too

::::
slow

::::::::
transport

::
of

:::
the

:::::::::::
watermasses.

::
It
::
is

::::
also

:::::::
possible

::::
that excessive oxygen consumption

:
in
:::

the
::::::::::::::

biogeochemical

:::::
model

::
is

::::::
causing

::::
this

::::
drop

::
in

::::::
oxygen

:::::::::::::
concentrations. For clusters MEDIUM, LOW1, and LOW2

::::::::::
Nevertheless,

:
we cannot make

any inferences about the interaction of the biogeochemical model component with the uncertainties in the physical model

component .

:::
that

::::
have

::::
been

::::::::
analysed

::::
here.

:::::::::
Therefore,

:::
an

::::::::
important

::::
next

::::
step

:::::
would

::
be

::
a
::::::::::
quantitative

:::::::
estimate

::
of

:::
the

:::::
model

::::::::::::
discrepancies25

:::::::
between

:::
the

::::::::
individual

::::::::
physical

:::
and

::::::::::::::
biogeochemical

::::::::
processes

:::
that

:::::
form

:::
the

::::::::
ASOMZ

:::
(i.e.

::::::::::
ventilation

::::
time

::
of

:::
the

:::::
OMZ

::::
and

::::::
oxygen

:::::::::::
consumption

:::::
within

:::
the

::::::
OMZ).

:

6 Summary & Conclusions

In this paper we compared 10 ESMs from the CMIP5 historical experiment and analysed the 3-D representation
::::
their

::::::::::::
representations

of the modelled OMZs in the AS. We sorted the models systematically
::::::::
ASOMZs.

:::
We

::::::::::::
systematically

:::::::
grouped

:::
the

::::::
models

:
with a30
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cluster analysisand identified similarities and differences in water mass representation and mixing among the models and with

observations. We identified weaknesses of .
:::
By

:::::::::
comparing

:::
the

::::::::::::
representation

::
of

:::::
water

::::::
masses

::::
and

::::::
mixing

::
in

:::
the

:::::::
models

::::
with

:::::::::::
observations,

::
we

:::::::::
identified

:::::::::
systematic

::::::::::
weaknesses

::
in the ESMs that cause

:::
lead

::
to

:
deficient oxygen concentrations in the AS

in the northern IOand looked for similarities among the models. We found that, in particular, excessive salinity in the Persian

Gulf and the Red Sea in the models leads to different water mass mixing in the ASOMZ than in the observations. In addition,

the overestimated oxygen content in the Southern Ocean leads to the OMZ
:::::::
ASOMZ being fed with more oxygenated water

from below in the models.

We found large uncertainties
::::::::::
discrepancies

:
in the oxygen representation in the AS among the CMIP5 simulations. Overall the5

underestimation of the OMZ
:::::::
ASOMZ

:
volume is generally caused by a simulated OMZ

:::::::
ASOMZ

:
that is too shallow compared

to observations.

We further analysed the source water mass properties in the marginal seas, the southern IO and in the subduction region of

ICW. While several models show obvious deficiencies in reproducing circulation patterns, the water mass transport into the

AS and the mixing due to density uncertainties in the source water masses, these deficiencies on their own are insufficient to10

explain the deviating oxygen concentrations . Our results also deduce overconsumption of oxygen in the biogeochemical model

components in the AS, especially where the
::
in

::
all

:::::::
models.

::::::
Where

::
the

:
physical model components show no obvious deficiencies

in
:::::::::
deficiencies

:::
in

::
the

::::::::
physical circulation and mixing , while the oxygen concentrations deviate in the AS.

:::::::::
parameters

:::
that

:::::
were

:::::::
analysed

::
in

::::
this

::::
study

::::
our

:::::
results

:::::::
deduce

:::::
either

:::::::::::
overestimated

:::::::
oxygen

:::::::::::
consumption

::
in

:::
the

:::::::::::::
biogeochemical

::::::
model

::::::::::
components

::
or

::::::
further

:::::
errors

::
in

:::::
other

:::::::
physical

::::::::
processes,

:::
i.e.

:::::::::
ventilation

:::::
time,

::::
that

::::
have

:::
not

::::
been

::::::::
discussed

:::::
here. Since the next generation15

of CMIP models, that has
::::
with higher resolution, tends to overestimate oxygen concentrations in the AS as well, our analysis

points out
:::
that other processes in addition to the consideration of mesoscale features need improvement for a better represen-

tation of the ASOMZ.

We conclude that model-data misfits in oxygen can be caused
:::
are

::::::
caused

::::::::
primarily by errors in the physical models, which

are summarised in Fig. 7. These include the circulation and water mass formation in the Southern Ocean, the deep water

mass transport and resolution of the abyssal ocean and parametrisation of overflow in narrow straits. We consider it useful

to first address local processes that can be clearly delimited and whose uncertainties are not amplified by other errors. These

are the parametrisation of the overflow of RSWand
:
/PGW and their T-S properties in the source region

::
as

::::
well

::
as
::::

the
:::::
better5

:::::::::::
representation

:::
of

:::::::::::
sub-grid-scale

:::::::::
processes

::
in

:::
the

:::
AS

::::
itself. We hope that this process improvement can reduce the model-data

misfit and diminish the uncertainties in future oxygen projections.

Code and data availability. The CMIP5 model output is publicly available at https://esgf-node.llnl.gov/projects/cmip5/. The WOA13 data

are available at https://www.nodc.noaa.gov/OC5/woa13/woa13data.html. The code is available at https://oceanrep.geomar.de/52412/
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Figure 1.
::::::::
Comparison

:::
of

::
the

:::::::
Arabian

:::
Sea

:::::
OMZ

::
in

:::::::::
observations

::::::::
(WOA13,

:::::
black)

:::
and

:::
the

::::::
CMIP5

::::::
models

:::::::
(colored):

::
a)
:::::

OMZ
::::::
volume

:::
for

::::::
different

::::::
oxygen

::::::::
thresholds.

::::
The

:::::
vertical

::::
grey

::::
lines

::::
mark

:::
the

::
50

::::
µmol

:::
l−1

::::::::
threshold

::
for

:::::
panels

::
b)

:::
and

:::
c),

::
as

:::
well

::
as

:::
the

::
20

:::
and

::
60

:::::
µmol

:::
l−1

:::::::
thresholds

:::
that

:::
are

:::::::
discussed

::
in

:::
the

:::
text.

::
b)

::::
Area

::
of

:::
the

::::
OMZ

:::
for

:
a
:::::::
threshold

::
of

::
50

::::
µmol

:::
l−1

::
at

:::
each

:::::
depth.

::
c)

::::
Map

::
of

::
the

:::::
OMZ

:::
area

::
as

::::::
defined

:
in
::

b)
::

at
::::
500

::
m

:::::
depth.

:::
The

::::
grey

:::
box

:::::
marks

:::
the

:::
area

::
of

:::
the

:::::::
averaged

::::::
vertical

::::::
profiles

:::::
shown

::
in

:::
Fig.

::
5.
:::::::
Different

:::::
colors

::::
refer

::
to
:::
the

:::::::
different

:::::
model

::::::
clusters

::::
(see

::::
text).
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Figure 2. Origins of the water mass formation regions from observations (WOA13) for a) Red Sea and Persian Gulf Water, b) Indian Central

Water and c) Indian Ocean Deep Water. The colors indicate the deepest depth at each grid point, where the respective water mass properties

are found.
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Figure 3. TS diagram of the Indian Ocean from observational data (WOA13) color coded by depth. The source water masses for the water

mass mixing analysis are Indian Ocean Deep Water (IODW), Indian Central Water (ICW) and Red Sea and Persian Gulf Water (RSW/PGW).

:::
The

::::
ovals

::::::
indicate

:::
the

::::::::::
approximate

::
TS

:::::
ranges

::
of
:::

the
::::::::
respective

::::
water

:::::::
masses.

::::
Exact

:::::
values

::
of

:::
the

:::::
water

::::
mass

:::::::
properties

::::
used

::
in

:::
this

:::::
study

::
can

:::
be

::::
taken

::::
from

:::
Fig.

::
4

:::
and

:::
Tab.

::
2.
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Figure 4. TS diagram of the Arabian Sea OMZ with the source water mass properties for the water mass mixing analysis (Indian Ocean

Deep Water (IODW), Indian Central Water (ICW) and Red Sea and Persian Gulf Water (RSW/PGW)) defined from a) literature values and

c) the averaged observational data (WOA13) and the resulting water mass mixing fractures (b, d).
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Figure 5. Comparison of the Arabian Sea OMZ in observations
:::::::
Averaged

::::::
vertical

::::::
oxygen (WOA13, black

:::
left) and the CMIP5 models

::::::
salinity

(colored
:::
right) : a) OMZ volume for different oxygen thresholds. The vertical grey line marks

::::::
profiles

::
in the 50 µmol l−1 threshold for the

other panels
::
box

:::::::
between

::
16

:::
and

:::
22

:::

◦N,
::
61

:::
and

::
67

:::

◦E
:::
(see

:::
Fig. b

:
1) Area of

:
in

:
the OMZ

:::::
Arabian

::::
Sea for a threshold of 50 µmol l−1 at each

depth. c
:::::
CMIP5

::::::
models

::::::
(colored) Map of the OMZ area as defined in b

:::
and

::::::::::
observational

:::
data

:::::
(black)at 500 m depth. The grey box marks

the area of the averaged vertical profiles shown in Fig. 5. Different colors refer
:::
Blue

::::::
colored

::::::
models

:::::
belong

:
to the different model clusters

:::::
oxygen

::::::
cluster

::::
HIGH (see text

::
a-b),

:::
red

::
to

:::::
cluster

::::::::
MEDIUM

::::
(c-d)

:::
and

::::
green

::
to
:::::
cluster

::::::
LOW1

:::
(e-f)

:::
and

:::::
LOW2

:::
(g-h).

Averaged vertical a) oxygen and b) salinity profiles in the box between 16 and 22 ◦N, 61 and 67 ◦E (see Fig. 1) in the Arabian Sea for

CMIP5 models (colored) and observational data (black). Blue colored models belong to oxygen cluster HIGH , red to cluster MEDIUM and

green to cluster LOW1 and LOW2.
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Figure 6. Mean oxygen concentration of IODW at its formation site (triangles) and oxygen concentration at the bottom of the OMZ at 1800

m depth in the AS (circles). The colors merk
:::
mark

:
the oxygen clusters as described in Fig. 5.
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Figure 7. Overview sketch of the analysed origins of model-data misfits in oxygen in CMIP5 models. The blue shaded areas mark the origins

of the water masses and their related biases in the models. The arrows sketch the way into the OMZ and uncertainties on the way. The yellow

shaded area sketches the OMZ in the Arabian Sea.
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