
Responses to Reviewer 1  
 
Below the complete reviewer comments are shown in black font along with detailed responses to each 
comment in blue font. 
 
Review: 
This is a very interesting and valuable contribution to the present scientific literature addressing the impact 
of (DEnKF) assimilation of physical and biogeochemical data, including Argo floats, on the simulated state 
of the ocean. More specifically, the paper addresses an important question of the impact of (mostly) surface 
data assimilation on sub-surface physics and biogeochemistry, focusing on the Gulf of Mexico. The 
simulated physical and biogeochemical tracers are validated with an independent BGC-Argo data-set. The 
paper is well written and I have mostly only minor comments to address, which can be found below. One 
remark: please note that in the downloaded .pdf version of the manuscript the first digits of the three-digit 
line numbers are running off the left side of the page, so beneath the section 1 I avoid referring to the line 
numbers and refer to the paragraph and section number instead. 
Response: We thank the reviewer for the constructive comments and suggestions which were very helpful 
in revising the manuscript.  
 
Section 1: 
The introductory section is nicely written and the only comments that I have are regarding the use of 
references: 
- in particular on line 52 when the paper talks about assimilation of optical properties, the included 
references are very far from exhaustive. On top of my head I could add to the list the following papers: 1. 
Jones et al (2016), Biogeosciences, https://doi.org/10.5194/bg-13-6441-2016, 2. Gregg and Rousseaux 
(2017), Frontiers in Marine Science, https://doi.org/10.3389/fmars.2017.00060, 3. Skakala et al (2020), 
Journal of Geophysical Research: Oceans, https://doi.org/10.1029/2020JC016122.  I completely understand 
that sometimes there simply are too many references and you cite only the first ``pioneering’’ papers, but 
in such case it would be good to put “e.g.” in front of the citations, or add after the citations “with few more 
recent follow-ups”, or something similar. Otherwise this might look like the cited papers are all that has 
been published on the topic and it might lead to the other papers being omitted when someone new-to-the-
area uses your references as part of literature review on the topic. Similarly to this, I would make sure you 
somehow emphasize that the citations aren’t exhaustive also in the other cases, e.g. the phytoplankton size-
class chlorophyll has been assimilated also in Ciavatta et al 2019, Journal of Geophysical Research: Oceans, 
https://doi.org/10.1029/2019JC015128 and for total surface chlorophyll there’s many references left out. 
Response: Thank you very much for pointing out this. We added these references and revised the 
corresponding text in our revised manuscript as suggested.  
 
- more importantly the text on the lines 65-70 suggests that the subsurface validation was done only in the 
2 cited studies and only on climatological, or basin-wide scale. Firstly, I believe it is appropriate to include 
here the Cossarini et al 2019 reference that is cited elsewhere in the paper (which looks at vertical profiles 
along BGC-Argo locations), but secondly there is a new study of Skakala et al (2021), Journal of 
Geophysical Research: Oceans, https://doi.org/10.1029/2020JC016649 that validates both free runs and 
surface data assimilative runs along glider trajectories (in the North-West European Shelf) to determine the 
impact of surface data assimilation (and some other DA as well) on the simulated sub-surface tracers. This 
study, although it uses a very different, 3DVar, system, is of direct relevance here, since it addresses similar 
questions to this submitted manuscript, and, as mentioned before, it does model validation along a specific 
glider 3D transect (which is of course spatially limiting), rather than on basin-wide scales. Btw. please note 
that there is another study that assimilated BGC-Argo oxygen data that perhaps deserves to be cited in this 
paper: Verdy and Mazloff, Journal of Geophysical Research: Oceans, 
https://doi.org/10.1002/2016JC012650. 
Response: We included these references in our revised manuscript and rephrased this paragraph into:  



“The insufficient availability of subsurface and interior ocean biogeochemical observations is not only 
reflected in the immaturity of biogeochemical data assimilation but also its skill assessment. When 
compared with the surface, the subsurface has received less attention in skill assessments of biogeochemical 
data assimilation systems. Although there have been studies that compared vertical structures with in-situ 
observations and/or climatological datasets (e.g. Fontana et al., 2013; Ford and Barciela, 2017; Mattern 
et al., 2017; Ourmières et al., 2009; Teruzzi et al., 2014), these validations were often limited to low spatio-
temporal resolution. The recent growth of autonomous observation systems, esp. BGC-Argo floats and 
gliders, make it possible to evaluate biogeochemical data assimilation systems below the surface in high 
resolution (e.g. Cossarini et al., 2019; Salon et al., 2019; Skákala et al., 2021; Verdy and Mazloff, 2017).” 
 
Section 2: 
I find it would be perhaps beneficial for the reader to provide slightly more information on the system set-
up and maybe a bit rearrange the text. In particular: 
- could you please mark the exact model domain? The Fig.1 shows the Gulf of Mexico region with its 
bathymetry, but I guess what’s in Fig.1 is not precisely the spatial model domain (?) Or is it the red rectangle 
in Fig.1, which however isn’t explained (?) Maybe you can mask out the ``irrelevant’’ regions? 
Response: The model domain is represented by the red rectangle. We have made it clearer in the main text 
(P4 Line 21 in our revised manuscript) and figure caption of our revised manuscript. 
 
- a very minor (bottom of first paragraph in the section 2.1): could you please provide a rough km scale for 
the 1/8 degree resolution. Of course this is slightly variable depending on the latitude, but is it something 
like ~12km?  
Response: The longitudinal distance is about 12 km and the latitudinal distance is about 14 km. We have 
added this into our revised manuscript as suggested. 
 
- again extremely minor: just beneath Eq.2 “measurement operator” should be “observation operator”? 
Response: Revised as suggested. 
 
- I would perhaps suggest to put the first two paragraphs in section 2.4 behind the section 2.1, or maybe 
behind the section 2.2, so you say clearly how the ensemble is generated, how many members are run (and 
so on), around the same time when you talk about ensemble DA. I got firstly confused how little information 
is provided about the ensemble generation until I realized it’s been put behind the “Observations” section. 
Response: Thank you very much for this suggestion. We moved these two paragraphs to behind the section 
2.2 in our revised manuscript. 
 
- regarding the ensemble generation: how was the parameter sensitivity determined, in order to perturb the 
``right’’ parameters to account for the model uncertainty? Physical model parameters weren’t perturbed 
(e.g. vertical diffusion parameter values)? If so, why? I know 20 member ensemble is itself limiting, but 
perhaps some more reasoning on how the ensemble was generated would be desirable. 
Response:  

The biological parameters were selected by sensitivity tests. Specifically, we ran a 1D version of this 
model multiple times by incrementally perturbing one parameter at a time and setting other parameters 
unchanged (hereafter as Test case). Each parameter (p) was perturbed by multiplying factors ranging from 
0.25 to 1.75 with an increment of 0.25. Then parameters were sorted based on their sensitivity which was 
quantified by the normalized absolute differences from the unperturbed run (hereafter as Base case): 
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where m is the number of parameter increments (here 7) and n is the number of base-test pairs including all 
1D model grid cells throughout the whole simulation period. Based on the sensitivity tests, the most 
sensitive parameters were selected and perturbed in our data assimilation experiments. The details about 



the 1D model can be found in the section 3.3 of Wang et al. (2020). In our revised manuscript (P7 Lines 6-
12), we have added explanation about the choice of sensitive biological parameters. 

The physical model parameters (e.g. vertical diffusion coefficient) weren’t perturbed in this study. To 
create an ensemble with sufficient spread, we perturbed the model initial conditions, the open boundary 
conditions, and the wind forcing. Details in these perturbations can be seen in the section 2.4 of our original 
manuscript.  

It is worth noting that this data assimilation framework and configurations (e.g. observational errors, 
ensemble perturbations, ensemble members, and etc.) are obtained from Yu et al. (2019) which performed 
twin experiments in the same region (the Gulf of Mexico). In this study, we extend the work of Yu et al. 
(2019) to jointly assimilate the physical and biological observations. We also stated this in our revised 
manuscript (P6 Lines 15-17). 
 
- it seems that the observation uncertainties don’t come with the observation product (?), but based on what 
you estimate the 35% observational uncertainty for total chlorophyll, or the physical observation errors? 
This might be of importance, since you are aiming at estimating model variances quite accurately with the 
ensemble, so the true state estimate can be quite sensitive to the observation error estimates. 
Response: An observational error of 35% (or 30%) is a common practice to specify the error of satellite 
surface chlorophyll (e.g. Fontana et al., 2013; Ford, 2021; Ford and Barciela, 2017; Hu et al., 2012; Mattern 
et al., 2017; Santana-Falcón et al., 2020; Song et al., 2016; Yu et al., 2018). The observational errors of 
SSH and SST are also based on references (Song et al., 2016; Yu et al., 2018, 2019). We have added this 
in our revised manuscript. 
 
- btw do you assimilate chlorophyll, or log-chlorophyll? If the former, how do you treat the problem of 
non-Gaussianity? 
Response: We assimilate the actual chlorophyll concentrations in this study. Based on our prior tests, 
assimilating log-chlorophyll can yield more improvements of the surface chlorophyll in coastal regions but 
degrade it in the deep ocean (with depth>1,000m). In addition, assimilating log-chlorophyll results in less 
improvements of subsurface biological properties, including the chlorophyll, phytoplankton, and POC. As 
this study focused on the subsurface biological properties in the deep ocean of the Gulf of Mexico, we 
decided to assimilate the actual chlorophyll. Also, there already have been successful examples which 
assimilated the actual chlorophyll (e.g. Hu et al., 2012; Yu et al., 2018). Nevertheless, we acknowledge that 
assimilating the actual chlorophyll is suboptimal because of its non-Gaussian nature and we also stated this 
more clearly in the revised manuscript (P8 Lines 12-17).  
 
–what exactly is the 7 day window assimilation at the end of third paragraph of section 2.3, and how exactly 
does it help with data sparsity, should be explained more in detail.. E.g. is this that you assimilate more data 
that have been otherwise merged in the OC CCI products? 
Response: In this study, we applied weekly updates. Since the spatial coverage of surface chlorophyll is 
limited (with average of ~ 9.5%), we not only assimilate the daily records of surface chlorophyll at the date 
of update (e.g. 7 Jan 2015, the first update date in our data assimilative experiments), but also assimilate all 
daily records within 7 days before (e.g. from 1 Jan 2015 to 7 Jan 2015). Literally, the abundance of surface 
chlorophyll data that we assimilated will increase approximately by a factor of 7. We have explained this 
in more detail in our revised manuscript (P8 Lines 8-9). 
 
- I am not particularly great expert on EnKF, but maybe you could say for a general readership a bit more 
about how exactly are the correlation length-scales (especially the vertical) calculated from the ensemble? 
There is something on the spurious correlations and localisation, but perhaps you can say a bit more? Also 
I understand correctly that SSH, T & S are updated without updating also the horizontal velocities? Could 
that be also discussed slightly more? 
Response:  



The data assimilation framework and configurations (e.g. localization radius, observational errors, 
ensemble perturbations, ensemble members, and etc.) used in this study are the same as in Yu et al. (2019) 
which has successfully performed twin experiments in the same region (the Gulf of Mexico). The 
localization radius was tuned by initial sensitivity tests in Yu et al. (2019). Specifically, the different values 
of localization radius (i.e. 50, 75, and 100km) were tested and the optimal value (50km) was selected. The 
vertical correlation length-scale is not used in this study. We have also stated this in our revised manuscript 
(P6 Lines 15-17; Line 22; Lines 24-25). 
        In our data assimilation experiments, the 3D distributions of temperature and salinity were updated. 
The SSH and horizontal velocities were adjusted by dynamics in the following forecast steps. In the deep 
Gulf of Mexico, the circulation features (e.g. the Loop Current and its associated mesoscale eddies) are 
primarily geotropically balanced. Therefore, an update of temperature and salinity can improve the 3D 
circulation features in large scales effectively. This can be also supported by the twin experiments in Yu et 
al. (2019). As this study mainly focuses on the biological aspect, discussing the update of horizontal 
velocities may be a little distracting, but we have included some explanations in the revised manuscript (P9 
Lines 19-25).    
 
- the skill metrics at the end of section 2: why don’t you also include the overall bias? I find that calculating 
bias always carries worthy information (at least worthy enough to be mentioned somewhere in the paper). 
Response: We agree that the bias can carry supplementary information to the RMSE. As also suggested by 
the review 3, we reported the bias and correlation coefficient in our revised manuscript (e.g. P10 Lines 1-5 
and Table 1-2). 
 
Section 3 
Nice, just some relatively minor clarifications would help: 
- section 3.2: I find it surprising that addition of Argo (physical) data to the assimilation (Daargo) has such 
impact on surface chl (Fig.6), especially if it didn’t change much T & S (Fig.4)? Could you comment a bit 
more?  
Response: The degradation of surface chlorophyll in DAargo run is caused by the multivariate update 
between the Argo T&S profiles and chlorophyll, rather than the dynamical adjustment. Figure r1 shows the 
forecast and analysis of surface chlorophyll at the first update date (7-Jan-2015). The white circles in Fig. 
r1c represent the assimilated Argo T&S profiles. We can see that assimilating the Argo T&S profiles can 
yield extremely high surface chlorophyll around some profiles (e.g. the profile located at about 96.5°W, 
24°N). This is due to the spurious correlations between the T&S profiles and surface chlorophyll. This issue 
has been also reported in Goodliff et al. (2019) which assimilates SST to update both physical and biological 
variables. In their study, the multivariate update can yield unrealistic chlorophyll concentrations no matter 
when the chlorophyll has been log-transformed. Muting the multivariate update on phytoplankton, 
zooplankton, and detritus can make chlorophyll concentrations more realistic. 

 
Figure r1. The forecast and analysis of surface chlorophyll at the first data assimilation cycle (7-Jan-2015). 
The white circles in panel c represent the assimilated Argo T&S profiles. 
 

Forecast Analysis (DAsat) Analysis (DAargo)

(a) (b) (c)



Section 3.2 paragraph 2: where are the nitrate data coming from? Maybe I’m getting confused, but nitrate 
data weren’t mentioned between the BGC Argo data in section 2. 
Response: The NO3 is not measured by the BGC-Argo floats. It is estimated based on its empirical 
relationship with temperature (Fig. S1 of our original manuscript), which is derived from the climatological 
data in the Gulf of Mexico from the World Ocean Atlas (WOA). The description of estimated NO3 is in 
the end of the section 2.4 in our original manuscript. To make it clearer, we moved it to the end of section 
2.3 (Observations) in our revised manuscript. 
 
specific Figure-related comments: 
Fig.3: although I understand what the Figure is trying to demonstrate, it might be better to show the model 
–observation differences for the different runs, or at least show them for the free run next to the existing 
panels? 
Response: Figure 3 in our original manuscript aimed to show reductions in RMSE and therefore the 
improvement obtained by data assimilation. We agree with the reviewer and have added panels to show 
RMSE of the free run as a benchmark in our revised manuscript as suggested (please see the new Fig.3 and 
Fig. 6). 
 
Fig.4: its interesting how little difference there is in subsurface T between sat DA and argo DA! Can you 
discuss how much of this is due to the assimilation length-scales and how much due to the model dynamical 
adjustment? Btw what was the relationship between the spatial positions of Argo floats and BOEM floats? 
This hasn’t been shown.. 
Response:  

Figure r2 shows positions of Argo profiles (gray dots) at each data assimilation cycle (e.g. 7 Jan 2015, 
the first update date in our data assimilative experiments) and BOEM profiles (colored squares) before the 
next one (e.g. from 7 Jan 2015 to 14 Jan 2015). The solid black circles represent areas within one 
localization radius (50km) from each Argo profile. Colors of squares represent the days of each BOEM 
profile after each data assimilation cycle. As shown in Fig. r2, most of BOEM profiles are outside of one 
localization radius from the Argo profiles and therefore are barely updated by assimilating the Argo profiles. 
Figure r3 shows the root-mean-square-difference (RMSD) of temperature from each BOEM profile 

between two data assimilative runs (𝑅𝑀𝑆𝐷 = >7
4
∑(𝐷𝐴A.3 − 𝐷𝐴BCDE)F). The x-axis represents days of 

each BOEM profile after each data assimilation cycle and the y-axis represents distance to the nearest Argo 
profile. In general, the RMSD between two data assimilative runs decreases with the distance but shows no 
significant decreasing trends with the days after update. This means that the differences induced by 
assimilating Argo profiles can be well sustained locally by model dynamical adjustments. The overall 
similarities between two data assimilative runs in Fig. 4 can be explained to some extent by the large 
distances between BOEM and Argo profiles. However, it doesn’t mean that increasing the localization 
radius can improve the data assimilation performance. We note that the current localization radius is 
determined by initial tests in Yu et al. (2019). We have added this discussion in our revised manuscript 
(P16 Lines 23-28; P17 Lines 1-3). 

 
 
 

 



 
 

(continued) 



 
Figure r2 Positions of Argo profiles (gray dots) at each data assimilation cycle and BOEM profiles (colored 
square) before the next one. Solid black circles represent areas within one localization radius from each 
Argo profile. Colors of squares represent the days after each data assimilation cycle. 
 
 
 
 
 



 
Figure r3 The root-mean-square-difference (RMSD) of temperature from each BOEM profile between two 
data assimilative runs, DAsat and DAargo (indicated by the color). The x-axis represents days of each 
BOEM profile after each data assimilation cycle and the y-axis represents distance to the nearest Argo 
profile 
 
Fig.7: perhaps in this case there is no need to reproduce exactly Fig.4, since the nitrate concentrations are 
very similar between the three simulations? Maybe it’s better to have the first row and then differences 
between the DA and the free run, since this would show more clearly the changes introduced by DA? Also 
why there aren’t the observed nitrate concentrations similarly to T in Fig.4? It’s interesting that nitrate and 
surface chlorophyll aren’t correlated as much as nitrate with temperature (Fig.10), I understand that’s 
because of non-linearity, but in my region and model of experience this non-linearity still produces overall 
strong correlations, just highly variable in time (including changing signature).. 
Response: 

The NO3 distributions are quite different before and after data assimilation. They look similar in Fig. 
7 of our original manuscript possibly because the NO3 are plotted in log-scales and the colormap we used 
was not ideal. We replotted Fig. 7 (please see Fig. r4 here or the new Fig. 7 in our revised manuscript) to 
show NO3 distributions from each model experiment. As shown in Fig. r4, the NO3 distributions are 
significantly modified and improved by data assimilation. For example, the anticyclonic eddies which are 
not reproduced by the free run will depress the nitraclines and decrease the NO3 concentrations (e.g. the 
August of float 285, the April-July of the float 286, and the July-October of the float 287) in the two data 
assimilative runs. In contrast, the data assimilation will upwell the nitraclines and increase NO3 
concentrations when the SSH is overestimated in the free run and corrected in the two data assimilative 
runs (e.g. the January-April of Float 287, the August-October of Float 290). 

We didn’t show NO3 observations because NO3 is not measured by the BGC-Argo floats in the Gulf 
of Mexico. In this study, we estimated NO3 based on its climatological relationship with temperature (Fig. 
S1 of our original manuscript which is replot as Fig. r5 here) and compared it with the model results. The 
estimated NO3 distributions following the BGC-Argo floats are added in our revised manuscript (Fig. r4). 
However, the estimated NO3 tend to be overestimated in the high temperature regions (Fig. r5), which 
typically occurs within the euphotic layer. Therefore, we used the unbiased root-mean-square-error to 
quantify the model-data misfit of NO3. 



For the relatively weak correlations between surface NO3 and chlorophyll, the deep ocean of the Gulf 
of Mexico (depth>1,000m) is an oligotrophic region. Apart from NO3, ammonia (NH4) can be also used 
to support a large fraction of primary production. In addition, the photo-acclimation is accounted for in our 
biological model. The chlorophyll to phytoplankton carbon ratio can vary a lot due to environmental factors, 
i.e. light, temperature, and nutrient concentrations (Geider et al., 1997). All these features will increase 
nonlinearities of the biological model and make the correlations between surface NO3 and chlorophyll 
weak. 

 

 
Figure r4. Vertical distributions of nitrate which are estimated based on its climatological relationship with 
temperature and modelled by different experiments, superimposed with the SSH (black thick lines). 
 



 
Figure r5 Empirical relationship of temperature-NO3 derived from the World Ocean Atlas in the Gulf of 
Mexico. Colors indicate the number of observations within each bin. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Responses to Reviewer 2 
Below the complete reviewer comments are shown in black font along with detailed responses to each 
comment in blue font. 
 
Review: 
The manuscript by Wang and Coauthors investigates the impact of the assimilatio of satellite surface 
observations to both physical and biogeochemical variables in a coupled model of the Gulf of Mexico 
physical and biogeochemical dynamics. Independent (nonassimilated) profiles form five BGC-Argo floats 
are used for validation. Results provided in the manuscript highlight interesting aspects on the capability of 
DA (data assimilation) to effectively correct ocean simulations, on the difficulties arising in coupled 
physical and biogeochemical assimilation, and on the relevant role played by prior model calibration in DA. 
The manuscript is well written and of interest for the scientific community considering recent and foreseen 
upgrades in physical-biogeochemical ocean DA. My review is limited to few points (most of them minor) 
that I think will further improve the manuscript quality. 
Since line numbers are corrupted in the manuscript file, in the comments hereafter they are indicated by # 
followed by the part of line number visible in the manuscript. Page numbers are also provided together with 
line numbers. 
Response: We thank the reviewer for the constructive comments and suggestions which were very helpful 
in our revision of the manuscript.  
 
I suggest to introduce the alternative parametrization of the light absorption in a different way. In the 
manuscript it is currently described as an alternative that has been considered after investigating the results 
of previous simulations. I think that presenting this formulation as an alternative since the beginning would 
better emphasize the role of prior model calibration. Thus, I suggest to describe the alternative formulation 
not in a temporal framework (i.e., without specifying that it has been applied after  previous simulations) 
as it is currently done in the abstract and in the manuscript sections. In particular: i) the first paragraph of 
Section 3.3 could be moved and adapted to Section 2.4; ii) in Section 2.4 the Authors could indicate that 
five (instead of three) simulations were performed; iii) it can be further stressed through the manuscript that 
the alternative formulation for the light absorption was adopted to investigate the sensitivity of subsurface 
DA impacts to model calibration (and in particular to the light penetration formulation); iv) the abstract 
should be adapted accordingly. 
Response: Thank you very much for this constructive suggestion. We have revised it as suggested (e.g. 
Abstract, P1 Lines 24-26; Introduction, P4 Lines 10-11; Simulation strategy, P9 Lines 4-15; Discussion, 
P14 Lines 12-13 and P15 Lines 13-16). 
 
I think that the comparison with independent BGC-Argo floats is a valuable aspect of the manuscript, 
however, it would be interesting to know the spatial-temporal distances of the non-assimilated profiles with 
respect to the assimilated ones. Did they cover similar areas of the gulf of Mexico? And in the same period? 
In my opinion clarification on this aspect would help to better understand and comment the relatively small 
impact of Argo profiles assimilation when compared to the independent BGC-Argo data. Moreover, this 
could help also in commenting the differences between the two maps of Fig. 6 (are the differences mainly 
located close to assimilated Argo profiles?). 
Response:  

Figure r1 shows positions of Argo profiles (gray dots) at each data assimilation cycle (e.g. 7 Jan 2015, 
the first update date in our data assimilative experiments) and BOEM profiles (colored squares) before the 
next one (e.g. from 7 Jan 2015 to 14 Jan 2015). The solid black circles represent areas within one 
localization radius (50km) from each Argo profile. Colors of squares represent the days of each BOEM 
profile after each data assimilation cycle. As shown in Fig. r1, most of BOEM profiles are outside of one 
localization radius from the Argo profiles and therefore are barely updated by assimilating the Argo profiles. 
Figure r2 shows the root-mean-square-difference (RMSD) of temperature from each BOEM profile 



between two data assimilative runs (𝑅𝑀𝑆𝐷 = >7
4
∑(𝐷𝐴A.3 − 𝐷𝐴BCDE)F) The x-axis represents days of 

each BOEM profile after each data assimilation cycle and the y-axis represents distance to the nearest Argo 
profile. In general, the RMSD between two data assimilative runs decreases with the distance but shows no 
significant decreasing trends with the days after update. This means that the differences induced by 
assimilating Argo profiles can be well sustained locally by model dynamical adjustments. The overall 
similarities between two data assimilative runs in Fig. 4 can be explained to some extent by the large 
distances between BOEM and Argo profiles. However, it doesn’t mean that increasing the localization 
radius necessarily improves the data assimilation performance. The current localization radius was 
determined by initial tests in Yu et al. (2019). We have added this discussion in our revised manuscript 
(P16 Lines 23-28; P17 Lines 1-3). The differences in RMSE of surface chlorophyll between two data 
assimilative runs are shown in Fig. r3. Positions of the assimilated Argo profiles are superimposed. The 
major differences in the two data-assimilative runs are mainly located around the Argo profiles. Reasons 
for why assimilating the Argo profiles can degrade surface chlorophyll are given in our response to the 
reviewer 1 and in the discussion of our original manuscript. 
 



 
 

(continued) 



 
Figure r1 Positions of Argo profiles (gray dots) at each data assimilation cycle and BOEM profiles (colored 
square) before the next one. Solid black circles represent areas within one localization radius from each 
Argo profile. Colors of squares represent the days after each data assimilation cycle. 
 
 
 
 
 



 
Figure r2 The root-mean-square-difference (RMSD) of temperature from each BOEM profile between two 
data assimilative runs, DAsat and DAargo (indicated by the color). The x-axis represents days of each 
BOEM profile after each data assimilation cycle and the y-axis represents distance to the nearest Argo 
profile 

 

 
Figure r3 Differences in RMSE of surface chlorophyll between two data assimilative runs. Positive values 
represent improvements while negative values represent deteriorations by assimilating Argo profiles. 
Positions of Argo profiles are superimposed (gray dots). 

 
I suggest to insert some comments in Sec. 3.3 about the impact of the alternative parametrization on RMSE 
with respect to satellite chlorophyll. Results of tab. 2 show that RMSE in Free_alt is slightly higher than in 
Free, but on the other hand the improvement due to the assimilation (DAsat_alt) is relatively higher. I think 
that this point could be further highlighted and commented in the manuscript. 
Response: Although the relative improvement by data assimilation is higher after using the alternative 
parameterization, the RMSE of surface chlorophyll are also higher in Free-alt and DAsat-alt runs. This is 
possibly because the alternative light parameterization is tuned based on the vertical profiles of chlorophyll. 



Although the alternative light parameterization can better reproduce the interactions between light intensity 
and chlorophyll throughout the water column, it is not necessarily better than the original one in the surface 
layer. Therefore, we prefer to be cautious to not over-interpret this result. 
 
From the sentence at lines 18-19 (p. 1) in the abstract it seems that the model was tuned using BGC-Argo 
in the present. However, the tuning was made in Wang et al. (2020) (lines #08-#09, p. 4). Tha Authors 
should consider to rephrase the sentence in the abstract. 
Response: We rephrased it into: 
“…… The multivariate Deterministic Ensemble Kalman Filter (DEnKF) has been implemented to 
assimilate physical and biological observations into a three-dimensional coupled physical-biogeochemical 
model, of which the biogeochemical component has been calibrated by BGC-Argo floats data for the Gulf 
of Mexico. Specifically, observations of sea surface height, sea surface temperature, and surface 
chlorophyll were assimilated, and profiles of both physical and biological variables were updated based 
on the surface information……” 
 
16 p. 1. I think that the correct term for biogeochemical Argo floats is BGC-Argo instead of BGC Argo. 
Please, check other occurrences in the whole manuscript. 
Response: We use BGC-Argo whenever it is an adverb and BGC Argo whenever it is not. This is, to the 
best of our knowledge, the correct grammatical usage and consistent with common usage on websites about 
BGC Argo (https://argo.ucsd.edu/expansion/biogeochemical-argo-mission/ and http://bgc-
argo.ocean.dal.ca/). Therefore, we would like to leave this as is in the manuscript. 
  
94 p. 4. Probably Figure should be abbreviated with Fig. (please, check other occurrences). 
Response: We have corrected it as suggested.  
 
#09 p. 4. Concerning the re-tuning of the half-saturation constant of nitrate, was it is done similarly to Wang 
et al. (2020), i.e. based on BGC-Argo? If not, could you explain how the updated value of the parameter 
was obtained? 
Response: The half-saturation constant of nitrate was subjectively re-tuned based on the BGC-Argo floats. 
Specifically, we tested different values of this parameter and compared model results with observations. 
The parameter value is used when it can well reproduce the observations. We explained it in our revised 
manuscript (P5 Lines 10-11).  
 
#32 and L. #36 p. 5. I suggest to check if Equ. Is the correct abbreviation for Equation in Ocean Science 
Journal. 
Response: We revised it into Eq. following instructions of Ocean Science. 
 
#53-#54, L. #61-#62 p. 6 and L. #58 p. 7. How were the values of observation errors defined? I suggest to 
add some references or details on criteria used. 
Response: An observational error of 35% (or 30%) is a common practice to specify the error of satellite 
surface chlorophyll (e.g. Fontana et al., 2013; Ford, 2021; Ford and Barciela, 2017; Hu et al., 2012; Mattern 
et al., 2017; Santana-Falcón et al., 2020; Song et al., 2016; Yu et al., 2018). The observational errors of 
SSH and SST are also based on references (Song et al., 2016; Yu et al., 2018, 2019). We also added this in 
our revised manuscript as suggested. 
 
#88 p. 7. Probably an and  is missing in the sentence: zero mean and  variance of 1.  
Response: Revised as suggested. 
 
#74 p. 11. I am not sure that the term subsurface  is fully consistent here. Indeed, I would say that the model 
fails to simulate the high spatiotemporal variability also close to the surface, more generally the whole 
euphotic layer is affected by the issue. 



Response: We think that this issue is more significant below the surface. Figure r4 shows chlorophyll near 
the surface (10m) from the BOEM floats and different model experiments. The coupled model either with 
or without data assimilation can in general well reproduce the spatiotemporal variability of chlorophyll 
except a few high values. 

 
Figure r4. Time series of chlorophyll near the surface (10m) from the BOEM floats and different model 
experiments. 
 
#94 p. 11. How were the two light attenuation parametrizations calibrated? Could you provide some details 
or references about? 
Response: Parameters of the original light attenuation scheme (Att=0.04+0.025´chl) is based on previous 
studies (e.g. Fennel et al., 2011, 2006) and the alternative light attenuation parameterization 
(Att=0.027+0.075´chl1.2) is subjectively tuned based on the BGC-Argo floats. We have added some 
explanation for the two light parameterizations in our revised manuscript (P9 Lines 8-15). 
 
#16 p. 12. Since the large use of BGC-Argo floats for model validation demonstrated in Salon et al. (2019), 
consider if it is relevant to add it in the listed references. 
Response:  We guess that the reviewer is referring to this paper “Novel metrics based on Biogeochemical 
Argo data to improve the model uncertainty evaluation of the CMEMS Mediterranean marine ecosystem 
forecasts”. We have added this reference into our revised manuscript (P14 Line 17). 
 
#62-#63 p. 14. As far as I know, in Goodliff et al. (2019) the muting of the multivariate update concerned 
not only chlorophyll but all the phytoplankton variables (whilst multivariate updated was maintained for 
nutrients and oxygen). 
Response: True. In their study, they muted the multivariate update of phytoplankton, zooplankton, and 
detritus. We have corrected it in our revised manuscript (P17 Line 9).  
 
Fig. 10, I suggest to insert measurement units (at least in the caption).  
Response: Revised as suggested. 
 
Accordingly to comment 1, I think that in Discussion and/or in the Conclusion the need of an a priori well 
calibrated model could be further stressed by the results obtained using the alternative light attenuation 
parametrization, since it is an example of how DA benefits can be limited by a parametrization that it is not 
fully consistent with the modelled processes. 
Response: Thank you for this suggestion. We have stressed it as suggested (e.g. P15 Lines 13-21). 
 
 



Responses to Reviewer 3 
Below the complete reviewer comments are shown in black font along with detailed responses to each 
comment in blue font. 
 
Review: 
This study implements DEnKF-based data assimilation of satellite sea surface temperature, sea surface 
height and chlorophyll, and in situ temperature and salinity, with a physical-biogeochemical model of the 
Gulf of Mexico. The results are validated using the assimilated data plus profiles from five independent 
BGC-Argo floats, with a particular focus on subsurface biogeochemistry. Following the validation, a 
change was made to the light attenuation parameterisation to improve the fit to BGC-Argo chlorophyll.  
The paper is well written and the experiments and results useful and well described. Subject to a few minor 
revisions, detailed below, I recommend publication in Ocean Science. 
Response: We thank the reviewer for the constructive comments and suggestions which were very helpful 
in revising the manuscript. 
 
P2 L41 - "discretion schemes" should presumably be "discretization schemes"? 
Response: Revised as suggested 
 
P3 L65-70 - while less focus has definitely been given in the literature to validating the subsurface than the 
surface, it's not as rare as this paragraph would suggest. Some of the studies already referenced, and more 
besides, perform some validation of the subsurface, including on a point-to-point basis. See e.g. Fontana et 
al., 2013; Ford and Barciela, 2017; Mattern et al., 2017; Cossarini et al., 2019. The paragraph should be 
rephrased accordingly. 
Response: We thank the reviewer to point out this. We have included these references and rephrased this 
paragraph into: 
 “The insufficient availability of subsurface and interior ocean biogeochemical observations is not only 
reflected in the immaturity of biogeochemical data assimilation but also its skill assessment. When 
compared with the surface, the subsurface has received less attention in skill assessments of biogeochemical 
data assimilation systems. Although there have been studies that compared vertical structures with in-situ 
observations and/or climatological datasets (e.g. Fontana et al., 2013; Ford and Barciela, 2017; Mattern 
et al., 2017; Ourmières et al., 2009; Teruzzi et al., 2014), these validations were often limited to low spatio-
temporal resolution. The recent growth of autonomous observation systems, esp. BGC-Argo floats and 
gliders, make it possible to evaluate biogeochemical data assimilation systems below the surface in high 
resolution (e.g. Cossarini et al., 2019; Salon et al., 2019; Skákala et al., 2021; Verdy and Mazloff, 2017).” 
 
P3 L74 - I think "Garcon" should be "Garçon". 
Response: True. We corrected it in our revised manuscript. 
 
Is any transformation performed for chlorophyll to deal with non-Gaussianity? 
Response: In this study, we assimilate the actual chlorophyll concentrations. Based on our prior tests, 
assimilating log-chlorophyll can yield more improvements of the surface chlorophyll in coastal regions but 
degrade it in the deep ocean (with depth>1,000m). In addition, assimilating log-chlorophyll results in less 
improvements of subsurface biological properties, including the chlorophyll, phytoplankton, and POC. As 
this study focused on the subsurface biological properties in the deep ocean of the Gulf of Mexico, we 
decided to assimilate the actual chlorophyll. Also, there already have been successful examples which 
assimilated or updated the actually chlorophyll (e.g. Hu et al., 2012; Yu et al., 2018). Nevertheless, we have 
to acknowledge that assimilating the actual chlorophyll is suboptimal because of its non-Gaussian nature 
and we have stated this more clearly in the revised manuscript (P8 Lines 12-17). 
 
Do the observation errors used account for representation error? Is this likely to affect results? 



Response: We didn’t include representation errors in our study. It is also a common practice to only account 
for the instrument errors in data assimilation. The detailed influence of the representation errors need to be 
further investigated. 
 
P8 L04 - would additional metrics, even just bias and correlation coefficient, give additional information? 
Furthermore, chlorophyll and other biogeochemical variables are not normally distributed. Is RMSE 
appropriate here? 
Response: We have also reported bias and correlation coefficient in our revised manuscript (e.g. P10 Lines 
1-5, Table 1-2). For the usage of RMSE, we understand the reviewer’s concerns that the RMSE may skew 
to high values. In previous applications (e.g. Ford and Barciela, 2017; Pradhan et al., 2020, 2019), the 
RMSE of log-chlorophyll has been also applied to put a same weight on the low values. However, this study 
in particular focus on the subsurface biological properties in the deep ocean (with depth > 1,000m) of the 
Gulf of Mexico and the major subsurface features, e.g. the deep chlorophyll maximum, are relatively high 
in their order of magnitude (e.g. ~o (1E-1 mg m-3) of chlorophyll). In addition, the low concentrations (e.g. 
~o (1E-2 mg m-3) chlorophyll) are less ecologically important than the high concentrations. 
 
P10 L56 - can the uncertainties be quantified? 
Response: Yes. The uncertainty can be quantified by two methods, error propagation and validation with 
in-situ observations. The former method propagates errors from input to output with good knowledge of 
uncertainties from the input and model parameters. The latter one will calculate the root-mean-square 
difference (RMSD) and bias between the satellite estimates and match-up in-situ observations. Some 
satellite products (e.g. Ocean Colour CCI) can provide the pixel-by-pixel uncertainties. For this purpose, 
the uncertainty will be firstly calculated with respect to different optical water types and then extrapolated 
into each pixel as the weighted sum of uncertainties for each water type.  
 
P11 L87 - how was significance calculated? 
Response: In this study, the significant improvement is referred to as the reduction in RMSE larger than or 
equal to 10% (please see the caption of Table 2 in our original manuscript). We have clarified this in our 
revised manuscript (P12 Lines 9-10).  
  
P11 L93-94 - what method was used to calculate the old and new parameterisations? 
Response: Parameters of the original light attenuation scheme (Att=0.04+0.025´chl) is based on previous 
studies (e.g. Fennel et al., 2011, 2006) and the alternative light attenuation parameterization 
(Att=0.027+0.075´chl1.2) is subjectively tuned based on the BGC-Argo floats. We added some explanation 
for the two light parameterizations in our revised manuscript (P9 Lines 8-15). 
 
Please comment further on why Fig. 9 shows limited improvement in the free run with the new 
parameterisation. Does this imply that the parameterisation is too tuned to the BGCArgo data, or that state-
parameter estimation might be the best long-term approach? 
Response: The over-tuning means that a model reproduces observations through wrong mechanisms. 
However, in the Free_alt run of our study, the physical circulation features, e.g. the position of Loop Current 
eddy, are wrong. We cannot expect the alternative parameterization to improve chlorophyll by 
compensating errors from physical circulations, which otherwise is a symptom of the over-tuning. In the 
DAsat_alt run, the chlorophyll is improved as the data assimilation corrects physical circulation features, 
which indicates that our alternative parameterization is well calibrated.  
 
Fig. 1 - please state what the red square represents. Is this the model domain? 
Response: Yes, the red rectangle represents our model domain. We have clarified it in our revised 
manuscript (P4 Line 21 and new caption of Fig. 1). 
 



Fig. 3 - please include units where appropriate. (a-e) should probably be (a,b,d,e). 
Response: Revised as suggested 
 
Fig. 7 - should the observations be included in a subplot here, as in Fig. 4?  
Response: We didn’t show NO3 observations because NO3 is not measured by the BGC-Argo floats in the 
Gulf of Mexico. In this study, we estimated NO3 based on its climatological relationship with temperature 
(Fig. S1 of our original manuscript which is replot as Fig. r1 here) and compared it with the model results. 
We have added the estimated NO3 distributions in our revised manuscript (new Fig. 4). However, the 
estimated NO3 tend to be overestimated in the high temperature regions (Fig. r1), which typically occurs 
within the euphotic layer. Therefore, we used the unbiased root-mean-square-error to quantify the model-
data misfit of NO3. 
 

 
Figure r1 Empirical relationship of temperature-NO3 derived from the World Ocean Atlas in the Gulf of 
Mexico. Colors indicate the number of observations within each bin. 
 
 
Fig. 10 - what is meant by DCM increment? DCM is not one of the state variables included in the 
assimilation. 
Response: The definition of DCM increment is analogous to increment of other state variables. Specifically, 
we calculate the DCM depth based on chlorophyll profiles before (forecast) and after (analysis) update, and 
we define the changes due to update as the DCM increment. We have added a definition in our revised 
manuscript (P15 Lines 24-25). 
 
Fig. S3 does not appear to be referred to in the text. More generally, the figures in the supplement could 
reasonably be included in the main paper, but I appreciate the desire to limit the number of figures. 
Response: As suggested by the reviewer 2, we reorganized the manuscript to introduce the alternative light 
parameterization in a different way and we included this figure into the manuscript. 
 
 
 
 



Responses to Reviewer 4 
Below the complete reviewer comments are shown in black font along with detailed responses to each 
comment in blue font. 
 
Review: 
The study is investigated the ability of available satellite information on ocean surface physical and 
biological properties to constrain and improve simulated subsurface biogeochemistry in the Gulf of Mexico. 
The study also shows an example of using complementary Argo data. In this respect the paper nicely suits 
the frame of the journal. Generally, the manuscript is well structured and clearly written. The figures are of 
a good quality. I have got just minor comments (please see below) the authors might still want to consider 
before publishing the manuscript. 
Response: We thank the reviewer for the constructive comments and suggestions which were very helpful 
as we revised the manuscript. 
 
Title: an edit is required ”…assimilation of satellite physical and biological observations …”. It is a bit 
confusing: the title emphasizing the use/role of satellite information in improving subsurface 
biogeochemistry, however Argo data are also assimilated. Could the title reflect the use of Argo data? 
Response: We feel the title is appropriate as is and would like to keep it. Although we also assimilate Argo 
profiles in DAargo run, this is only core-Argo data (i.e. temperature and salinity) and not BGC Argo data. 
The key point of this study is to evaluate the impact of assimilating satellite observations on the subsurface 
distributions, especially of biological properties. Moreover, the additional improvements obtained by 
assimilating Argo profiles are limited.  
 
Specific comments: 
Line 15:16. reads as BGC-Argo data are also assimilated complementary to the satellite data. Reads a bit 
contradictory to the title or vice versa the title reads contradictory to the statement. 
Response: The satellite data are assimilated into the coupled model and the BGC-Argo data are used to 
calibrate the biological model. We have revised this sentence into: 
‘This study investigates to what degree the assimilation of satellite observations in combination with a 
priori model calibration by sparse BGC-Argo profiles can improve subsurface biogeochemical properties’ 
 
P1, L18: “… into a three-dimensional biogeochemical model …” 
Response: We have revised it as suggested. As also suggested by the reviewer 2, we have rephrased this 
paragraph into: 
“…… The multivariate Deterministic Ensemble Kalman Filter (DEnKF) has been implemented to 
assimilate physical and biological observations into a three-dimensional coupled physical-biogeochemical 
model, of which the biogeochemical component has been calibrated by BGC-Argo floats data for the Gulf 
of Mexico. Specifically, observations of sea surface height, sea surface temperature, and surface 
chlorophyll were assimilated, and profiles of both physical and biological variables were updated based 
on the surface information……” 
 
P2, L30-31: How was the tuning done? To a certain extent it is still a kind of assimilation of the information.  
Response: We agree. From a broad perspective, any practice to constrain a model by observations can be 
referred to as data assimilation. In this study, when we say data assimilation, we specifically refer to state 
estimation. We have stated this clearly in the revised manuscript (P2 Lines 19-21). Available BGC Argo 
float data are still insufficient for three-dimensional state estimation but can be used for a prior tuning of 
model. As a result, the well-tuned model can reproduce the key processes, e.g. the feedbacks between 
chlorophyll and light intensity in our study, and maintain the improvement obtained in update steps. The 
alternative light parameterization was tuned subjectively by BGC-Argo floats. However, the a priori tuning 
can be also done in other ways, such as parameter optimization.  
 



P2, L41: “discretization and numerical schemes” instead of “discretion” 
Response: As suggested also by other reviewers, we changed it into discretization scheme.  
 
P2, L45: “.” is missing in the end of the sentence.  
Response: Revised as suggested. 
 
P2, L48: suggest to add “(e.g. Chla)” after “satellite data of ocean colour have been the major source of 
observations” 
Response: Revised as suggested. 
 
P2, L51: correct reference is Pradhan et al., 2020 
Response: Thank you for pointing out this. We have corrected it as suggested. 
 
P4, L85-86: are the mentioned five BGC-Argo floats really independent if used for the model calibration 
(model optimisation even though by "trails-and-error")? 
Response: We understand the reviewer’s concern that the BGC-Argo float data are not fully independent 
because they have been used to optimize the biological parameters in Wang et al. (2020). Here the 
‘independent observations’ refers to the unassimilated observations. We believe this is consistent with the 
common understanding in the data assimilation literature and therefore we keep it as it is but we point out 
clearly that the data has been used in prior tuning in the revised manuscript (P4 Lines 12-13). 
 
P5, L31: “observational operator” instead of “measurement operator” 
Response: Revised as suggested 
 
P6, L53-54: The specified (assumed) observational errors for SSH and SST are quite small, which could 
lead to overfit to the data with possible deterioration of the state for other model variables. 
Response: The observational errors of SSH and SST are based on previous studies (Song et al., 2016; Yu 
et al., 2018, 2019) and have been applied successfully in Yu et al. (2019). With respect to the overfitting 
issue, we compared model results below the surface with unassimilated Argo and BGC-Argo profiles. The 
subsurface temperature, salinity, and NO3 were largely improved. Other biological variables were also 
improved although the improvements were limited. These results give us some confidence that the 
observational errors are appropriate. 
 
P7, L79-80: Inflation is normally introduced to account for uncertainties in approximation of model error 
(due discrepancies in the forcing or internal model parameter/parameterisations), which consequently alters 
the ensemble spread.  
Response: We agree. We have revised it into: 
‘Ensemble anomalies are inflated by 1.05 in each update step to account for unrepresented sources of 
model uncertainty (Anderson and Anderson, 1999).’ 
 
P7, L89-91: It would be nice to provide a reference to a study on model sensitivity to these particular 
parameters? A motivation and a reference to a procedure of parameter perturbation would support. Please 
also make it clearer whether the parameters are perturbed just to introduce more stochasticity to the system 
(e.g. Pradhan et a. 2019, 2020) or the data assimilation experiment considers also parameter estimation 
(Doron et al., 2011, Simon et al. 2015). 
Response:  

The sensitive biological parameters were selected by sensitivity tests. Specifically, we ran a 1D version 
of this model multiple times by incrementally perturbing one parameter at a time and setting other 
parameters unchanged (hereafter as Test case). Each parameter (p) was perturbed by multiplying factors 
ranging from 0.25 to 1.75 with an increment of 0.25. Then parameters were sorted based on their sensitivity 



which was quantified by the normalized absolute differences from the unperturbed run (hereafter as Base 
case): 
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where m is the number of parameter increments (here 7) and n is the number of base-test pairs including all 
1D model grid cells throughout the whole simulation period. Based on the sensitivity tests, the most 
sensitive parameters were selected and perturbed in our data assimilation experiments. The details about 
the 1D model can be found in the section 3.3 of Wang et al. (2020). In our revised manuscript, we have 
added explanation about the choice of sensitive biological parameters (P7 Lines 6-12). 

In this study, the sensitive biological parameters were perturbed to introduce model uncertainties but 
were not updated. We have made it clearer in the revised manuscript (P7 Lines 12-14). 
 
P8, L1-3: Please consider rephrasing this sentence. The length of the state vector should not affect crucially 
the computational cast. Normally the time required for the analysis (independent on the length of the state 
vector) takes much less than the computational expenses required for running the ensemble itself. It is worth 
providing another argument for justification of the choice of model variables included to the state vector. 
Response: As suggested, we have rephrased this sentence into: 
‘Although the DEnKF can update all variables based on their cross-covariance, we limit updates to two 
physical variables (temperature and salinity) and four biological variables (nitrate, chlorophyll, 
phytoplankton, and zooplankton) which are key to the coupled physical-biogeochemical system. …… All 
these state variables are updated throughout the whole water column while other variables are adjusted by 
internal model dynamics.’ 
 
P8, L4-12: It is worth showing both criteria RMSD and unbiased RMSD (+ additional? bias). In this case 
it would be clearer for the reader for which model variables the solution deviate systematically or randomly 
from the observations, whether the data assimilation allows to reduce bias (if any) or random part of the 
obtained differences between model and observations.  
Response: Thank you for this suggestion. We have reported the bias and correlation coefficient in our 
revised manuscript as suggested. 
 
P9, L24: "This figure shows" or "This comparison shows"  
Response: Revised as suggested. 
 
Figure 2 could be slightly increased. 
Response: Revised as suggested. 
 
Supplement, Figure S3: a legend or more detailed figure caption is required. 
Response:  As suggested by the reviewer 2, we reorganized the manuscript to introduce the alternative light 
parameterization in a different way and we combined this figure with Fig. 8 in our revised manuscript. 
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