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Abstract. This paper describes the implementation of a high-resolution three-dimensional model of the estuary “Sundalagið

Norður”. This estuary is bound by narrow sills in both ends and has a large semidiurnal tidal variation. The proximity to an

amphidromic region, results in a periodically varying difference in sea level height between both ends of the estuary, which

generates strong semidiurnal tidal currents across the sills. The available observational data support the model results. The

model results verify the dominance of tidal forcing with semidiurnally varying volume fluxes into and out of the estuary. The5

amplitudes of these fluxes vary in strength with the fortnightly variation between spring and neap tides. More surprisingly, the

model also indicates a strong fortnightly variation of net fluxes averaged over 25 hours reducing both diurnal and semidiurnal

tidal currents. These variations are caused by fortnightly variations in sea level difference between both ends of the estuary,

which are verified by comparison with observed sea level variations. This rather surprising result implies that exchanges within

the estuary and with its surroundings vary systematically; typically with one week of net northward flow followed by one week10

of net southward flow. This variation also appears to affect the mixing processes in the estuary and should be taken into account

in planning development or activities. More observational data would be beneficial to validate the model more thoroughly and

we recommend that a dedicated experiment with combined observations and numerical modeling is implemented.

1 Introduction

This study presents results from a high-resolution three-dimensional model of an estuary, “Sundalagið Norður”, that is located15

in the Faroe Islands archipelago (hereafter: Faroes), in the North East Atlantic (Fig. 1a). The estuary is the northern part of a

narrow sound separating the two largest islands in the archipelago and it is separated from the southern part of the sound by a

narrow and shallow (4 meter deep) sill (the “Southern sill”, Fig. 1b). In the northern end of the estuary there is also a sill (the

“Northern sill”, Fig. 1b), but it is wider and deeper (11 m) and leads to the open ocean on the Faroe shelf.

Throughout the sound, a number of villages release sewage and other effluents into the water that may affect the natural20

biota of the sound in various ways. The sound is also hosting two separate fish farming sites, one in the northern and one in the

southern part. There is a potential for negative effects both on and from these sites, as well as interactions between the sites.
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Figure 1. (a) The estuary studied in this paper is located within the white rectangle, which defines the model domain. The Faroes are situated

between Iceland and Shetland (inset map). The red circles show two sites: Tórshavn (T) and Eiði (E) referred to in the text. (b) Bottom

topography of the estuary. Freshwater supply from a river and a hydro-power plant are shown by grey arrows. Red lines indicate three

cross-estuary sections discussed in the manuscript.

Thus, there is a need to understand the processes that mix and transport contaminated water between various parts of the sound

and out of it.

This need has been augmented by the implementation of a hydropower plant with outflow into the northern part of the sound25

(Fig. 1b), reducing the runoff into the southern part of the sound while the northern part has received more freshwater. The

outflow from the hydropower plant is by far the largest freshwater point source in the sound.

The classical terminology (e.g., Farmer and Freeland, 1983) describes a fjord as an estuary with a freshwater source at the

head and a flow towards the mouth where a sill may be located. The estuary described in this paper is not a estaury in the

classical sense as it is open in both ends, however in many ways it behaves like a typical estaury.30

The full model domain includes a wider area (Supplementary Fig. S1), but here, we focus only on the part of the domain

that includes the estuary and areas just outside both ends (Fig. 1b). Although not running towards true North, we will in the

following use the term “northward” (and southward) to describe the along-estuary variation as well as eastward (and westward)

across the estuary.
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The circulation in the estuary was investigated in the 1980s, which revealed that the bottom waters of the estuary would35

typically become stagnant during summer with reduced oxygen concentrations near the bottom as is common for Faroese sill

fjords (Hansen, 1990). In this study, we focus, however, on the more “normal” conditions during winter, when the circulation

is more similar to that of a non-sill estaury.

The general theory for physical fjord oceanography from Farmer and Freeland (1983) states that the circulation in a estaury

is generally driven by freshwater (estuarine) forcing and wind stress at the surface. The freshwater entering the estaury has to40

flow out of it, but on its way, it entrains seawater and becomes a brackish out-flowing layer. To compensate, there must be an

inflow of seawater. Since the brackish water is less dense than the seawater, the out-flowing brackish layer is typically on top of

the in-flowing seawater layer although the Coriolis effect may influence this. On long time scales, this “estuarine circulation”

will typically dominate, but strong wind stress may disrupt it.

In the present case, these two forcing mechanisms are joined by a third: tidal forcing, which is complicated by the fact45

that the southern part of the sound is close to an amphidromic region for the semidiurnal tides. An amphidromic region is

characterized by a small tidal amplitude while the cophase lines have strong horizontal variations. Thus, the amplitude of

the M2 tide is much smaller south of the sound than due north of it (Simonsen and Niclasen, 2021). This induces a strong

periodically varying barotropic pressure gradient through the estuary.

To understand how these various forcing mechanisms affect mixing and circulation within and out of the estuary, a numerical50

model is essential. Previous modeling efforts have mainly been based on barotropic two-dimensional models (Simonsen and

Niclasen, 2021; Kragesteen et al., 2018). However Rasmussen et al. (2014) and Erenbjerg et al. (2020) have also reported

results from full three-dimensional models of the Faroe shelf, but both those models were too coarse to resolve the conditions

within the estuary. To resolve the processes within our estuary, a high resolution, three-dimensional ocean model is imperative

and such a model will also be necessary to investigate the connectivity between the Faroese fish farming sites in the future.55

We have therefore implemented such a high-resolution model (32m x 32m horizontal, 35 vertical layers) that is one-way

triply-nested within a 4 km⇥ 4km ROMS model (Fig. Supplementary S1), which covers the area from the North Atlantic west

of Ireland, the Nordic Seas and into the Arctic to the north (Lien et al., 2013). The high-resolution model was run for 29 days

in January-February 2013 with realistic atmospheric forcing. This model should have a sufficiently high resolution to simulate

Faroese estuaries and sounds. It also appears to be a powerful tool for planning and managing fish farming and investigating60

the effects of hydropower development or other anthropogenic interventions affecting the waters.

Prior to practical model applications, the model must be validated and one reason for choosing this particular estuary is

that it has been the object of a large observational effort. This includes measurements of current velocity during the modeling

period as well as hydrographic properties (temperature and salinity) over several years. One aim of this study was therefore to

validate the model against these observations. At the same time, the model output has delivered new information on mixing65

and transport processes in the estuary, which may be of more general interest.
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2 Material and methods

2.1 The model

In this paper we have applied a model setup based on the open-source Regional Ocean Model System (ROMS, http://myroms.org,

Shchepetkin and McWilliams, 2005; Haidvogel et al., 2008). This is a state-of-the-art three-dimensional hydrostatic, free-70

surface, primitive equation solving ocean model. ROMS applies generalized terrain following s-coordinates in the vertical and

regular horizontal grids. This setup applies 32 m ⇥ 32 m resolution in the horizontal and 35 vertical layers. The triply-nested

setup (Supplementary Fig. S1) is forced along the four open boundaries by SVIM (4 km ⇥ 4 km horizontal resolution Lien

et al. (2013)), the first nesting has a resolution of 800 m in the horizontal and is further described in Erenbjerg et al. (2020).

The second nesting contains a 160 m horizontally resolved grid and is run for five months in 2013. This second nesting is used75

as forcing for the ultra-high-resolution setup used in our current study.

Atmospheric forcing is provided by the Weather Research and Forecasting (WRF) model on the surface. The WRF-model is

set up with a configuration that has a resolution of 9-3-1 km in the horizontal and the area with 1 km ⇥ 1 km resolution covers

the entire Faroe Islands. More detail on configuration can be found in Myksvoll et al. (2012).

The freshwater input to the estuary from runoff is assumed to be constant in time and based on two reports: Erenbjerg (2020)80

and Davidsen et al. (1994) as well as data from the local energy supplier. The two freshwater sources are a hydropower plant

on the eastern coast and a river on the western coast (Fig. 1b). Their average annual supplies are 1.7⇥ 108 m3 and 6.3 ⇥ 107

m3, respectively. The entire annual freshwater input from runoff is averaged and divided into a constant daily input to ROMS.

The computationally demanding model was run from the 11th of February until the 12th of March 2013. To avoid potential

spin-up effects, results from the first day have been omitted. Model output was stored every hour and includes horizontal85

velocities, temperature, and salinity for each grid cell (Arakawa C grid). Sea level height was also stored for each surface grid

cell.

2.2 Observations

During the modeling period, two upward-looking Acoustic Doppler Current Profilers (ADCPs) were deployed on the bottom

of the estuary (Fig. 1b). Details are documented in Larsen et al. (2014a, b). From 2012 to 2018 there were a high number90

of CTD (Conductivity Temperature Depth) observations in the estuary, most of them documented in Simonsen et al. (2018)).

Unfortunately, no hydrographic observations were made during the modeling period. Sea level measurements are available at

two sites “Eiði” and “Tórshavn” (Fig. 1a) from the Faroese Office of Public Works (Landsverk). These measurements have

many gaps, but they are sampled every ten minutes, which allows generation of the hourly averages that are used here.
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3 Model validation95

3.1 Current velocity validation

The two ADCPs were located on a transect crossing the estuary (Fig. 2a), but quality data were only obtained for the deep

parts of the velocity profiles (Larsen et al., 2014a, b). Modelled and observed average cross-estuary profiles are similar and

close to zero (Fig. 2b and 2c). For mooring site BW (Fig. 2b), the modelled and observed along-estuary profiles are also fairly

similar for the depths reached by the ADCP. For mooring site BE (Fig. 2c), the discrepancy is larger, but Fig. 2a indicates that100

this site is close to a transition zone between northward and southward flow at depth, which makes the comparison sensitive to

modeling details.

Instantaneous velocities in the estuary will depend highly on the phase of the tidal signal. In the model, this is determined

by the forcing along the outer boundaries. Thus, a model-observation comparison of instantaneous velocities is not very mean-

ingful. Instead, the top panels in Fig. 3 compare observed and simulated along-estuary velocities averaged over consecutive105

25-hour periods (to average out the tides). The observed and simulated velocities are certainly not identical, but they are gen-

erally of the same magnitudes. All of the correlation coefficients are also positive and three out of four are significantly higher

than zero at the 95 % level (p < 0.05).

On daily time scales, the model is able to reproduce velocity variations to a significant extent. A similar conclusion can be

reached for shorter time scales including the tidal velocity variations, which is documented in the bottom panels of Fig. 3. For110

both the top and the bottom panels, the largest discrepancy between observations and model is for 18 m depth at mooring site

BW. From Fig. 2a it appears that this is close to the average interface between northward flow in the upper layers and southward

flow at depth. Thus, details of model topography, setup, and forcing may affect the comparison for this case disproportionally.

3.2 Salinity validation

As for other estuaries, a key feature of our estuary is the interplay (mixing, transport) between the freshwater added from land115

or the atmosphere and the saline seawater entering the estuary over the two sills. This interplay is especially reflected in the

salinity distribution. To assess the model performance for this parameter, we collected the data from all the CTD observations

in the estuary 2012 – 2018 (details are documented in Simonsen et al. (2018)).

In the shallow regions on either side of the estuary, detailed bottom topography and proximity to a river outlet may affect the

salinity disproportionately. We therefore considered only CTD casts with bottom depth at least 50 m. To exclude situations with120

a stagnant bottom layer, we only used observations from winter (November – April). This gave a total of 92 salinity profiles,

which are shown as the thin black lines in Fig. 4.

The semi-transparent red area in Fig. 4 shows the range of daily averaged salinity profiles from model grid cells that fulfill

the same criterion for bottom depth. One clear difference is that the observed salinities are lower than the range from the model

even at depth. This is not surprising since the salinity of the shelf water decreased considerably from 2013 to 2018 (Erenbjerg125

et al., 2020).

5

https://doi.org/10.5194/os-2021-23
Preprint. Discussion started: 1 April 2021
c© Author(s) 2021. CC BY 4.0 License.



Figure 2. (a) Distributions of northward velocity along transect labeled “ADCP” in Fig. 1b averaged over the simulation period. The two

vertical lines labeled “BW” and “BE” indicate the locations of two ADCPs moored on the bottom and green circles indicate the uppermost

and lowermost depths with high-quality measurement for each of the ADCPs. (b) and (c) Velocity profiles along the estuary (continuous

curves) and across it (dashed curves) from the ADCP measurements (dark curves) and the model (light curves) at the two mooring sites

averaged over the modeling period.

The decreasing salinity cannot explain the large differences in the upper layers where the observations show that the water

often was much fresher than indicated by the model. Still keeping in mind, that the two data sets have different conditions. The

model was run over one month with nearly constant freshwater supply, whereas the observations are over a six-year period

with variable precipitation, river runoff, hydropower outflow.130

4 Model results

There are no indications of serious spin-up effects, but for precautionary reasons we omit the first day of the simulations. Thus,

the model output comprises 672 hourly values (from 12 February 01:00 to 12 March 00:00) of velocity and hydrographic

parameters for each grid cell as well as sea level. This period will in the following be referred to as the “simulation period”.

We define our “estuary” to be the region between the two sills. The sills are defined by minimum cross-sectional (east-west)135
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Figure 3. Comparison between observation and model for averages (top panels) and standard deviations (bottom panels) of along-estuary

velocity for consecutive 25-hour periods at two measurement depths for each of the ADCP sites (Fig. 2a). Correlation coefficients (R) and

their statistical significances (p) are listed in the lower right corner of each plot. The statistical significance has been corrected for serial

correlation by the “modified Chelton” method recommended by Pyper and Peterman (1998). Diagonal lines indicate equality between model

and observation.

area and located at the red lines in Fig. 1b. The total volume between the sills is 2.31 ⇥ 108 m3 with a surface area of 8.75

⇥ 106 m2. Average distributions of hydrographic properties and velocity for the whole simulation period (Supplementary Fig.

S3) give an indication of the estuarine characteristics, but may be rather misleading due to the large and systematic changes

through the period.

4.1 Hourly variations140

On hourly time scales, the flow through the estuary is clearly dominated by the tides. This is evident in Fig. 5a, which shows the

hourly variations of volume fluxes across both the northern, qN (t), and the southern, qS(t), sill, during the 4-week simulation

in 2013, where positive values indicate northward volume flux and negative values indicate southward flux. The semidiurnal

variation is clear in the hourly output, as is a fortnightly variation in the amplitude of the flux. The amplitude of the flux across

the northern sill is much higher than the amplitude in flux across the southern sill. From a regression analysis, the highest145

correlations are found when qS(t) lags one hour after qN (t), and the amplitude ratio is then 0.46 (Table 1).

Typically, the volume flux is in one direction for six hours before changing sign. Adding up all the water flowing into or

out of the estuary across the northern sill during one of these tidal phases, we find that this typically is around 10 % of the
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Figure 4. Comparison of salinity profiles from observations and model. The black lines show observed salinity profiles from 92 individual

CTD casts at stations with bottom depth at least 50 m in winter (November – April). The semi-transparent red area in front is the salinity

range (minimum to maximum at each depth) of daily averaged salinity profiles for all grid cells in the model with a bottom depth of at least

50 m.

volume, but occasionally the phases may last longer and transport more water, such as the period by the end of the first week

of simulation where an episode of excess southwards flow flushes 30 % of the volume out (Fig. 5b).150

Sea-level variations also follow the tidal cycle. We have defined four hourly sea level time series: hN (t) is sea level north of

the northern sill. hS(t) is sea level south of the southern sill. hIS(t) is sea level just north of the southern sill. hI(t) is sea level

averaged over all surface grid points between the two sills. In addition, �hS(t) is the sea level difference across the southern

sill, hIS(t)�hS(t) (Supplementary Fig. S4).

Correlation coefficients (R) between some of these parameters are listed in Table 1. Average sea level between the two sills,155

hI(t), is very highly correlated with sea level north of hN (t), with zero lag (less than one hour) and a regression coefficient

(↵) close to one. Even hIS(t), just north of the southern sill (Supplementary Fig. S4), follows hN (t) almost identically. Thus,

sea level within the estuary responds more or less instantaneously to the sea level north of the estuary. Sea level south of the

estuary, hS(t), is also highly correlated with hN (t), but with a smaller regression coefficient (Table 1).

Hourly values for volume flux across the two sills are fairly well correlated with the difference in sea level between both160

ends of the estuary, hN (t)�hS(t), consistent with the idea that this difference drives the flow through the estuary. The volume

flux across the southern sill, qS(t), is better correlated (R=-0.95) with the sea level change across the southern sill, �hS(t)

(Supplementary Fig. S4), but an even better fit is obtained by a quadratic fit, rather than a linear one (red curve in Fig. 6).
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Figure 5. (a) Hourly (thin lines) and 25-hour averaged (thick lines) northward volume transport across the northern sill, qN , (red) and across

the southern sill, qS , (blue). (b) Fraction of total volume transported into (positive) or out of (negative) the estuary across the northern sill

during each uni-directional period.

Table 1. Lagged correlation and regression analysis of relationships between hourly values of various model parameters. R0 is the correlation

coefficient for zero lag. Lagmax is the lag (in hours) that gives the numerically highest correlation coefficient. Rmax, ↵max, and �max are

the correlation coefficient and the regression coefficients for that lag.

Regression equation R0 Lagmax Rmax ↵max �max

qS(t + lag) = ↵ · qN (t) + �: 0.84 1 0.87 0.46 -36 m3s�1

hI(t + lag) = ↵ ·hN (t) + �: >0.99 0 >0.99 1.01 0.04 m

hIS(t + lag) = ↵ ·hN (t) + �: >0.99 0 >0.99 1.01 0.01 m

hS(t + lag) = ↵ ·hN (t) + �: 0.96 0 0.96 0.89 -0.05 m

qN (t + lag) = ↵ · [hN (t)�hS(t)] + �: -0.88 0 -0.88 -7606 m2s�1 346 m3s�1

qS(t + lag) = ↵ · [hN (t)�hS(t)] + �: -0.94 0 -0.94 -4349 m2s�1 165 m3s�1

qS(t + lag) = ↵ ·�hS(t) + �: -0.95 0 -0.95 -4367 m2s�1 228 m3s�1

The quadratic fit (red equation in top right corner of Fig. 6) is motivated by a simple model for the flow across the southern

sill, in which the speed at any instant, vS(t), is assumed to be homogeneous on the section. If friction is ignored, the Bernoulli165

equation links the kinetic energy of the flow (proportional to speed squared) to the loss in potential energy (proportional to

�hS(t)). The volume flux is given as qS(t) = A · vS(t), where A is the cross-sectional area over the sill in the model (= 670

m2). This leads to the red equation in the top right corner of the figure where the parameter � is to adjust for the fact that the
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Figure 6. Volume transport across the southern sill, qS(t), plotted against sea level change across the southern sill, �hS(t), both from

the model (Supplementary Fig. S4). Each dot represents one hour. The blue line represents the linear regression line from Table 1 with

coefficients shown in the lower left corner. The red curve represents the result of a least squares fit to the red equation shown in the upper

right corner (quadratic regression). The ± symbol in the equation indicates that qS(t) has the opposite sign of �hS(t)-�. The linear fit (blue

line and equation) explains 91 % of the variance of qS(t). The quadratic fit (red curve and equation) explains 97.8 %.

locations for sampling �hS(t) (Supplementary Fig. S4) were chosen arbitrarily. The value for � was derived by fitting the

model data into this simple framework. When friction is included, the speed and volume transport decrease and the value for �170

in the fit changes (Fig. 6) this indicates that a considerable part of the potential energy is lost to friction .

4.2 Fortnightly variations

The fortnightly variation of tidal flux amplitude seen in Fig. 5a is a normal phenomenon in Faroese waters (Hansen, 1978),

reflecting the variation between neap and spring tides. However, the fortnightly variations in the 25-hour average fluxes (thick

lines in Fig. 5a) are unexpected. The simulation period includes two full periods with net southward flow and one period with175

net northward flow, all of them lasting about one week (Fig. 7a). Both the first days and the last days during the simulation

have a net northward flow. This figure also has a curve (black) that shows the variation of the standard deviation of qN (t)

over consecutive 25-hour intervals. This curve should reflect the strength of the tidal amplitude and it is worth noting that the

25-hour average flux does not reach its extremes during spring tide, but rather a few days out of phase (Fig. 7a).

To help understand the fortnightly flux variations, Figure 7b shows 25-hour averages and standard deviations of sea level180

height. During the periods with average southward flux, average sea level is higher north of the estuary. When the average flux

is northward, the average sea level is higher south of the estuary. Consistent with Table 1, the volume flux through the estuary
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Figure 7. Daily (25-hour) averages (<>) and standard deviations (std) within each 25-hour period for (a) volume transports and (b) sea level

heights. The standard deviations ought to be dominated by the strength of the tidal amplitudes and should therefore reflect the variation

between spring and neap tides. The shaded areas indicate two periods discussed in the text: “Period 1” lasting 188 hours from 21 February

08:00 to 1 March 03:00 and “Period 2” lasting 158 hours from 1 March 04:00 to 7 March 17:00.

may be seen as forced by the sea level difference between both ends. In this paradigm, the reason for the fortnightly variations

in volume flux is the variation in this sea level difference.

Figure 8 shows the selected two full periods of northward and southward flow, respectively. Period 1 is the first full period185

with average northward flow, whereas Period 2 is the following period with average southward flow. To illustrate the differences

between these two periods, northward velocity and salinity are averaged over each period and across (east-west) the estuary

and then plotted against northward grid number and depth in Fig. 8.

During period 1 (upper panels in Fig. 8), the average flow is northwards through the upper parts of the estuary, down to

20-30 m depth except for the water over the northern sill. This indicates that during this period the upper parts of the estuary190

are refilled by the water entering from the south. In the bottom part of the estuary, Period 1 has average southward flow. Across

the northern sill a thin layer of seawater is entering the sill with a velocity of up to 2 cm s�1 on average. This water immediately

flows towards the bottom of the basin where it is mixed into the water column partially and transported southwards.

From the average salinity during period 1 (upper panels in Fig. 8), it seems that the entering seawater is highly diluted on

the way into the basin. Only a very small part of the entering seawater in Period 1 is undiluted once reaching the bottom of the195

basin. For the upper most layers in the basin the salinity is low, and it appears that freshwater is added from the south.

During Period 2 (lower panels in Fig. 8), the average velocity is southwards throughout most of the estuary. This implies,

that the southern part of the sound receives a net inflow of water from our estuary. Except for some minor areas close to the
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Figure 8. Cross-estuary averaged northward velocity and salinity plotted against northward grid number for the two different periods defined

in Fig. 7. For velocity, the highest (top left panel) or lowest (bottom left panel) values are grouped together. Note different velocity scales.

For salinity, the lowest values are grouped together. The bottom depth indicated by the black areas is the maximum depth along each section

crossing the estuary.

bottom, the only northward flow during Period 2 is near the surface over and just south of the northern sill. This appears to be

freshwater from the river and hydropower plant in the northern part of the estuary (Fig. 1b).200

The average salinity distribution during Period 2 (lower panels in Fig. 8), indicates that seawater enters the estuary over the

northern sill and fills it up from below. Thus, almost undiluted seawater fills the basin below 30 m depth. Almost no freshwater

seems to be mixed below 20 meters depth during this period in contrast to Period 1 where a large amount of the freshwater is

mixed into the water column.
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Figure 9. Northward volume flux through (east-west) cross-sections below sill depth of the northern sill (from 12 m, downwards) for the two

different periods indicated in Fig. 7.

The difference between the deep flow during the two periods is illustrated in the period-wise averages in Fig. 9, showing205

volume flux below sill depth of the northern sill (11 m). From this figure it is clear that the volume flux through the deep parts

of the estuary is much greater during Period 2.

4.3 Observational validation of fortnightly variations

The fortnightly variations in average fluxes and sea level differences (Fig. 7) were, as mentioned, unexpected. To check that

these variations are not purely an artifact generated by the model, we have compared observed sea level at “Eiði”, which is just210

north of the estuary with the observed sea level in Tórshavn, which is south of it. When averaged over 25 hours, the sea level

at both sites is dominated by atmospheric pressure variations (Supplementary Fig. S5). This effect is strongly reduced when

the average difference in sea level between both sites is considered, which instead varies consistently with the neap-spring

variation of the amplitude of the semidiurnal and diurnal tide (Fig. 10).

For zero lag, the daily (25-hour) averaged sea level difference between the two sites is positively correlated with the tidal215

amplitude of sea level variations in Eiði with a correlation coefficient R = 0.50, which is significantly different from zero at the

98 % (p <0.02) level. The correlation increases slightly for a lag of 1 day (Fig. 10a), which implies that the 25-hour average sea

level difference (north minus south) is highest shortly after spring tides. This is consistent with Fig. 7b, although the lag there

seems somewhat larger. Remarkably, the (numerically) highest correlation, R = -0.55, is found when the sea level difference
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Figure 10. Comparison of daily (25-hour) difference in observed sea level between Eiði and Tórshavn (Eiði minus Tórshavn) and the tidal

amplitude in Eiði defined as the standard deviation of sea level for each 25-hour interval based on observed sea level for the first four months

of 2013. (a) Lagged correlation coefficient between the two parameters. (b) Sea level difference plotted against tidal amplitude in Eiði for a

lag of 8 days with the regression line shown.

lags after the tidal amplitude by 8 days (Fig. 10a), i.e., shortly after neap tide. This supports our conclusion that the observed220

fortnightly sea level variations are real and not an artifact of the averaging.

4.4 Density inversions downstream from the northern sill

From the salinity distributions in Fig. 8 right, it seems that the seawater entering the estuary across the northern sill is flowing

downwards and is then mixed with the water inside the estuary just downstream of the sill. To study this in more detail, the

density structure was plotted along a track (Fig. 11a). The track was chosen based on the average maximum velocity close225

to the bottom, beginning on the shallow part of the sill (track number 0) down-slope to 55 m depth (track number 35). The

average velocity during the entire simulation period is more than 10 cm s�1 southwards in the bottom layer of the steep slope

of the track (Fig. 11d).

As long as turbulent mixing is weak, the density structure is normally stable with density increasing downwards. Density

inversions with density decreasing downwards may therefore be used as a sign of mixing. To utilize this, we define a “density230

inversion” as the density difference between the third lowest layer and the bottom layer (upper minus deeper) when this value

is positive the density is inversed. Under stable conditions, when this value is negative, it is set to zero. The spatial and temporal

variations of density inversions along the selected track are illustrated on the Hovmøller diagram (Fig. 11b).
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Figure 11. (a) Bottom topography around the northern sill. The red line shows a track with numbers ranging from 0 to 35, which are used in

the other panels. (b) Density inversion, defined as density (�⇥) difference between the deepest layer and two layers above (layer 2 minus layer

0) along the track every hour. Only positive values are shown (negative values white). (c) The red curve shows the density inversion in the

panel just above averaged over all track numbers and 25-hour running mean. The blue curve is 25-hour running mean of southward-directed

volume flux (positive towards the south) across the northern sill (set to zero for hours with northward flux). The shaded areas indicate the

two periods defined in Fig. 7 with average density inversion for each period shown. (d) Average northward velocity at various depths along

the track. (e) Density inversion along the track averaged over the whole period.

If the density inversions are averaged over the track and temporally smoothed, they exhibit systematic variations (red curve

in Fig. 11c). Most pronounced is the rather frequent occurrence of inversions in the first part of the simulation from day two235
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to nine. From day nine to 15, the density inversions are less frequent for most part of the track except for track points 20-25.

These variations show some similarity to the variations in Fig. 7a and verified by the blue curve in Fig. 11c. Strong southward

flow across the northern sill seems to be a necessary – but not sufficient – condition for density inversion.

When averaged over time, the density inversions mainly occur on the down-hill slope, and are maximal right before the bot-

tom slope levels off at track number 20, Fig. 11e. This could indicate hydraulic jump conditions, although we use a hydrostatic240

model and cannot conclude on any vertical advection.

5 Discussion

5.1 Model performance

The comparison between average velocities in the model and in observations (Sect. 3), did not show identical values, but taking

into account the spatial variation (Fig. 2a) the corrrespondence is as good as may be expected. For temporal velocity variations,245

most of the corrrelations between model and observations (Fig. 3) were significant at the 95 % (p <0.05) level, which again is

encouraging. No hydrographic observations were made in the estuary during the simulation period.

5.2 Hourly variations

On short time scales, the flow through the estuary is clearly of tidal character with semidiurnal dominance (Fig. 5a) and we

expect sea level differences between both ends to be the main driving force. This is supported by the high corrrelations between250

volume fluxes across the sills, qN (t) and qS(t), and sea level difference hN (t)�hS(t) (Table 1).

As the tidal wave enters the estuary from the north, it should propagate southwards as a barotropic wave with sufficient

speed to pass through the estuary in less than an hour. This is verified by the high zero-lag corrrelations between hN (t), hI(t),

and hIS(t) (Table 1). Most of the sea level change occurs over a fairly short distance over the southern sill and this is where

the highest speeds are observed (Supplementary Fig. S6).255

Speeds exceeding 2.5 m s�1 might seem excessive, but according to local sailors, the speeds over the southern sill may

occasionally be considerably higher. From the arguments supporting the quadratic fit in Fig. 6, it appears that a considerable

part of the potential energy in the sea level is lost to friction over the southern sill. Thus, the flow across the southern sill

probably controls how much water the tides can push through the estuary, but this will also make the results sensitive to

turbulence and bottom friction parameterization in the model.260

To reach the high values for speed (Supplementary Fig. S6) and volume transport (Fig. 5a), strong forcing is required.

This forcing is achieved through the periodically varying large differences in sea level between both ends of the estuary and

they may be linked to the amphidromic character of the region. The “textbook” amphidromy is a point in the middle of an

ocean basin, around which the tidal wave turns. Here, the islands complicate matters, but Hansen (1978) suggested that an

amphidromic region for the semidiurnal tides was located somewhere in the proximity of Tórshavn based on tidal analysis of265

sea level observations there. Combining sea level observations and modelling, this has been more thoroughly investigated by
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Simonsen (1992) and Simonsen and Niclasen (2021). Their tidal chart for the M2 constituent has a semi-amphidromic point a

short distance east of Tórshavn and their amplitude of M2 sea level is much higher (60 cm) north of our estuary than south of

it (10 cm).

From these results, we might expect sea level differences between both ends of the estuary to exceed 50 cm at times. In the270

model, they are smaller than that (Table 1 and Fig. 6), which may well be because our location for sea level south of the estuary,

hS(t), is still close to the southern end of the estuary and probably affected by the sea level inside. Nevertheless, the sea level

differences in the model are sufficient to generate the potential energy needed to accelerate the flow across the controlling

section over the southern sill even though it is slowed down by friction (Fig. 6).

5.3 Fortnightly variations275

As demonstrated in Fig. 5 and Fig. 7, fortnightly variations are seen; not only in the tidal amplitude, but also in 25-hour

averaged volume flux. Is this an artifact of the processing? On the Faroe shelf, the tides are dominated by semidiurnal and

diurnal variations that vary in amplitude fortnightly, mainly as an interference between the M2 tide (period 12.42 hours) and

the S2 tide (period 12 hours). For these variations, a 25-hour mean will average out close to zero. There will be a residual, but

it should not exceed the maximum tidal amplitude divided by 25. We expect this residual to vary fortnightly in phase with the280

strength of the tidal amplitude.

The simulated variations in 25-hour averaged volume flux are much larger than this expected residual. At times, the 25-hour

averaged flux equals the standard deviation of the flux during the same 25 hours and the average flux is not in phase with

the amplitude (Fig. 7a). Thus, we conclude that these fortnightly variations in volume flux are not artifacts; at least not in the

model.285

In Sect. 5.2, we argued that the hourly variations in volume flux were forced by sea level differences between the northern

and southern ends of the estuary. From Fig. 7b, it appears that the same mechanism may be invoked for the 25-hour averaged

flux. Periods with average southward flux have average sea levels higher north of the estuary than south of it and vice versa.

Surprisingly, periods with northward volume flux (e.g., period 1) seem to require smaller sea level differences than periods

with southward flow (e.g., Period 2). Possibly, the explanation is to be found in the highly non-linear character of flow across290

the southern sill (Fig. 6) where the flux increases rapidly for small sea level differences.

With this interpretation, the problem is transferrred to explaining why there are fortnightly variations in the 25-hour averaged

sea level difference between both ends of the estuary. A priori, this might still be an artifact generated by the model, but Fig.

10 indicates that this is not the case. The similarity between Fig. 7b and Fig. 10 is not perfect. The observed signal in sea level

difference (Fig. 10b) is smaller than indicated by the model (Fig. 7b) and the lags are not identical. We should, however, not295

expect perfect similarity, because Tórshavn is rather far south of the southern end of the estuary (Fig. 1a).

When seeking explanations for these variations, the amphidromic character of the region is again an obvious candidate.

Different semidiurnal constituents (e.g., M2 and S2) will have different characteristics of their amphidromic regions and the

interaction between these may generate effects that vary fortnightly. Why this should generate low-frequency sea level varia-

tions with fortnightly time scales is not obvious and should be more thoroughly investigated.300
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An alternative explanation may be linked to the tidally rectified residual currrents that circulate the Faroes over the shelf

(Larsen et al., 2008). These currrents vary in strength over the spring-neap cycle and would be expected to generate sea level

slopes through geostrophy that should have a fortnightly variation. Conceivably, these variations may generate the fortnightly

variations in sea level difference between both ends of our estuary that are needed to explain Fig. 7.

On the available evidence, none of these explanations can be validated more quantitatively. However, the effect is important,305

especially for fish farming activities, and may affect other Faroese sounds. A larger model domain and more comprehensive sea

level and currrent observations would be beneficial to increase our knowledge. This is planned to be performed in a follow-up

study, but will be too voluminous for this manuscript. Here, we note only that observations verify that there are fortnightly

variations between sea level north of the estuary and south of it similar to those in the model. Possibly, the model exaggerates

the effect or shifts its timing, but the reality of the fortnightly variations seems well justified.310

Since southward flow across the southern sill occurs during flood, it has been suggested that the cross-sectional area over

the sill – and therefore also volume flux – should be higher during southward than northward flow, which would lead to a net

southward volume flux varying between 50 and 175 m3 s�1 in phase with the strength of the tidal amplitude (VandKvalitetsIn-

stitutet, 1983). This is not supported by the model, which has a net flux that varies between northward and southward direction

on a fortnightly time scale (Fig. 7a). To check the effect suggested by (VandKvalitetsInstitutet, 1983), volume transport across315

the southern sill was calculated with and without varying sea level. On average, the difference was 14 m3 s�1. Thus, the effect

is real, but much smaller than expected and swamped by the fortnightly variations.

5.4 Exchange rates/ flushing rates

For an estuary that is affected by human activity, one of the most important parameters is the flushing rate, i.e., how fast

the waters in the estuary (and dissolved contaminants or planktonic organisms) are flushed out of the estuary. An often used320

measure of this is the “flushing time”, defined as the volume of the estuary (or parts of it) divided by the volume flux into or

out of the estuary. Combining CTD observations from our estuary with estimated freshwater supply, Hansen (1990) estimated

a typical flushing time of 5 days for this estuary, but noted the uncertainty for this value.

From the present model results, there are several ways of obtaining alternative estimates. One way is to use Fig. 5b, which

implies that between 5 and 10 % of the estuarine volume is typically flushed in and out over the northern sill every 12 hours. If325

one assumes no mixing between in-flowing and out-flowing waters, this method gives an average flushing time of around one

week, ranging between less than four days and more than 11 days (Supplementary Fig. S7) over the simulation period.

Alternatively, one could use the average salinity distribution (Supplementary Fig. S3) to estimate the average total freshwater

content in the estuary and combine that with the (almost constant) freshwater supply to calculate a flushing time. This method

is, however, very sensitive to the choice of seawater salinity that is diluted by freshwater and also assumes stationary conditions.330

An extra challenge when trying to estimate a “typical” flushing time is the fortnightly variation in the net flow through the

estuary (Sect. 5.3). Considering the two periods defined in Fig. 7, Figure 12 illustrates the two different exchange regimes, that

the estuary regularly shifts between.
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Figure 12. Schematic flow patterns and exchanges for the two periods defined in Fig. 7. Red and blue areas show north- and south-going

(cross-estuary averaged) flow, respectively (based on Fig. 8). Horizontal arrows over the two sills show average volume flux and (flux-

averaged) salinity over the sills for each period. The wide south-going arrow at depth for each period shows the total south-going volume flux

just south of the northern sill (northward grid number 311). Vertical arrows show average freshwater supply to the estuary for each period,

including river and hydropower supply (constant) as well as precipitation (variable). The values for < S > are the salinities averaged over

the whole estuary for each period. Brown boxes show the salinity, SA, for the Atlantic water at depth north of the northern sill. Indications

of mixing intensity over the slope south of the northern sill (white arrows) are based on Fig. 11.

The background colours in Fig. 12 indicate net (i.e., 25-hour average) flow through the estuary. The red areas in Fig. 12a

show that the upper layers have a net northward flow during Period 1. On an hourly time scale, water flows back and forth335

across the sills, but on average, there is a net flow from the region south of the southern sill, through the estuary, and out across

the northern sill. The total volume of water carried through the estuary by this net flow during the 188 hours of Period 1 is

slightly more than the volume of the estuary.

During Period 2, the net flow is quite different. Now, the blue colour in Fig. 12b indicates net southward flow through almost

the entire estuary. Only a small near-surface region close to the northern sill has net northward flow. Even though Period 2 (158340

hours) is shorter than Period 1 (188 hours), the net amount of water flowing through the estuary is somewhat higher.

The most pronounced difference between the two periods lies in the net inflow from the north and its passage through the

deep parts of the estuary. The net southward flow of seawater across the northern sill along the bottom was more than ten times

higher during Period 2 (558 m3 s�1) than Period 1 (47 m3 s�1) and it was less diluted by the fresher waters on top. This is seen

by comparing the flux-averaged salinity of the southward inflow (values in arrows) with the salinity SA of the more “pure”345

Atlantic water found at depth north of the estuary (values in brown boxes).
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After passing over the northern sill, the dense seawater from the north tends to stay close to the bottom over the southern

slope of the sill (Fig. 11d). This is the case during both periods, but more so during Period 1 (Fig. 8). During this descent,

the seawater entrains and is diluted by water already in the estuary. Thus, the 47 m3 s�1 that crossed the sill during Period 1

increased to 233 m3 s�1 at depth (Fig. 12a).350

During Period 2, the seawater from the north seems to experience stronger mixing with ambient waters (Fig. 11c) and to be

more spread out through the water column (Fig. 8). The deep arrow in Fig. 12b showing 629 m3 s�1 represents net southward

flow through the whole water column just south of the northern sill, but most of that is below sill level of the northern sill. This

is evident from Fig. 9, which also illustrates the difference in deep flow and flushing during the two periods.

If the arrows in Fig. 12 are combined to make budgets, we see that they do not balance. During both periods, Fig. 12 indicates355

more water leaving the estuary than entering it and the associated sea level changes would be unrealistically large. It has to

be kept in mind, however, that the values in Fig. 12 are based on averages for each period with sea level kept constant. The

volume flux estimates therefore have an uncertainty, which over the southern sill at least are on the order of 10 %. Within that

uncertainty, there is balance. It might also be emphasized once again that the arrows in the figure are net volume fluxes, upon

which are superimposed the semidiurnal variations with amplitudes that are considerably higher.360

6 Recommendations

The fortnightly variations in net flow through our estuary revealed by the model may have large impacts on any development or

activity that affects the estuary and its surroundings, such as hydropower development or fish farming. They should therefore

be considered when planning future operations. We also recommend a more thorough validation of the model. Although the

model results show a satisfactory agreement with the available observational data, these data were not targeted at some of365

the key processes that have appeared. We therefore recommend that a more targeted field experiment is implemented that can

reveal more of the strengths and weaknesses of the model.

We also recommend investigating the mixing across the northern sill, to see if there is actually hydraulic jump conditions,

with a model that is not using the hydrostatic assumption, thus beeing able to make conclusions on vertical advection.

Code availability. The source code of ROMS is available from ROMS, http://myroms.org.370

Data availability. Landsverk data of sea level are available upon request (www.landsverk.fo). Data from DMI surface air pressure and

precipitation are available upon request (www.dmi.dk). Current measurements and CTD observations are available upon request from SVE.

The data from local energy supplier (SEV) are available upon request (www.sev.fo). The model output from the FC32m model are available

from SVE upon request.
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