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Abstract  10 

Given current threats to ocean ecosystem health, there is a growing demand for accurate 11 

biogeochemical hindcasts, nowcasts, and predictions. Provision of such products requires data 12 

assimilation, i.e., a comprehensive strategy for incorporating observations into biogeochemical models, 13 

but current data streams of biogeochemical observations are generally considered insufficient for the 14 

operational provision of such products. This study investigates to what degree the satellite observations 15 

in combination with sparse BGC Argo profiles can improve subsurface biogeochemical properties. The 16 

multivariate Deterministic Ensemble Kalman Filter (DEnKF) has been implemented to assimilate 17 

physical and biological observations into a biogeochemical model of the Gulf of Mexico. First, the 18 

biogeochemical model component was tuned using BGC-Argo observations. Then, observations of sea 19 

surface height, sea surface temperature, and surface chlorophyll were assimilated, and profiles of both 20 

physical and biological variables were updated based on the surface information. We assessed whether 21 

this leads to improved subsurface distributions, especially of biological properties, using observations 22 

from five BGC-Argo floats that were not assimilated, but used in the a priori tuning. Results show that 23 

assimilation of the satellite data improves model representation of major circulation features, which 24 

translate into improved three-dimensional distributions of temperature and salinity. The multivariate 25 

assimilation also improves the agreement of subsurface nitrate through its tight correlation with 26 

temperature, but the improvements in subsurface chlorophyll were modest initially due to suboptimal 27 

choices of the model’s optical module. Repeating the assimilation run after adjusting light attenuation 28 
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parameterization through further a priori tuning greatly improved the subsurface distribution of 29 

chlorophyll. Therefore, even sparse BGC-Argo observations can provide substantial benefits to 30 

biogeochemical prediction by enabling a priori model tuning. Given that, so far, the abundance of BGC-31 

Argo profiles in the Gulf of Mexico and elsewhere is insufficient for sequential assimilation, updating 3D 32 

biological properties in a model that has been well calibrated is an intermediate step toward full 33 

assimilation of the new data types.  34 

1. Introduction 35 

Given the multiple and increasing pressures of ocean warming, acidification, deoxygenation, and 36 

changes in primary productivity on ocean ecosystem health, accurate model simulations are urgently 37 

needed to assess past and current states of marine ecosystems, forecast future trends, and predict the 38 

ocean’s response to different scenarios of climate change and management policies. In practice, numerical 39 

models are imperfect representations of the natural system and their accuracy is limited by many factors 40 

including insufficient model resolution, inaccuracies in discretion schemes and model formulations, 41 

parameterization of unresolved processes, and uncertainties in model inputs. Data assimilation is a 42 

practical approach used to compensate for these model deficiencies. It can be viewed as a statistical 43 

method to interpolate and extrapolate the sparse observations into the regular model space in a 44 

dynamically consistent way. Its success critically depends on well-resolved observations 45 

Data assimilation is well developed in physical oceanography (Edwards et al. 2015) but less mature 46 

in biogeochemical ocean modelling, largely due to insufficient observations (Fennel et al., 2019). Thus 47 

far, satellite data of ocean color have been the major source of observations to be assimilated (Gregg, 48 

2008; Hu et al., 2012; Mattern et al., 2013; Teruzzi et al., 2018) because of their relatively high resolution 49 

and routine availability. More recent advances have focused on the incorporation of other satellite-derived 50 

products including size-fractionated chlorophyll (Ciavatta et al., 2018; Pradhan et al., 2019; Skákala et 51 

al., 2018; Xiao and Friedrichs, 2014a, 2014b) and optical properties (Ciavatta et al., 2014; Shulman et al., 52 

2013). However, these measurements are limited to the surface ocean and provide little information about 53 

the subsurface and ocean interior. In addition, it has been acknowledged that assimilating satellite data of 54 

ocean color often fails to improve and even degrades simulation of unobserved biological variables 55 

(Ciavatta et al., 2018; Fontana et al., 2013; Ford and Barciela, 2017; Skákala et al., 2018; Teruzzi et al., 56 

https://doi.org/10.5194/os-2021-35
Preprint. Discussion started: 3 May 2021
c© Author(s) 2021. CC BY 4.0 License.



3 
 

2018). Problems also remain in accounting for the co-dependencies or covariances between biological 57 

variables. For instance, Fontana et al. (2013) found subsurface nitrate was barely impacted by assimilating 58 

the satellite surface chlorophyll because of its weak correlations with surface chlorophyll. Although BGC-59 

Argo floats may ultimately provide us with abundant subsurface measurements of multiple key 60 

biogeochemical properties (Biogeochemical-Argo Planning Group, 2016; Chai et al., 2020; Roemmich 61 

et al., 2019), the profiling observations will likely remain insufficient for three-dimensional data 62 

assimilation for a number of years, making satellite data the main observation streams for sequential data 63 

assimilation in biogeochemical models (Ford, 2021). 64 

The insufficient availability of subsurface and interior ocean biogeochemical observations is not 65 

only reflected in the immaturity of biogeochemical data assimilation but also its skill assessment. To date, 66 

skill assessments of biogeochemical data assimilation systems have rarely looked below the surface. 67 

Although a few studies exist (Ourmières et al., 2009; Teruzzi et al., 2014), the simulated vertical structures 68 

are compared with observations on basin- or climatological scales. This makes the below-surface impacts 69 

of biogeochemical data assimilation poorly known at present. 70 

 Finally, since physical processes affect biological properties through advection and diffusion of 71 

biological tracers as well as some temperature-dependent biological activities (e.g. phytoplankton growth), 72 

deficiencies in biological models can arise from imperfect simulation of the physics (Doney, 1999; Doney 73 

et al., 2004; Oschlies and Garcon, 1999). Although there have been studies demonstrating a positive effect 74 

of physical data assimilation on biological properties (Fiechter et al., 2011; Ourmières et al., 2009), often 75 

this approach degrades biological distributions because of elevated vertical velocities and violation of 76 

consistency between physical and biological properties (Anderson et al., 2000; Raghukumar et al., 2015; 77 

Yu et al., 2018). To address these issues, joint assimilation of physical and biological observations (Song 78 

et al., 2016b, 2016a) or multivariate updates based on the cross-covariances between physical and 79 

biological properties (Goodliff et al., 2019; Yu et al., 2018) have been suggested. 80 

In this study, a multivariate physical-biological data assimilation scheme is applied to a coupled 81 

physical-biological model in the Gulf of Mexico. The rationale for choosing the Gulf of Mexico is that 82 

the dominant circulation, including the Loop Current and its associated mesoscale eddies, is stochastic 83 

and can influence the subsurface biological distributions, e.g. deep chlorophyll maximum (Fommervault 84 
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et al., 2017). By comparing forecast results from the assimilative model with independent observations 85 

from five BGC-Argo floats, we rigorously evaluate whether the main biological observation stream 86 

(satellite estimates of surface chlorophyll) in combination with physical observations (satellite estimates 87 

of sea surface height and sea surface temperature) can inform the 3D ocean distributions in high spatial 88 

and temporal resolution. 89 

2. Tools and methods 90 

2.1 Coupled physical and biological model 91 

The coupled physical and biological model used in this study is based on the Regional Ocean 92 

Modeling System (Haidvogel et al., 2008, ROMS, https://www.myroms.org) and configured in the Gulf 93 

of Mexico (Figure 1) with a horizontal resolution of ~5 km and 36 vertical sigma levels (Wang et al., 94 

2020; Yu et al., 2019). The model used a Multidimensional Positive Definitive Advection Transport 95 

Algorithm (MPDATA, Smolarkiewicz and Margolin 1998) to solve the horizontal and vertical advection 96 

of tracers, a Smagorinsky-type formula (Smagorinsky, 1963) to parameterize horizontal viscosity and 97 

diffusivity, and the Mellor-Yamada 2.5-level closure scheme (Mellor and Yamada, 1982) to calculate the 98 

vertical turbulent mixing. Atmospheric forcing is provided by the European Centre for Medium-Range 99 

Weather Forecast ERA-Interim product (ECMWF reanalysis, 100 

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim) with a horizontal resolution 101 

of 1/8o to calculate the surface wind stress as well as the net heat fluxes and freshwater fluxes. 102 

The biological model uses a nitrogen-based model (Fennel et al., 2006) to simulate transportation 103 

and transformation of seven pelagic variables, i.e. nitrate (NO3), ammonium (NH4), chlorophyll (Chl), 104 

phytoplankton (Phy), zooplankton (Zoo), small detritus (SDet), and large detritus (LDet). As a separate 105 

state variable, chlorophyll accounts for photoacclimation based on Geider et al. (1997). In our coupled 106 

model, the biological tracers are advected and diffused as part of the 3D circulation but provide no 107 

feedback to the physical model. Biological parameters are from the parameter optimization study of Wang 108 

et al. (2020) except that the half-saturation constant of nitrate was re-tuned from 0.5 mmol N m-3 to about 109 

1.4 mmol N m-3 because the previous model underestimated the nitrate in the euphotic zone.  110 
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        The coupled model receives freshwater and nutrients inputs from the Mississippi-Atchafalaya river 111 

systems which are specified by the daily measurements from the US Geological Survey river gauges and 112 

those from other major rivers which utilize the climatological estimates (Xue et al., 2013). To ensure a 113 

dynamically consistent biological field, a one-year spin-up is performed in 2014 where the physical model 114 

is initialized from the output of the 1/12o data-assimilative global HYCOM/NCODA 115 

(https://www.hycom.org) and the biological model starts from a regressed 3D field of nitrate based on its 116 

climatological relationship with temperature (see Figure S1). A semi-prognostic method is used during 117 

the spin-up period to reduce model drift by replacing model density with a linear combination of model 118 

and climatological density fields when calculating the horizontal pressure gradient (Greatbatch et al., 119 

2004; Sheng et al., 2001). After the spin-up, experiments are performed for a year from January 2015 to 120 

December 2015. 121 

2.2 Data assimilation technique 122 

In this study, the data assimilation scheme uses the deterministic formulation of the Ensemble 123 

Kalman Filter (DEnKF) which was first introduced by Sakov and Oke (2008). The approach consists of 124 

two steps: 1) the forecast step in which an ensemble of state variables is integrated forward in time by the 125 

model, and 2) the analysis step in which observations are assimilated to update the forecasted ensemble 126 

following the Kalman Filter equations 127 

𝑥" = 𝑥$ + 𝐾(𝑑 − 𝐻𝑥$),																																																													(1) 128 

K =	𝑃$𝐻1(𝐻𝑃$𝐻1 + 𝑅)34																																																								(2) 129 

where 𝑥 represents the model state estimate, 𝑑 represents the available observations, 𝐻 represents the 130 

measurement operator mapping the model state onto observations, and 𝐾 represents the Kalman gain 131 

matrix which is determined by the model error matrix 𝑃  and observation error matrix 𝑅  (Equ. 2). 132 

Superscripts 𝑎 and 𝑓 represent analysis (i.e. updated) and forecast (i.e. prior to the update) estimates, and 133 

T represents the matrix transpose. Unlike the original stochastic EnKF which updates each ensemble 134 

member with perturbed observations, the DEnKF updates ensemble mean (�̅�) and anomalies (𝐴 = 𝑥 − �̅� ) 135 

separately without perturbating observations, i.e. the former is updated as in equ. 1 while the latter is 136 

updated by 137 
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𝐴" = 𝐴$ −
1
2𝐾𝐻𝐴

$	.																																																												(3) 138 

More details of the DEnKF can be referred to Sakov and Oke (2008) and Yu et al. (2018). 139 

2.3 Observations 140 

In this study, physical and biological observations are jointly assimilated to constrain the coupled 141 

model. The observations assimilated include sea surface height (SSH), sea surface temperature (SST), 142 

Argo T-S profiles, and satellite estimates of surface chlorophyll.  143 

The SSH observations for assimilation are obtained by adding the 1/4o mapped Sea level anomaly 144 

(SLA) from Archiving Validation and Interpretation of Satellite Oceanographic Data (AVISO, 145 

http://marine.copernicus.eu) to a mean dynamic topography (MDT) from Rio et al. (2013), and are 146 

adjusted by removing the spatially averaged mismatches between assimilated and forecasted SSH to 147 

account for differences in reference time between the SLA data  (1993-2012) and our coupled model 148 

(2015) (Haines et al., 2011; Song et al., 2016b; Xu et al., 2012). This is equivalent to assimilating the 149 

SSH gradient into the model, as it is the only dynamically meaningful quantity for driving the geostrophic 150 

component of ocean currents and adjusting subsurface thermohaline structures. The SST observations are 151 

Advanced Very High Resolution Radiometer (AVHRR, https://podaac.jpl.nasa.gov/dataset/MUR-JPL-152 

L4-GLOB-v4.1) product with a horizontal resolution of 0.01o. Observation errors are specified as 0.02 m 153 

for SSH and 0.3oC for SST.  154 

The surface chlorophyll is provided by the Ocean-Colour Climate Change Initiative project (OC-CCI, 155 

https://www.oceancolour.org) at a daily frequency with a spatial resolution of 1/24o. However, for the 156 

daily chlorophyll field, a large portion of data can be missing due to cloud cover and inter-orbit gaps. In 157 

2015 for the Gulf of Mexico, the spatial coverage of surface chlorophyll varies from 0 to 63% with a 158 

mean coverage of 9.5±9.0%. Hence, to increase the availability of observations, an asynchronous data 159 

assimilation method (Sakov et al., 2010) is applied by assimilating the daily records of surface chlorophyll 160 

within a 7-day window before the update. Errors associated with the surface chlorophyll are set to be 35% 161 

of the measured concentrations.   162 

Profiling observations are from the International Argo project (hereafter referred to as Argo floats; 163 

http://www.usgodae.org/) and five BGC-Argo floats which were funded by the Bureau of Ocean Energy 164 

https://doi.org/10.5194/os-2021-35
Preprint. Discussion started: 3 May 2021
c© Author(s) 2021. CC BY 4.0 License.



7 
 

Management  (hereafter referred to as BOEM floats). In 2015, the Argo floats provided nearly 800 T-S 165 

profiles extending from the surface to 2,000 m depth in the Gulf of Mexico. These are treated either as 166 

independent observations for model skill assessment or, in the DAargo experiment (see Section 2.4), 167 

assimilated with uncertainties being 0.3oC for temperature and 0.01 for salinity. The BOEM floats 168 

collected more than 500 profiles of temperature, salinity, chlorophyll, and backscatter at a bi-weekly 169 

frequency from 2011 to 2015, 114 profiles of which were collected in 2015 (see Figure 1 for their 170 

locations) and are used as independent observations. Backscatter is converted into phytoplankton and 171 

particulate organic carbon (POC) concentrations following Wang et al. (2020). 172 

2.4 Simulation strategy 173 

For the sake of keeping our data assimilation experiments computationally affordable, we chose an 174 

ensemble size of 20 which has been successfully used in previous studies, e.g. an idealized channel (Yu 175 

et al., 2018), the Middle Atlantic Bight (Hu et al., 2012; Mattern et al., 2013), and the Gulf of Mexico 176 

(Yu et al., 2019). Spurious correlations, which can arise with relatively small ensembles, are avoided here 177 

by applying a distance-based localization with a radius of 50 km (Evensen, 2003). In addition, ensemble 178 

anomalies are inflated by 1.05 at each update step to account for the possible underestimation of ensemble 179 

spread (Anderson and Anderson, 1999). 180 

In order to account for uncertainties in the model’s initial, boundary and atmospheric forcing 181 

conditions and biological parameters, the ensemble is initialized from 20 different daily outputs, centered 182 

on the initial date of 1 January 2015, from a previous deterministic model simulation (as described above 183 

in Section 2.1) and is forced by open boundary conditions which are lagged by up to ±10 days for the 184 

different ensemble members. Furthermore, each ensemble member is forced by a perturbed version of the 185 

wind forcing. Specifically, the wind forcing from the deterministic run is decomposed into empirical 186 

orthogonal functions (EOFs) and then the first 4 EOFs are perturbed by multiplying random numbers 187 

with zero mean variance of 1 as in Li et al. (2016) and Thacker et al. (2012). In addition, four sensitive 188 

biological parameters, namely the mortality rate of phytoplankton, the maximum ratio of chlorophyll to 189 

carbon, the grazing rate of zooplankton, and the growth rate of phytoplankton at 0 oC, are subject to a 190 

Gaussian perturbation with a relative variance of 75% and each parameter is resampled from the 191 
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distribution before each forecast step to prevent some extreme parameter values being used throughout 192 

the whole data assimilation experiment.  193 

We performed three 1-year simulations in 2015: 1) a deterministic model simulation without data 194 

assimilation (henceforth referred to as Free simulation), 2) an ensemble run assimilating satellite data 195 

(SSH, SST, and satellite surface chlorophyll) only (henceforth DAsat), and 3) and an ensemble run 196 

assimilating Argo T-S profiles in addition to satellite data (henceforth DAargo). 197 

A two-step update is used on a weekly data assimilation cycle in both assimilative experiments, where 198 

the physical observations are first assimilated to update both physical and biological state variables 199 

through the multivariate covariance, and chlorophyll observations are assimilated next to update only 200 

biological state variables. Given the computational expense, we limit updates to two physical variables 201 

(temperature and salinity) and four biological variables (nitrate, chlorophyll, phytoplankton, and 202 

zooplankton). All these state variables are updated throughout the whole water column. 203 

To evaluate the prediction skill, we calculate the root-mean-square-errors (RMSE) of model forecast 204 

(M) with respect to assimilated and independent observations (O) 205 

𝑅𝑀𝑆𝐸 =	?
1
𝑁A(𝑀 − 𝑂)C 																																																									(4) 206 

where N represents the number of model-data pairs available. In the absence of direct measurements for 207 

nitrate, we estimate nitrate profiles along the BOEM float trajectories based on their climatological 208 

relationship with temperature (Figure S1). To account for the overestimation of nitrate in warm waters 209 

which typically occurs in the euphotic zone, an unbiased root-mean-square-error (unbiased RMSE) is 210 

used to quantify the model-data misfit of nitrate. 211 

𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑	𝑅𝑀𝑆𝐸 =	?
1
𝑁AK𝑀 −𝑂 −

1
𝑁A(𝑀 −𝑂)L

C

																																	(5) 212 

3. Results 213 

3.1 Assimilation impacts on physical properties 214 

The dominant circulation features in the Gulf of Mexico, the Loop Current and Loop Current Eddies, 215 

are assessed by comparing their fronts, defined here as the 10-cm SSH contour, from satellite data, the 216 
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free run, and the two data-assimilative runs. In the first two months, all model estimates of the Loop 217 

Current are different from satellite observations due to the influence of initial conditions (Figure 2). After 218 

March, the SSH field shows a similar northward and westward extension of the Loop Current intrusion 219 

between two assimilative runs and satellite observations, but large deviations from observations remain 220 

in the Free run. In addition, all estimates except for the Free run well reproduce the satellite-observed 221 

timing of eddy shedding as well as the size, shape, and position of Loop Current eddies. 222 

For a more quantitative assessment, the daily output of SSH and SST fields from the three runs are 223 

compared with the satellite estimates (Figure 3). This shows large reductions of RMSEs for SSH and SST 224 

in most of the model domain in two data-assimilative runs. The most significant reductions for SSH are 225 

located in the regions influenced by Loop Current and Loop Current eddies. In contrast, the reductions in 226 

SST RMSEs are more spatially homogeneous with less dispersion in their probability density function. 227 

A summary of the overall RMSEs for physical variables from the free run and data assimilative runs is 228 

shown in Table 1. In general, the two data-assimilative runs both significantly improved SSH (by 54%) 229 

and SST (by 36%). Differences between the DAsat and DAargo runs are small.  230 

The correction of mesoscale features by data assimilation was not limited to the surface but extend 231 

to the subsurface and even deep waters. Specifically, the two assimilative runs corrected the position, the 232 

amplitude, and the polarity of mesoscale eddies, and hence better represented the elevated and depressed 233 

thermoclines within these eddies (Figure 4). The most noticeable improvement (by 60~61%) was 234 

witnessed by the Float 287 which captured a newly detached Loop Current eddy with features of high 235 

SSH and depressed thermoclines during July and October. In addition, assimilation of Argo T-S profiles 236 

in the DAargo run led to slight further improvements in the subsurface temperature distributions when 237 

compared with the DAsat run. For instance, although the DAsat run greatly improved subsurface 238 

temperature distributions along the trajectory of Float 285, an underestimation of temperature at about 239 

200 m depth remains within the peak of the anticyclonic eddy. Corrections imposed by assimilating Argo 240 

profiles increased temperature here and decreased the bias from observations. These small but localized 241 

further improvements can also be observed by other floats, e.g. in July-October for Float 289 and February 242 

for Float 290. 243 
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In general, assimilating the satellite data in the DAsat run resulted in large reductions in RMSEs of 244 

3D temperature (by 46%~48%; Table 1) and salinity (by 36%~39%; Table 1) with respect to Argo floats 245 

and BOEM floats (Figure 5). The reductions extend to over 1,000 m and about 800 m depth for 246 

temperature and salinity, respectively. It should be noted again that data from both Argo and BOEM floats 247 

are independent in the DAsat run. Additionally assimilating the Argo profiles in DAargo run yields 248 

marginal further improvements in RMSEs of about 3% for temperature and 5% for salinity (Figure 5 and 249 

Table 1). 250 

3.2 Assimilation impacts on biological properties 251 

Assimilating satellite observations in the DAsat run reduced RMSEs of surface chlorophyll almost 252 

everywhere with only 3% of the model domain experiencing degradation (Figure 6a, c). Although large 253 

reductions in RMSE were achieved in the coastal regions, e.g., in the northern Gulf of Mexico, on 254 

Campeche Bank, and in Campeche Bay, the simulated chlorophyll concentrations remained much lower 255 

than the satellite estimates because of high observational uncertainties and a large background misfit in 256 

the Free run. This was expected because the biological model was optimized for the open Gulf (Wang et 257 

al., 2020). In the open Gulf, encompassed by the 1,000-m isobath, the overall RMSE of surface 258 

chlorophyll was reduced by 19% from 0.13 mg m-3 in the Free run to 0.11 mg m-3 in the DAsat run (Table 259 

2). Assimilating Argo T-S profiles in the DAargo run led to lower reductions in the overall RMSEs of 260 

surface chlorophyll (Table 2) and even more deteriorations (Figure 6b-c). 261 

In order to evaluate the impacts of data assimilation on subsurface biological properties, the temporal 262 

evolution of nitrate superimposed with the isoline of nitrate being 1 mmol N m-3 and SSH is shown in 263 

Figure 7 for the BEOM floats. Because of its high correlation with temperature, the nitrate distribution 264 

was modulated in the two assimilative runs along with the improvement in density fields. For instance, 265 

the two assimilative runs reproduce the newly detached Loop Current eddy observed by Float 287, and 266 

hence capture the depressed thermoclines and nitraclines that are not present in the Free run. As a result, 267 

the unbiased RMSE of nitrate following this float is reduced by 40% in the DAsat run and 38% in the 268 

DAargo run. In general, data assimilation improved the overall agreement of subsurface nitrate by 28% 269 

and 30% in the DAsat and DAargo runs relative to the Free run (Table 2). 270 
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 The impacts of assimilation on subsurface chlorophyll are more complicated to assess because of 271 

the high nonlinearity of the model with regard to chlorophyll. Although the mean vertical profiles of 272 

chlorophyll are well reproduced in all three experiments (Figure S2), all failed to resolve the high 273 

spatiotemporal variability in subsurface chlorophyll which is at least partly due to the presence of 274 

mesoscale eddies (Figure 8). As a result, assimilation improved subsurface chlorophyll RMSEs 275 

marginally even in the Loop Current eddy of Float 287 where the most noticeable improvements of 276 

temperature (~60%) and nitrate (~40%) RMSEs were obtained. Results for phytoplankton and POC are 277 

similar as for chlorophyll although the reductions in their RMSEs are larger because assimilating the 278 

satellite data improved their mean concentrations in the upper layer (Figure S2, Table 2). 279 

The model’s inability to reproduce the spatiotemporal variability of subsurface chlorophyll is also 280 

reflected by the positions of deep chlorophyll maximum (DCM, denoted by red lines in Figure 8). As a 281 

ubiquitous phenomenon in the oligotrophic regions, a distinct DCM is observed throughout the whole 282 

year in the open Gulf of Mexico and its depth is inversely correlated with SSH (correlation coefficient = 283 

-0.6). Although the mean position and magnitude of the DCM are well reproduced by the model with and 284 

without data assimilation (Figure S2), the simulated DCM depth is much more stable and less sensitive 285 

to SSH variations. As a result, the reduction in the RMSE of DCM depth is limited to 18% in DAsat run 286 

but is significant (Table 2).  287 

 288 

3.3 Sensitivity of subsurface chlorophyll to the light attenuation parameterization 289 

We surmised that the model’s inability to simulate interactions between mesoscale eddies and 290 

subsurface chlorophyll was due to inaccuracies in the light attenuation module where the attenuation 291 

coefficient, Att, was more strongly determined by the depth and less sensitive to the chlorophyll 292 

concentration (Att = 0.04+0.025´chl). Therefore, we performed a sensitivity test with an alternative light 293 

attenuation parameterization (Att = 0.027+0.075´chl1.2) that more emphasizes the self-shading effect of 294 

chlorophyll on attenuation. 295 

Both with and without data assimilation, the alternative parameterization led to higher correlations 296 

between simulated SSH and DCM depth with correlation coefficient of -0.60 in Free-alt run and -0.67 in 297 

DAsat-alt run (here -alt is added to indicate the modified light attenuation parameterization). As a result, 298 
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the alternative parameterization produces slightly lower RMSEs of DCM depth (Table 2) and yields larger 299 

improvements in chlorophyll and phytoplankton within the Loop Current eddy of Float 287. As shown in 300 

Figure 9c, when using the original parameterization, assimilating the satellite data depresses the DCM 301 

depth from 70 m in the Free run to 90 m in the DAsat run, yet with a considerable bias of 20 m when 302 

compared to the observations. However, the chlorophyll is underestimated in the DAsat run and as a result 303 

its RMSEs are barely improved. In contrast, in the DAsat-alt run the DCM depth is corrected to 120 m, 304 

in agreement with the observations, and represents the vertical chlorophyll distribution more accurately 305 

although the nitrate profile is almost the same as in DAsat run. This was because the alternative 306 

parameterization accounted for the elevated intensity of photosynthetically active radiation (PAR) as a 307 

response to reduced chlorophyll concentrations in the upper layer (Figure 9b), which in turn facilitated 308 

the synthesis of chlorophyll and hence corrected their concentrations toward the observations.  309 

4. Discussion 310 

We implemented a coupled data assimilation scheme for jointly assimilating physical and biological 311 

observations in a biogeochemical model and evaluated to what degree satellite observations can inform 312 

subsurface distributions, especially of biological properties. Although biological data assimilation has 313 

received much attention in recent years, observations that are assimilated and used in skill assessment are 314 

typically limited to the surface ocean. The increasing availability of BGC-Argo data now makes it 315 

possible to validate and improve model performance below the surface (Cossarini et al., 2019; Terzić et 316 

al., 2019; Wang et al., 2020) but so far they are too sparse for sequential assimilation in three dimensions; 317 

hence, relevant applications are limited to idealized twin experiments (Ford, 2021; Yu et al., 2018) and a 318 

few specific regions with high float densities, e.g. the Mediterranean Sea (Cossarini et al., 2019). In 319 

addition, since a biogeochemical model is coupled to a physical model, assimilating physical observations 320 

theoretically should confer improvements in the biological model through correcting the circulation 321 

(Fiechter et al., 2011; Raghukumar et al., 2015; Song et al., 2016b, 2016a) and potentially by providing 322 

additional constraints via multivariate updates to biological variables (Goodliff et al., 2019; Yu et al., 323 

2018). This is particularly important when the physical model is biased (Yu et al., 2018). 324 

Our study shows that assimilating satellite data (DAsat run) can constrain the main circulation 325 

features in the Gulf of Mexico, i.e. the Loop Current and its associated mesoscale eddies. Temperature 326 
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and salinity are also improved down to ~1,000 m depth because of the correction of mesoscale eddies. 327 

When calculating the reductions in RMSE for SSH and each single profile of temperature and salinity, 328 

we find that the improvement in SSH is highly correlated with those in temperature (correlation 329 

coefficient = 0.96) and salinity (correlation coefficient = 0.92, Figure S4). Assimilating the satellite data 330 

also improves subsurface nitrate because it is tightly correlated with the density structure expressed by 331 

SSH and temperature profiles. However, improvements in temperature and nitrate do not necessarily yield 332 

better simulations of chlorophyll or phytoplankton because they tend to be light-limited below the surface. 333 

In our biogeochemical model, the light intensity is attenuated by water and chlorophyll, and is not directly 334 

updated by the data assimilation scheme but only adjusted indirectly through changes in chlorophyll 335 

during forecast steps. This, in turn, impacts the synthesis of chlorophyll and growth of phytoplankton. 336 

However, in the original parameterization, the light attenuation is mainly controlled by the water and 337 

much less sensitive to chlorophyll concentrations than it appears to be in reality. A sensitivity test showed 338 

that by applying an alternative light parameterization with more pronounced self-shading effects of 339 

chlorophyll, the subsurface chlorophyll and phytoplankton distributions are further improved after 340 

assimilating the satellite data. 341 

The improvement on biological variables as a result of a model’s dynamical response to data 342 

assimilation has already been demonstrated in previous studies but they focused on the influence of 343 

correcting nutrient fields on surface chlorophyll. For instance, Fiechter et al. (2011) improved simulated 344 

iron concentrations inside eddies and therefore surface chlorophyll by correcting the timing and position 345 

of mesoscale eddies in the Gulf of Alaska. Ourmières et al. (2009) also reported that when the prior nitrate 346 

distributions were correct, assimilating the physical observations can improve surface chlorophyll 347 

because of a more accurate simulation of mixed layer depth and nutrient inputs into the euphotic zone. 348 

However, the efficiency of this mechanism depends on the accuracy of biological models and can be 349 

further improved by addressing the model representations of key biological processes. For example, the 350 

usage of suboptimal biological parameters can yield a substantial degradation of data assimilation 351 

efficiency, especially with respect to unobserved variables (Song et al., 2016a). Although BGC-Argo 352 

profiles so far are insufficient for sequential assimilation, they can provide substantial benefits to the 353 
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biogeochemical prediction by enabling a priori model tuning, e.g. of biological parameter values (Wang 354 

et al., 2020) and the key parameterization schemes (Terzić et al., 2019).  355 

Assimilating Argo T-S profiles in the DAargo run yields slightly further improvements with respect 356 

to independent profiles of temperature and salinity, similar to the twin experiments in Yu et al. (2019). 357 

Such additional benefits in physical properties are also translated into the simulation of subsurface nitrate 358 

but not into other biological fields, i.e. chlorophyll, phytoplankton, and POC. Moreover, assimilating the 359 

Argo T-S profiles can even degrade surface chlorophyll. This issue has been also reported in a recent 360 

study (Goodliff et al., 2019) which assimilated sea surface temperature to update both physical and 361 

biological variables and the issue was alleviated by muting the multivariate update between the sea 362 

surface temperature and chlorophyll.  363 

          In addition to the model dynamical response, the biological fields can be directly updated by 364 

physical and biological observations through multivariate covariances. In order to distinguish their 365 

influence, we show the increments obtained from assimilating each observation type in the DAsat run 366 

(Figure 10). As shown in Figure 10a, b, assimilating physical observations has a much stronger impact 367 

than biological observations on nitrate and therefore we conclude that the improvement of nitrate in this 368 

study is mainly obtained from assimilating physical observations. This is consistent with previous studies 369 

(Ciavatta et al., 2018; Skákala et al., 2018; Teruzzi et al., 2018) where assimilating surface chlorophyll 370 

had little impact on nitrate and even degraded it by both variational and sequential data assimilation. In 371 

variational data assimilation, it is hard to define the background errors accurately (Mattern et al., 2017; 372 

Teruzzi et al., 2018) and the biological model can fit itself to observed chlorophyll by many different 373 

pathways, e.g. direct changes of biomass or an indirect way through nitrate. However, observations are 374 

often insufficient to provide this information (Mattern et al., 2017). In sequential data assimilation, the 375 

multivariate covariance between surface chlorophyll and subsurface nitrate can be considered but 376 

typically this covariance is not linear or constant. For instance, Fontana et al. (2013) assimilated satellite 377 

surface chlorophyll into a biological model in the North Atlantic and found that subsurface nitrate was 378 

barely influenced because it was weakly correlated with surface chlorophyll, leading the authors to 379 

suggested that it is impossible to fully constrain a 3D biogeochemical model by only assimilating the 380 
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surface chlorophyll. This issue remains when assimilating the surface chlorophyll to update other 381 

biological variables (Yu et al., 2018), e.g. phytoplankton functional groups (Ciavatta et al., 2018).  382 

In contrast to the nitrate, assimilating satellite data of physical and biological observations have a 383 

comparable influence on subsurface chlorophyll (Figure 10c-f). Specifically, they can change subsurface 384 

chlorophyll concentrations even below 100 m depth and vertical structures of chlorophyll by adjusting 385 

the DCM depth, e.g., there are 10% and 5% of profiles with changes in DCM depth exceeding ±20 m due 386 

to the update of physical and biological observations, respectively. Because currently BGC-Argo profiles 387 

are sparse, i.e. only 14 profiles are available at all update steps, it is hard to draw definitive conclusions 388 

about these impacts on chlorophyll and DCM depth.  389 

In general, coupled data assimilation of both physical and biological satellite observations is able to 390 

improve subsurface biological properties because it benefits from the high correlations of some biological 391 

distributions, especially nutrients, with the vertical density structure and because of the dynamical 392 

responses to improvements in circulation in the forecast step. However, this is preconditioned on the 393 

coupled model being well calibrated a priori. Therefore, this study provides an intermediate step toward 394 

3D updates of biological properties before the BGC-Argo profiles will ultimately become more abundant. 395 

5. Conclusion 396 

In this study, a coupled data assimilation scheme for both physical and biological satellite 397 

observations was implemented to investigate whether these observations can inform subsurface 398 

distributions. In addition, Argo T-S profiles were assimilated to assess their impact beyond satellite 399 

observations. The multivariate update was applied by using the covariance structure between physical 400 

and biological variables. The Gulf of Mexico was selected as the study region because the dominant 401 

physical features, the Loop Current and its associated mesoscale eddies, are stochastic and can influence 402 

the biological properties in three dimensions substantially. Our results show that assimilating satellite 403 

data leads to significant improvements in the simulation of SSH and SST, and also projects these 404 

improvements from the surface to about 1,000 m depth for temperature and salinity as shown by an 405 

assessment of the independent BGC-Argo profiles. With respect to biological fields, the subsurface nitrate 406 

distribution benefits greatly from the tight correlation with density and the improved fidelity of mesoscale 407 
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features. However, initially there were only slight improvements in other biological variables below the 408 

surface, i.e. chlorophyll, phytoplankton, and POC, because a suboptimal light parameterization did not 409 

react to the changed chlorophyll concentrations appropriately and failed to provide accurate feedbacks on 410 

the synthesis of chlorophyll and growth of phytoplankton. We tested an alternative light parameterization 411 

with a larger relative contribution from chlorophyll to light attenuation. As a result, the subsurface 412 

chlorophyll and phytoplankton were further improved. This highlights the importance of a priori tuning 413 

to achieve better assimilation performance. Finally, assimilating the Argo T-S profiles on top of satellite 414 

observations yields slight further improvements with respect to independent vertical profiles of 415 

temperature and salinity, which also translated into improvements in subsurface nitrate. 416 

 417 
Code and data availability: The ROMS model code can be accessed at http://www.myroms.com (last 418 
access: 16 June 2016). HYCOM data can be downloaded at http://tds.hycom.org/thredds/dodsC/datasets 419 
(last access: 16 August 2018). Profiling data from the BGC-Argo floats are available at the National 420 
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Table list 633 

Table 1. The root-mean-square-error (RMSE) for SSH, SST, as well as vertical profiles of temperature 634 

and salinity from Argo and BOEM floats. Percentages in the parentheses represent the relative reductions 635 

of RMSE values. 636 

 
SSH 

(m) 

SST 

(oC) 

Argo Boem 

Temp (oC) salt Temp (oC) salt 

Free 0.17 0.88 1.70 0.22 1.55 0.18 

DAsat 0.08 (54%) 0.55 (37%) 0.89 (48%) 0.14 (36%) 0.83 (46%) 0.11 (39%) 

DAargo 0.08 (54%) 0.56 (36%) 0.86 (49%) 0.13 (41%) 0.79 (49%) 0.10 (44%) 

 637 

 638 
 639 
Table 2. The root-mean-square-error (RMSE) for surface chlorophyll in the open gulf, vertical profiles of 640 

NO3 based on its climatological relationship with temperature, chlorophyll, phytoplankton, and POC from 641 

BOEM floats, as well as the depth of deep chlorophyll maximum. Percentages in the parentheses represent 642 

the relative reductions in RMSE values. Only a reduction in RMSE larger than or equal to 10% is 643 

considered as a significant improvement (highlighted in bold).  644 

 
SChl 

(mg m-3) 

NO3 

(mmol N m-3) 

Chlorophyll 

(mmol N m-3) 

Phytoplankton 

(mmol N m-3) 

POC 

(mmol N m-3) 

DCM depth 

(m) 

Free 0.13 3.71 0.18 0.11 18.62 25.48 

DAsat 0.11 (19%) 2.66 (28%) 0.17 (6%) 0.10 (9%) 16.46 (12%) 21.08 (18%) 

DAargo 0.12 (9%) 2.58 (30%) 0.17 (6%) 0.10 (9%) 16.77 (10%) 22.39 (12%) 

Free_alt 0.17 3.71 0.18 0.11 17.55 24.35 

DAsat_alt 0.13 (26%) 2.63 (29%) 0.17 (6%) 0.10 (9%) 15.53 (12%) 20.42 (16%) 

 645 

 646 
 647 
 648 
 649 
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Figure captions 650 

 651 

 652 
Figure 1. Bathymetric map of the Gulf of Mexico with a schematic pattern of Loop Current and Loop 653 

Current Eddies. Trajectories of five BGC-Argo floats (colored lines) in 2015 were also shown in the 654 

figure. 655 
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 656 
Figure 2. Monthly averaged Loop Current and Loop Current eddies based on 10-cm SSH contour from 657 

satellite data (black), free run (blue), DAsat run (orange), and DAargo run (yellow). The gray contours 658 

represent the isobath of 200 m, 1000 m, and 3000 m.   659 

   660 
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 661 
Figure 3. Spatial map of differences (a-e) and histogram of relative differences (c, f) in root-mean-square-662 

error (RMSE) between the free run and the two data-assimilative runs for SSH and SST. Positive values 663 

represent improvements while negative values represent deteriorations by data assimilation. Gray 664 

contours represent the 300-, 1000-, and 3000-m isobaths. 665 

 666 
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 667 
Figure 4. Vertical distributions of temperature from BOEM floats, the Free run, the DAsat run, and the 668 

DAargo run. Gray lines represent isothermal lines with an interval of 2oC. Thick black lines represent 669 

SSH which is obtained from the matching record of altimeter observations.  670 

 671 
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 672 
Figure 5. Vertical profiles of root-mean-square-error (RMSE) for temperature and salinity with respect 673 

to Argo and BOEM floats. 674 

 675 

 676 

 677 
Figure 6. The same as Figure 3 except for surface chlorophyll. 678 

 679 
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 680 
Figure 7. Same as Figure 4 but for nitrate. Gray contours (thin lines) represent the isoline of nitrate being 681 

1 mmol N m-3. Thick black lines represent SSH which is obtained from the matching record of altimeter 682 

observations. 683 

https://doi.org/10.5194/os-2021-35
Preprint. Discussion started: 3 May 2021
c© Author(s) 2021. CC BY 4.0 License.



31 
 

 684 
Figure 8. Same as Figure 4 but for chlorophyll. Gray contours represent the simulated isolumes and red 685 

lines represent the depth of deep chlorophyll maximum. Thick black lines represent SSH which is 686 

obtained from the matching record of altimeter observations. 687 

 688 
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 689 
Figure 9. Mean vertical profiles of nitrate, light intensity (photosynthetically active radiation, PAR), 690 

chlorophyll, and phytoplankton within the center of the newly detached Loop Current eddy from the Free 691 

run, the DAsat run, the Free-alt run, and the DAsat-alt run.  692 
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 693 
Figure 10 Histogram of increment in nitrate, chlorophyll, and DCM depth obtained by assimilating 694 

physical and biological observations. 695 
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