
Responses to Reviewer 1  
 
Below the complete reviewer comments are shown in black font along with detailed responses to each 
comment in blue font. 
 
Review: 
This is a very interesting and valuable contribution to the present scientific literature addressing the impact 
of (DEnKF) assimilation of physical and biogeochemical data, including Argo floats, on the simulated state 
of the ocean. More specifically, the paper addresses an important question of the impact of (mostly) surface 
data assimilation on sub-surface physics and biogeochemistry, focusing on the Gulf of Mexico. The 
simulated physical and biogeochemical tracers are validated with an independent BGC-Argo data-set. The 
paper is well written and I have mostly only minor comments to address, which can be found below. One 
remark: please note that in the downloaded .pdf version of the manuscript the first digits of the three-digit 
line numbers are running off the left side of the page, so beneath the section 1 I avoid referring to the line 
numbers and refer to the paragraph and section number instead. 
Response: We thank the reviewer for the constructive comments and suggestions which will be very helpful 
as we revise the manuscript.  
 
Section 1: 
The introductory section is nicely written and the only comments that I have are regarding the use of 
references: 
- in particular on line 52 when the paper talks about assimilation of optical properties, the included 
references are very far from exhaustive. On top of my head I could add to the list the following papers: 1. 
Jones et al (2016), Biogeosciences, https://doi.org/10.5194/bg-13-6441-2016, 2. Gregg and Rousseaux 
(2017), Frontiers in Marine Science, https://doi.org/10.3389/fmars.2017.00060, 3. Skakala et al (2020), 
Journal of Geophysical Research: Oceans, https://doi.org/10.1029/2020JC016122.  I completely understand 
that sometimes there simply are too many references and you cite only the first ``pioneering’’ papers, but 
in such case it would be good to put “e.g.” in front of the citations, or add after the citations “with few more 
recent follow-ups”, or something similar. Otherwise this might look like the cited papers are all that has 
been published on the topic and it might lead to the other papers being omitted when someone new-to-the-
area uses your references as part of literature review on the topic. Similarly to this, I would make sure you 
somehow emphasize that the citations aren’t exhaustive also in the other cases, e.g. the phytoplankton size-
class chlorophyll has been assimilated also in Ciavatta et al 2019, Journal of Geophysical Research: Oceans, 
https://doi.org/10.1029/2019JC015128 and for total surface chlorophyll there’s many references left out. 
Response: Thank you very much for pointing out this. We will add these references and revise the 
corresponding text in our revised manuscript as suggested.  
 
- more importantly the text on the lines 65-70 suggests that the subsurface validation was done only in the 
2 cited studies and only on climatological, or basin-wide scale. Firstly, I believe it is appropriate to include 
here the Cossarini et al 2019 reference that is cited elsewhere in the paper (which looks at vertical profiles 
along BGC-Argo locations), but secondly there is a new study of Skakala et al (2021), Journal of 
Geophysical Research: Oceans, https://doi.org/10.1029/2020JC016649 that validates both free runs and 
surface data assimilative runs along glider trajectories (in the North-West European Shelf) to determine the 
impact of surface data assimilation (and some other DA as well) on the simulated sub-surface tracers. This 
study, although it uses a very different, 3DVar, system, is of direct relevance here, since it addresses similar 
questions to this submitted manuscript, and, as mentioned before, it does model validation along a specific 
glider 3D transect (which is of course spatially limiting), rather than on basin-wide scales. Btw. please note 
that there is another study that assimilated BGC-Argo oxygen data that perhaps deserves to be cited in this 
paper: Verdy and Mazloff, Journal of Geophysical Research: Oceans, 
https://doi.org/10.1002/2016JC012650. 
Response: We will include these references in our revised manuscript and rephrase this paragraph into:  



“The insufficient availability of subsurface and interior ocean biogeochemical observations is not only 
reflected in the immaturity of biogeochemical data assimilation but also its skill assessment. When 
compared with the surface, the subsurface has received less attention in skill assessments of biogeochemical 
data assimilation systems. Although there already have been studies which compared their vertical 
structures with in-situ observations and/or climatological datasets (e.g. Fontana et al., 2013; Ford and 
Barciela, 2017; Mattern et al., 2017; Ourmières et al., 2009; Teruzzi et al., 2014), these validations are 
often limited to low spatio-temporal resolution. The recent growth of autonomous observation systems, esp. 
BGC-Argo floats and gliders, make it possible to evaluate biogeochemical data assimilation systems below 
the surface in high resolution (e.g. Cossarini et al., 2019; Salon et al., 2019; Skákala et al., 2021; Verdy 
and Mazloff, 2017).” 
 
Section 2: 
I find it would be perhaps beneficial for the reader to provide slightly more information on the system set-
up and maybe a bit rearrange the text. In particular: 
- could you please mark the exact model domain? The Fig.1 shows the Gulf of Mexico region with its 
bathymetry, but I guess what’s in Fig.1 is not precisely the spatial model domain (?) Or is it the red rectangle 
in Fig.1, which however isn’t explained (?) Maybe you can mask out the ``irrelevant’’ regions? 
Response: The model domain is represented by the red rectangle. We will make it clearer in the main text 
and figure caption of our revised manuscript. 
 
- a very minor (bottom of first paragraph in the section 2.1): could you please provide a rough km scale for 
the 1/8 degree resolution. Of course this is slightly variable depending on the latitude, but is it something 
like ~12km?  
Response: The longitudinal distance is about 12 km and the latitudinal distance is about 14 km. We will 
add this into our revised manuscript as suggested. 
 
- again extremely minor: just beneath Eq.2 “measurement operator” should be “observation operator”? 
Response: We will revise it as suggested. 
 
- I would perhaps suggest to put the first two paragraphs in section 2.4 behind the section 2.1, or maybe 
behind the section 2.2, so you say clearly how the ensemble is generated, how many members are run (and 
so on), around the same time when you talk about ensemble DA. I got firstly confused how little information 
is provided about the ensemble generation until I realized it’s been put behind the “Observations” section. 
Response: Thank you very much for this suggestion. We will move these two paragraphs to behind the 
section 2.2 in our revised manuscript. 
 
- regarding the ensemble generation: how was the parameter sensitivity determined, in order to perturb the 
``right’’ parameters to account for the model uncertainty? Physical model parameters weren’t perturbed 
(e.g. vertical diffusion parameter values)? If so, why? I know 20 member ensemble is itself limiting, but 
perhaps some more reasoning on how the ensemble was generated would be desirable. 
Response:  

The biological parameters were selected by sensitivity tests. Specifically, we ran a 1D version of this 
model multiple times by incrementally perturbing one parameter at a time and setting other parameters 
unchanged (hereafter as Test case). Each parameter (p) was perturbed by multiplying factors ranging from 
0.25 to 1.75 with an increment of 0.25. Then parameters were sorted based on their sensitivity which was 
quantified by the normalized absolute differences from the unperturbed run (hereafter as Base case): 
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where m is the number of parameter increments (here 7) and n is the number of base-test pairs including all 
1D model grid cells throughout the whole simulation period. Based on the sensitivity tests, the most 



sensitive parameters were selected and perturbed in our data assimilation experiments. The details about 
the 1D model can be found in the section 3.3 of Wang et al. (2020). In our revised manuscript, we will add 
explanation about the choice of sensitive biological parameters. 

The physical model parameters (e.g. vertical diffusion coefficient) weren’t perturbed in this study. To 
create an ensemble with sufficient spread, we perturbed the model initial conditions, the open boundary 
conditions, and the wind forcing. Details in these perturbations can be seen in the section 2.4 of our original 
manuscript.  

It is worth noting that this data assimilation framework and configurations (e.g. observational errors, 
ensemble perturbations, ensemble members, and etc.) are obtained from Yu et al. (2019) which performed 
twin experiments in the same region (the Gulf of Mexico). In this study, we extend the work of Yu et al. 
(2019) to jointly assimilate the physical and biological observations.  
 
- it seems that the observation uncertainties don’t come with the observation product (?), but based on what 
you estimate the 35% observational uncertainty for total chlorophyll, or the physical observation errors? 
This might be of importance, since you are aiming at estimating model variances quite accurately with the 
ensemble, so the true state estimate can be quite sensitive to the observation error estimates. 
Response: An observational error of 35% (or 30%) is a common practice to specify the error of satellite 
surface chlorophyll (e.g. Fontana et al., 2013; Ford, 2021; Ford and Barciela, 2017; Hu et al., 2012; Mattern 
et al., 2017; Santana-Falcón et al., 2020; Song et al., 2016; Yu et al., 2018). The observational errors of 
SSH and SST are also based on references (Song et al., 2016; Yu et al., 2018, 2019). 
 
- btw do you assimilate chlorophyll, or log-chlorophyll? If the former, how do you treat the problem of 
non-Gaussianity? 
Response: We assimilate the actual chlorophyll concentrations in this study. Based on our prior tests, 
assimilating log-chlorophyll can yield more improvements of the surface chlorophyll in coastal regions but 
degrade it in the deep ocean (with depth>1,000m). In addition, assimilating log-chlorophyll results in less 
improvements of subsurface biological properties, including the chlorophyll, phytoplankton, and POC. As 
this study focused on the subsurface biological properties in the deep ocean of the Gulf of Mexico, we 
decided to assimilate the actual chlorophyll. Also, there already have been successful examples which 
assimilated the actual chlorophyll (e.g. Hu et al., 2012; Yu et al., 2018). Nevertheless, we acknowledge that 
assimilating the actual chlorophyll is suboptimal because of its non-Gaussian nature and will state this more 
clearly in the revised manuscript.  
 
–what exactly is the 7 day window assimilation at the end of third paragraph of section 2.3, and how exactly 
does it help with data sparsity, should be explained more in detail.. E.g. is this that you assimilate more data 
that have been otherwise merged in the OC CCI products? 
Response: In this study, we applied update every week. Since the spatial coverage of surface chlorophyll is 
limited (with average of ~ 9.5%), we not only assimilate the daily records of surface chlorophyll at the date 
of update (e.g. 7 Jan 2015, the first update date in our data assimilative experiments), but also assimilate all 
daily records within 7 days before (e.g. from 1 Jan 2015 to 7 Jan 2015). Literally, the abundance of surface 
chlorophyll data that we assimilated will increase by approximately 7 times. We will explain this in more 
detail in our revised manuscript. 
 
- I am not particularly great expert on EnKF, but maybe you could say for a general readership a bit more 
about how exactly are the correlation length-scales (especially the vertical) calculated from the ensemble? 
There is something on the spurious correlations and localisation, but perhaps you can say a bit more? Also 
I understand correctly that SSH, T & S are updated without updating also the horizontal velocities? Could 
that be also discussed slightly more? 
Response:  

The data assimilation framework and configurations (e.g. localization radius, observational errors, 
ensemble perturbations, ensemble members, and etc.) used in this study are the same as in Yu et al. (2019) 



which has successfully performed twin experiments in the same region (the Gulf of Mexico). The 
localization radius was tuned by initial sensitivity tests in Yu et al. (2019). Specifically, the different values 
of localization radius (i.e. 50, 75, and 100km) were tested and the optimal value (50km) was selected. The 
vertical correlation length-scale is not used in this study.  
        In our data assimilation experiments, the 3D distributions of temperature and salinity were updated. 
The SSH and horizontal velocities were adjusted by dynamics in the following forecast steps. In the deep 
Gulf of Mexico, the circulation features (e.g. the Loop Current and its associated mesoscale eddies) are 
primarily geotropically balanced. Therefore, an update of temperature and salinity can improve the 3D 
circulation features in large scales effectively. This can be also supported by the twin experiments in Yu et 
al. (2019).  As this study mainly focuses on the biological aspect, discussing the update of horizontal 
velocities may be a little distracting, but we will refer to the explanations in Yu et al. (2019) more clearly 
in the revised manuscript.  
 
- the skill metrics at the end of section 2: why don’t you also include the overall bias? I find that calculating 
bias always carries worthy information (at least worthy enough to be mentioned somewhere in the paper). 
Response: We agree that the bias can carry supplementary information to the RMSE. As also suggested by 
the review 3, we will report the bias and correlation coefficient in our revised manuscript. 
 
Section 3 
Nice, just some relatively minor clarifications would help: 
- section 3.2: I find it surprising that addition of Argo (physical) data to the assimilation (Daargo) has such 
impact on surface chl (Fig.6), especially if it didn’t change much T & S (Fig.4)? Could you comment a bit 
more?  
Response: The degradation of surface chlorophyll in DAargo run is caused by the multivariate update 
between the Argo T&S profiles and chlorophyll, rather than the dynamical adjustment. Figure r1 shows the 
forecast and analysis of surface chlorophyll at the first update date (7-Jan-2015). The white circles in Figure 
r1c represent the assimilated Argo T&S profiles. We can see that assimilating the Argo T&S profiles can 
yield extremely high surface chlorophyll around some profiles (e.g. the profile located at about 96.5°W, 
24°N). This is due to the spurious correlations between the T&S profiles and surface chlorophyll. This issue 
has been also reported in Goodliff et al. (2019) which assimilates SST to update both physical and biological 
variables. In their study, the multivariate update can yield unrealistic chlorophyll concentrations no matter 
when the chlorophyll has been log-transformed. Muting the multivariate update on phytoplankton, 
zooplankton, and detritus can make chlorophyll concentrations more realistic. 

 
Figure r1. The forecast and analysis of surface chlorophyll at the first data assimilation cycle (7-Jan-2015). 
The white circles in panel c represent the assimilated Argo T&S profiles. 
 
Section 3.2 paragraph 2: where are the nitrate data coming from? Maybe I’m getting confused, but nitrate 
data weren’t mentioned between the BGC Argo data in section 2. 
Response: The NO3 is not measured by the BGC-Argo floats. It is estimated based on its empirical 
relationship with temperature (Figure S1 of our original manuscript), which is derived from the 

Forecast Analysis (DAsat) Analysis (DAargo)

(a) (b) (c)



climatological data in the Gulf of Mexico from the World Ocean Atlas (WOA). The description of estimated 
NO3 is in the end of the section 2.4 in our original manuscript. To make it clearer, we will move it to the 
end of section 2.3 (observations) in our revised manuscript. 
 
specific Figure-related comments: 
Fig.3: although I understand what the Figure is trying to demonstrate, it might be better to show the model 
–observation differences for the different runs, or at least show them for the free run next to the existing 
panels? 
Response: Figure 3 in our original manuscript aimed to show reductions in RMSE and therefore the 
improvement obtained by data assimilation. We agree with the reviewer and we will add panels to show 
RMSE of the free run as a benchmark in our revised manuscript as suggested. 
 
Fig.4: its interesting how little difference there is in subsurface T between sat DA and argo DA! Can you 
discuss how much of this is due to the assimilation length-scales and how much due to the model dynamical 
adjustment? Btw what was the relationship between the spatial positions of Argo floats and BOEM floats? 
This hasn’t been shown.. 
Response:  

Figure r2 shows positions of Argo profiles (gray dots) at each data assimilation cycle (e.g. 7 Jan 2015, 
the first update date in our data assimilative experiments) and BOEM profiles (colored squares) before the 
next one (e.g. from 7 Jan 2015 to 14 Jan 2015). The solid black circles represent areas within one 
localization radius (50km) from each Argo profile. Colors of squares represent the days of each BOEM 
profile after each data assimilation cycle. As shown in Figure r2, most of BOEM profiles are outside of one 
localization radius from the Argo profiles and therefore are barely updated by assimilating the Argo profiles. 
Figure r3 shows the root-mean-square-difference (RMSD) of temperature from each BOEM profile 

between two data assimilative runs (𝑅𝑀𝑆𝐷 = >7
4
∑(𝐷𝐴A.3 − 𝐷𝐴BCDE)F). The x-axis represents days of 

each BOEM profile after each data assimilation cycle and the y-axis represents distance to the nearest Argo 
profile. In general, the RMSD between two data assimilative runs decreases with the distance but shows no 
significant decreasing trends with the days after update. This means that the differences induced by 
assimilating Argo profiles can be well sustained locally by model dynamical adjustments. The overall 
similarities between two data assimilative runs in Figure 4 can be explained to some extent by the large 
distances between BOEM and Argo profiles. However, it doesn’t mean that increasing the localization 
radius can improve the data assimilation performance. We note that the current localization radius is 
determined by initial tests in Yu et al. (2019) 

 
 
 

 



 
 

(continued) 



 
Figure r2 Positions of Argo profiles (gray dots) at each data assimilation cycle and BOEM profiles (colored 
square) before the next one. Solid black circles represent areas within one localization radius from each 
Argo profile. Colors of squares represent the days after each data assimilation cycle. 
 
 
 
 
 



 
Figure r3 The root-mean-square-difference (RMSD) of temperature from each BOEM profile between two 
data assimilative runs, DAsat and DAargo (indicated by the color). The x-axis represents days of each 
BOEM profile after each data assimilation cycle and the y-axis represents distance to the nearest Argo 
profile 
 
Fig.7: perhaps in this case there is no need to reproduce exactly Fig.4, since the nitrate concentrations are 
very similar between the three simulations? Maybe it’s better to have the first row and then differences 
between the DA and the free run, since this would show more clearly the changes introduced by DA? Also 
why there aren’t the observed nitrate concentrations similarly to T in Fig.4? It’s interesting that nitrate and 
surface chlorophyll aren’t correlated as much as nitrate with temperature (Fig.10), I understand that’s 
because of non-linearity, but in my region and model of experience this non-linearity still produces overall 
strong correlations, just highly variable in time (including changing signature).. 
Response: 

The NO3 distributions are quite different before and after data assimilation. They look similar in Figure 
7 of our original manuscript possibly because the NO3 are plotted in log-scales. As suggested, we replotted 
Figure 7 (referred as Figure r4 here) to show NO3 distributions in the free run and increment of NO3 due 
to data assimilation in DAsat and DAargo runs. Red colors represent increases while blue colors represent 
decreases of NO3 by data assimilation. As shown in Figure r4, the NO3 distributions are significantly 
modified and improved by data assimilation. For example, the anticyclonic eddies which are not reproduced 
by the free run will depress the nitraclines and decrease the NO3 concentrations (e.g. during June of the 
float 286, during July and October of the float 287, and during August to October of the float 289) in the 
two data assimilative runs. In contrast, the data assimilation will increase NO3 concentrations when the 
SSH is overestimated in the free run and corrected in the two data assimilative runs (e.g. during April of 
Float 285, during February and April of Float 287, during April to July of Float 289). 

We didn’t show NO3 observations because NO3 is not measured by the BGC-Argo floats in the Gulf 
of Mexico. In this study, we estimated NO3 based on its climatological relationship with temperature 
(Figure S1 of our original manuscript which is replot as Figure r5 here) and compared it with the model 
results. The estimated NO3 distributions following the BGC-Argo floats are shown in Figure r4. However, 
the estimated NO3 tend to be overestimated in the high temperature regions (Figure r5), which typically 



occurs within the euphotic layer. Therefore we used the unbiased root-mean-square-error to quantify the 
model-data misfit of NO3. 

For the relatively weak correlations between surface NO3 and chlorophyll, the deep ocean of the Gulf 
of Mexico (depth>1,000m) is an oligotrophic region. Apart from NO3, ammonia (NH4) can be also used 
to support a large fraction of primary production. In addition, the photo-acclimation is accounted for in our 
biological model. The chlorophyll to phytoplankton carbon ratio can vary a lot due to environmental factors, 
i.e. light, temperature, and nutrient concentrations (Geider et al., 1997). All these features will increase 
nonlinearities of the biological model and make the correlations between surface NO3 and chlorophyll 
weak. 

 
Figure r4 Vertical distributions of NO3 estimated based on its climatological relationship with temperature 
and modelled by the Free run, and increment of NO3 due to data assimilation in the DAsat and DAargo run. 
Black lines represent SSH. 
 



 
Figure r5 Empirical relationship of temperature-NO3 derived from the World Ocean Atlas in the Gulf of 
Mexico. Colors indicate the number of observations within each bin. 
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